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Abstract

Scientific workflows are a cornerstone of modern scientific computing. They are used to describe complex computational applica-
tions that require efficient and robust management of large volumes of data, which are typically stored/processed on heterogeneous,
distributed resources. The workflow research and development community has employed a number of methods for the quantitative
evaluation of existing and novel workflow algorithms and systems. In particular, a common approach is to simulate workflow
executions. In previous works, we have presented a collection of tools that have been adopted by the community for conduct-
ing workflow research. Despite their popularity, they suffer from several shortcomings that prevent easy adoption, maintenance,
and consistency with the evolving structures and computational requirements of production workflows. In this work, we present
WfCommons, a framework that provides a collection of tools for analyzing workflow executions, for producing generators of syn-
thetic workflows, and for simulating workflow executions. We demonstrate the realism of the generated synthetic workflows by
comparing their simulated executions to real workflow executions. We also contrast these results with results obtained when using
the previously available collection of tools. We find that the workflow generators that are automatically constructed by our frame-
work not only generate representative same-scale workflows (i.e., with structures and task characteristics distributions that resemble
those observed in real-world workflows), but also do so at scales larger than that of available real-world workflows. Finally, we
conduct a case study to demonstrate the usefulness of our framework for estimating the energy consumption of large-scale workflow
executions.
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1. Introduction

Scientific workflows are relied upon by thousands of re-
searchers [1] for managing data analyses, simulations, and other
computations in almost every scientific domain [2]. Scientific
workflows have underpinned some of the most significant dis-
coveries of the last decade [3, 4]. These discoveries are in part
a result of decades of Workflow Management System (WMS)
research, development, and community engagement to support
the sciences [5, 6]. As workflows continue to be adopted by sci-
entific projects and user communities, they are becoming more
complex and require more sophisticated workflow management
capabilities. Workflows are being designed that can analyze
terabyte-scale datasets, be composed of millions of individual
tasks that execute for milliseconds up to several hours, process
data streams, and process static data in object stores. Cater-
ing to these workflow features and demands requires WMS re-
search and development at several levels, from algorithms and
systems all the way to user interfaces.
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A traditional approach for testing, evaluating, and evolving
WMSs is to use full-fledged software stacks to execute appli-
cations on distributed platforms and testbeds. Although seem-
ingly natural, this approach has severe shortcomings including
lack of reproducible results, limited platform configurations,
and time and operational costs. An alternative that reduces
these shortcomings is to use simulation, i.e., implement and
use a software artifact that models the functional and perfor-
mance behaviors of software and hardware stacks of interest.
Thus, the scientific workflow community has leveraged simula-
tion for the development and evaluation of, for example, novel
algorithms for scheduling, resource provisioning, and energy-
efficiency, workflow data footprint constraints, exploration of
data placement strategies, among others [7, 8, 9].

Studying the execution of workflows in simulation requires
sets of workflow application instances to be used as bench-
marks. This is so that quantitative results are obtained for a
range of representative workflows. In [10], we have described
a collection of tools and data that together have enabled re-
search and development of the Pegasus WMS [3], and have also
been used extensively by the workflow community [11, 12, 13,
14, 15]1. Despite the popularity of this pioneer effort, it lacks
(i) a common format for representing a workflow’s execution

1And also as seen by the high number of citations on Google Scholar.
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Figure 1: Simulation-driven engineering life cycle (adapted from [16]).

in a way that is agnostic to WMS that was used to execute it;
(ii) methods for deriving workflow structure and workflow task
performance characteristics based on workflow execution; and
(iii) techniques for automating the process of producing gen-
erators of realistic synthetic workflows for any given workflow
application.

In this paper, we present WfCommons [17], an open-source
framework that aims at supporting and at bridging theoretical
and practical aspects of workflow systems research and devel-
opment. The broad objective of WfCommons is to enable simulation-
driven engineering of workflow systems (Figure 1) [16]. As
such, it must address three main technical challenges: (i) the
gathering and archiving of real-world workflow instances from
diverse application domains based on their executions using di-
verse workflow systems; (ii) the analysis of real-world work-
flows so as to understand their fundamental structures and au-
tomatically generate representative synthetic instances at arbi-
trary scales; (iii) the accurate and scalable simulation of work-
flow executions on arbitrary platforms. WfCommons addresses
these challenges via several mechanisms and techniques imple-
mented as part of usable tools, which remedy the shortcomings
of our previous set of tools. Specifically, WfCommons uses
a system-agnostic JSON format for representing workflow in-
stances based on execution logs. WfCommons also provides an
open-source Python package to analyze workflow instances and
produce generators of realistic synthetic workflow instances,
generated in that same format. Workflow simulators that sup-
port this format can then take real-world and synthetic work-
flow instances as input for driving the simulation. Figure 2
shows an overview of the WfCommons conceptual architec-
ture. Information in workflow execution logs is extracted as
workflow instances represented using the common JSON for-
mat. Workflow “recipes” are obtained from the analysis of sets
of workflow instances for a particular application. More pre-
cisely, a recipe embodies results from statistical analysis and
distribution fitting performed for each workflow task type so
as to characterize task runtime and input/output data sizes. The
recipes also incorporates information regarding the graph struc-
ture of the workflows (tasks dependencies and frequency of oc-
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Figure 2: The WfCommons conceptual architecture.

currences), which are automatically derived from the analysis
of the workflow instances. Each recipe is then used for auto-
matically producing a workflow generator, which in turn pro-
duces synthetic workflow instances that are representative of
the application domain. Finally, these instances can be used by
a workflow simulator for conducting experimental workflow
research and development. Specifically, this work makes the
following contributions 2:

1. A collection of workflow execution instances acquired
from actual executions of state-of-the-art compute- and
data-intensive workflows in a cloud environment;

2. A common format for representing both collected instances
and generated synthetic instances;

3. An open source Python package [19] that provides meth-
ods for analyzing instances, deriving recipes, and gener-
ating representative synthetic instances;

4. A collection of open-source WMS simulators and simu-
lation frameworks that support our common format;

5. An evaluation of the accuracy of WfCommons’ gener-
ated synthetic workflows and a comparison to our previ-
ous sets of tools [10, 18];

6. A case study in which we demonstrate the usefulness of
WfCommons in the context of energy-efficient workflow
executions.

This paper is organized as follows. Section 2 discusses re-
lated work. The WfCommons project and the associated con-
cepts and tools are explained in Section 3. Section 4 provides
an experimental evaluation of the accuracy of WfCommons’
generated synthetic workflows. Section 5 presents our case-
study on energy-efficient workflow executions. Finally, Sec-
tion 6 concludes with a summary of results and perspectives on
future work.

2A short version of this work was previously published in [18].
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2. Related Work

Workload archives are widely used for distributed comput-
ing research, to validate assumptions, to derive workload mod-
els, and to perform experiments by replaying workload execu-
tions, either in simulation or on real-world platforms. Available
repositories, such as the Parallel Workloads Archive [20], the
Grid Workloads Archive [21], and the Failure Trace Archive [22],
contain data acquired at the infrastructure level at compute sites,
or by monitoring or obtaining logs from deployed compute ser-
vices. The workloads in these archives do include data gener-
ated by workflow executions. However, the information cap-
tured is about individual job executions and about resource uti-
lization. As a result, there is at best little information on the
task dependency structure of workflows.

In the context of scientific workflows, the Common Work-
flow Language (CWL) [23] is an open standard for describ-
ing workflows in a way that makes them portable and scal-
able across a variety of software and hardware environments.
Our proposed common format (described below) is conceptu-
ally similar to the CWL standard, though our format captures
performance metrics data (e.g., volumes of I/O reads and writes,
runtime, power consumption, etc.) and compute resource char-
acteristics, which are key for generating realistic workflow in-
stances. The recently established Workflow Trace Archive [24]
is an open-access archive that provides a collection of execu-
tion instances from diverse computing infrastructures and tools
for parsing, validating, and analyzing instances. To date, the
archive has collected instances from 11 existing online reposi-
tories (including 10 instances obtained from a preliminary ver-
sion of WfCommons) and uses an object-oriented representa-
tion (based on the Parquet columnar storage format used in
Hadoop) for documenting instances. Our format instead uses
JSON, which is agnostic to the programming language used for
processing instances. Also, the format used in [24] captures
workflow executions information in terms of resource usage on
the specific hardware platform used to execute the workflow.
As a result, it is difficult to use this information to reconstruct
a platform-independent, abstract workflow structure. By con-
trast, while WfCommons also records platform-specific behav-
iors in its instances, in addition it ensures that the abstract work-
flow structure is directly available from these instances. This is
crucial for research purposes, as abstract workflow structures
are needed for, for instance, simulating workflow executions on
platform configurations that differ from that used to collect the
workflow execution instance.

Several studies have used synthetic workflows to explore
how different workflow features impact execution and inter-
play with each other (e.g., number of tasks, task dependency
structure, task execution times). Tools such as SDAG [25] and
DAGGEN [26] generate random workflow instances based on
the number of tasks, the maximum number of levels that can be
spanned by an edge, the edge density, the data-to-computation
ratio, the width, etc. DAGEN [27] generates random DAGs for
parallel programs modeled according real instances of parallel
programs with respect to task computation and communication
payloads. DAGITIZER [28], an extension of DAGEN-A, is ap-

plicable to grid workflows in which all parameters are gener-
ated randomly. Although these generators can produce a very
diverse set of DAGs, they may not necessarily be representative
of real-world scientific workflows.

Using the structure of real-world workflow instances to gen-
erate DAGs for specific applications is an alternative to the ran-
dom generation approach. The work in [29] identifies work-
flow “motifs”, or sub-structures, that are used to reverse engi-
neer workflow structures based on the data created and used by
the tasks. Although these motifs allow for automated workflow
generation, identifying them is an arduous manual process. The
work in [30] targets business process requirements such as par-
allelism, choice, synchronization, etc., and identifies over forty
workflow patterns. These patterns can be mapped to structures
in real scientific workflows [31], but they do not necessarily re-
spect the ratios of the different types of tasks. The problem lies
in the fact that a workflow structure is not only defined by a set
of vertices and edges, but also by the task type – i.e. executable
name, of each vertex.

In [32], application skeletons are used to build synthetic
workflows that represent real applications for benchmarking. In
our previous work [10], we developed a tool for generating syn-
thetic workflow configurations based on real-world workflow
instances. As a result, the overall structure of generated work-
flows was reasonably representative of real-world workflows.
But that tool uses only two types of statistical distributions (uni-
form and normal), and as a result workflow performance behav-
ior may not be representative (see results in Section 4).

3. The WfCommons Framework

The WfCommons project (https://wfcommons.org) is
an open source framework for enabling scientific workflow re-
search and development. It provides foundational tools for ana-
lyzing workflow execution instances, and generating synthetic,
yet realistic, workflow instances. These instances can then be
used for experimental evaluation and development of novel al-
gorithms and systems for overcoming the challenge of achiev-
ing efficient and robust execution of ever-demanding workflows
on increasingly complex distributed infrastructures.

Figure 2 shows an overview of the research and develop-
ment life cycle that integrates the four major components Wf-
Commons: (i) workflow execution instances (WfInstances), (ii) work-
flow recipes (WfChef), (iii) workflow generator (WfGen), and
(iv) workflow simulator (WfSim).

3.1. WfInstances

Catalogs of workflow instances are instrumental for evaluat-
ing workflow solutions in simulation or in real conditions. The
WfInstances component targets the collection and curation of
open-access production workflow instances from various scien-
tific applications, all made available using a common format. A
workflow instance is built based on logs of an actual execution
of a scientific workflow on a distributed platform (e.g., clouds,
grids, clusters) using a WMS. Specifically, the three main types
of information included in the instance are:
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Table 1: Collection of workflow execution instances hosted in WfInstances. All instances were obtained using the Pegasus and Makeflow WMSs running on the
Chameleon cloud platform.

Application WMS Science Domain Category # instances # Tasks Runtime and Input/Output Data Sizes Distributions

1000Genome Pegasus Bioinformatics Data-intensive 22 8,844 alpha, chi2, fisk, levy, skewnorm, trapz
BLAST Makeflow Bioinformatics Compute-intensive 15 2,245 arcsine, argus, trapz
BWA Makeflow Bioinformatics Data-intensive 15 10,560 arcsine, argus, rdist, trapz
Cycles Pegasus Agroecosystem Compute-intensive 24 30,720 alpha, beta, chi, chi2, cosine, fisk, levy, pareto, rdist, skewnorm, triang
Epigenomics Pegasus Bioinformatics Data-intensive 26 15,242 alpha, beta, chi2, fisk, levy, trapz, wald
Montage Pegasus Astronomy Compute-intensive 17 37,619 alpha, beta, chi, chi2, cosine, fisk, levy, pareto, rdist, skewnorm, wald
Seismology Pegasus Seismology Data-intensive 11 6,611 alpha, argus, fisk, levy
SoyKB Pegasus Bioinformatics Data-intensive 10 3,360 argus, dweibull, fisk, gamma, levy, rayleigh, skewnorm, triang, trapz, uniform
SRA Search Pegasus Bioinformatics Data-intensive 25 1,580 arcsine, argus, beta, dgamma, fisk, norm, rdist, trapz

9 applications 2 WMSs 4 domains 2 categories 165 116,781 21 probability distributions

• Workflow task execution metrics (runtime, input and out-
put data sizes, memory used, energy consumed, CPU uti-
lization, compute resource that was used to execute the
task, etc.);
• Workflow structure information (inter-task control and

data dependencies); and
• Compute resource characteristics (CPU speed, available

RAM, etc.).

Workflow Instance Format – The WfCommons project uses a
common format, WfFormat, for representing collected work-
flow instances and generated synthetic workflows instances. Work-
flow simulators and simulation frameworks that support WfFor-
mat can then use both types of instances interchangeably. Wf-
Format uses a JSON specification (available on GitHub [33]),
which captures all relevant instance information as listed above.
The GitHub repository also provides a Python-based JSON schema
validator for verifying the syntax of JSON instance files, as well
as their semantics, e.g., whether all files and task dependen-
cies are consistent. Users are encouraged to contribute addi-
tional workflow instances for any scientific domain, as long as
they conform to WfFormat. Currently, WfCommons provides
parsers for converting execution logs into WfFormat for two
state-of-the-art WMSs: Pegasus [3] and Makeflow [34].

Collected Workflow Instances – An integral objective of the
WfCommons project is to collect and reference open access
workflow instances from production workflow systems. Table 1
summarizes the set of workflow instances currently hosted in
WfInstances. These instances are from nine representative sci-
ence domain applications supported by Pegasus or Makeflow,
for workflows composed of compute- and/or data-intensive tasks.
(Note that although a workflow may be categorized overall as,
for example, data-intensive, it may include CPU-intensive tasks.)
We argue that the 165 archived workflow instances form a rep-
resentative set of small- and large-scale workflow configura-
tions [35, 36, 37, 38]. For instance, Montage workflow in-
stances can be composed of tens of thousands of short-running
CPU-intensive tasks [35], while 1000Genome workflow instances
comprise a few hundreds data-intensive tasks that operate over
40 GB of data [36]. BWA workflow instances comprise a few
thousands short-running data-intensive tasks that process O(100)
MB each [37]. Although Cycles workflow instances are mainly
composed of compute-intensive tasks, they are also comprised
of a small subset of data-intensive tasks that operates over 10 GB

of data [38]. In addition to consuming/producing large volumes
of data processed by thousands of compute tasks, the structures
of these workflows are sufficiently complex and heterogeneous
to encompass current and emerging large-scale workflow exe-
cution patterns [39].

3.2. WfChef

WfChef is the WfCommons component that automates the
construction of synthetic workflow generators for any given
workflow application. The input to this component is a set of
real workflow instances described in the WfFormat (e.g., in-
stances available in WfInstances). WfChef automatically an-
alyzes the real workflow instances for two purposes. First, it
discovers workflow subgraphs that represent fundamental task
dependency patterns. Second, it derives statistical models of
the workflow tasks’ performance characteristics. WfChef then
outputs a “recipe”, that is, a data structure that encodes the dis-
covered pattern occurrences as well as the statistical models of
workflow task characteristics. This recipe is then used by Wf-
Gen (see Section 3.3) to generate realistic synthetic workflow
instances with any arbitrary number of tasks. The way in which
WfChef operates is depicted in the top part of Figure 4, and
hereafter we provide a brief overview of the methods used to
construct recipes. A detailed description of the algorithms and
an evaluation of their accuracy is provided in [40].

Finding Pattern Occurrences – Given a set of real workflow in-
stances for an application, WfChef finds the patterns that have
more than one occurrence in the same workflow graphs and
records these pattern occurrences. To identify patterns, WfChef
defines a task’s type as the kind of computation performed by
the task, which is given by the task’s name as extracted from
the workflow execution logs (e.g., the name of the executable
that is invoked to perform the computation). WfChef then re-
cursively computes a unique ID for each task, called the type
hash, based on the task’s type and the type hashes of all the
task’s ancestors and descendants. The type hash of a task thus
encodes information about the graph’s structure and the role of
the task in that structure. Finally, the type hash of a sub-graph
is defined as the set of the type hashes of the tasks in that sub-
graph. WfChef defines a (repeating) pattern as a set of disjoint
sub-graphs that occur in a workflow instance’s graph that have
all the same type hash (i.e., a pattern is an equivalence class of
the set of sub-graphs, where equivalence is defined as type hash
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1"individuals": {
2 "runtime": {
3 "min": 48.846,
4 "max": 192.232,
5 "distribution": {
6 "name": "skewnorm",
7 "params": [
8 11115267.652937062,
9 -2.9628504044929433e-05,

10 56.03957070238482
11 ]
12 }
13 },
14 ...
15}

Listing 1: Example of an analysis summary showing the best fit probability
distribution for runtime of the individuals tasks in 1000Genome workflows.

equality). Two sub-graphs with the same type hash, i.e., with
tasks of the same types and same dependency structures, do not
necessarily have the same number of tasks but are occurrences
of the same pattern.

To find pattern occurrences, WfChef proceeds as follows:
1. Pick two distinct tasks, t1 and t2, with the same type hash;
2. S 1 = {t1} and S 2 = {t2}.
3. Add to S 1, resp. S 2, all the parents and children of tasks

in S 1, reps. S 2;
4. S 1 = S 1 − S 1 ∩ S 2; S 2 = S 2 − S 1 ∩ S 2;
5. If S 1 or S 2 has increased in size after steps 3 and 4, go

back to step 3;
6. Otherwise, S 1 and S 2 are identified as two occurrences

of the same pattern.
Note that because t1 and t2 have the same type hash, it is guar-
anteed that S 1 and S 2 will have the same type hash, and thus
are occurrences of the same pattern.

Modeling Performance Characteristics – Besides pattern oc-
currences, a workflow recipe also includes statistical character-
izations of task performance metrics. These are necessary for
generating representative workflow task instances (by sampling
task runtime and input/output data sizes from appropriate prob-
ability distributions). Specifically, WfChef analyzes a set of
real workflow instances for a particular application to produce
statistical summaries of workflow performance characteristics,
per task type. To this end, WfChef performs probability dis-
tributions fitting (minimizing the mean square error). Figure 3
shows an example of probability distribution fitting of task run-
time for two task types from different workflow instances, by
plotting the cumulative distribution function (CDF) of the data
and the best probability distribution found. The outcome of this
analysis applied to a set of workflow instances for a particular
application is a summary that includes, for each task type, the
best probability distribution fits for runtime, input data size, and
output data size. For instance, Table 1 lists (for each workflow
application for which WfInstances hosts instances) the proba-
bility distributions used for these fits. Listing 1 shows the statis-
tical summary for one particular task type in the 1000Genome
workflow application.

Figure 3: Example of probability distribution fitting of runtime (in
seconds) for individuals tasks in 1000Genome workflows (top) and
alignment to reference tasks in SoyKB (bottom) workflows.

3.3. WfGen

Workflow instances are commonly used to drive experiments
for evaluating novel workflow algorithms and systems. It is cru-
cial to run large numbers of such experiments for many differ-
ent workflow configurations, so as to ensure generality of ob-
tained results. In addition, it is useful to conduct experiments
while varying one or more characteristics of the workflow ap-
plication, so as to study how these characteristics impact work-
flow execution. For instance, one may wish, for a particular
overall workflow structure, to study how the workflow execu-
tion scales as the number of tasks increases. And yet, current
archives only include instances for limited workflow configu-
rations. And even as efforts are underway, including WfCom-
mons, to increase the size of these archives, it is not realistic
to expect them to include all relevant workflow configurations
for all experimental endeavors. Instead, tools must be pro-
vided to generate representative synthetic workflow instances.
These instances should be generated based on real workflow
instances, so as to be representative, while conforming to user-
specified characteristics, so as to be useful. The WfGen compo-
nent targets the generation of such realistic synthetic workflow
instances.

Generating Synthetic Instances – WfGen takes as input a work-
flow recipe produced by WfChef for a particular application
and a desired number of tasks. Note that each workflow recipe
specifies a lower bound on the number of tasks that a gener-
ated synthetic workflow instance may contain. This is to ensure
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Figure 4: Overview of the synthetic workflow instance generation process.
WfChef starts by analyzing a set of real workflow instances to discover pattern
occurrences and compute statistical summaries of workflow task characteris-
tics. It outputs a recipe that records this information. WfGen takes as input
a recipe and a desired number of tasks, and replicates pattern occurrences in
real-world instances to generate a synthetic instance with (approximately) the
desired number of tasks.

that generated instances contain required application-specific
structure. WfGen then automatically generates synthetic, yet
realistic, randomized workflow instances with (approximately)
the desired number of tasks. The way in which WfGen oper-
ates is depicted in the bottom part of Figure 4. To reach the
designed number of tasks WfGen iteratively replicates pattern
occurrences that are listed in the workflow recipes, randomly
picking which pattern occurrence to replicate using a uniform
probability distribution. Replicating a pattern occurrence sim-
ply consists in making a copy of all tasks and inter-task edges in
the pattern occurrence to generate a new sub-graph. The entry
and exit tasks of this sub-graph are connect to the same parent
and children tasks as the entry and exit tasks of the original pat-
tern occurrence. This process is repeated until replicating the
next pattern occurrence would surpass the desired number of
tasks.

3.4. WfSim
An alternative to conducting scientific workflow research

via real-world experiments is to use simulation. Simulation is
used in many computer science domains and can address the
limitations of real-world experiments. In particular, real-world
experiments are confined to those application and platform con-
figurations that are available to the researcher, and thus typi-
cally can only cover a small subset of the relevant scenarios

that may be encountered in practice. Furthermore, real-world
experiments can be time-, labor-, money-, and energy-intensive,
as well as not perfectly reproducible.

WfCommons fosters the use of simulation for scientific work-
flow research, e.g., the development of workflow scheduling
and resource provisioning algorithms, the development of work-
flow management systems, and the evaluation of current an
emerging computing platforms for workflow executions. We
do not develop simulators as part of the WfCommons project.
Instead, WfCommons’ WfSim component catalogs open source
WMS simulators (such as those developed using the WRENCH
framework [41, 42]) that support the WfFormat workflow in-
stance format. In other words, these simulators take as input
workflow instances in this format (either from actual workflow
executions or synthetically generated) and simulate their exe-
cutions. In the next section, we use two of the simulators cat-
aloged in WfSim to quantify the extent to which synthetic in-
stances generated using WfCommons tools are representative
of real-world instances.

3.5. WfCommons Python package

In order to allow users to analyze real workflow instances
and to generate synthetic workflow instances, the WfCommons
framework provides a collection of tools released as an open
source Python package [19, 43]. Specifically, the package lever-
ages the SciPy ecosystem [44] for performing probability dis-
tributions fitting to a series of data to produce statistical sum-
maries of workflow performance characteristics (as described in
Section 3.2). In contrast to our previous work [10], which used
only two probability distributions for generating workflow per-
formance metrics, the WfCommons Python package attempts
to fit data with 23 probability distributions provided as part of
SciPy’s statistics submodule. Workflow recipes are instances of
a class that defines methods for generating synthetic workflow
instances given a desired number of tasks. The current ver-
sion of the WfCommons Python package3 provides recipes for
generating synthetic workflows for all 9 applications shown in
Table 1. Detailed documentation and examples can be found on
the project’s website [17] and the online open access package
documentation [19].

4. Experimental Evaluation of Synthetic Generated Work-
flow Instances

In this section, we evaluate WfCommons and compare it to
previously proposed approaches. We first evaluate the realism
of generated workflow instances based on their structure (Sec-
tion 4.2), and then based on their simulated execution using
simulators of two state-of-the-art WMSs (Section 4.3).

4.1. Experimental Scenarios

We consider experimental scenarios defined by particular
workflow instances to be executed on particular platforms. To

3Version 0.7 was released in August 2021.

6



assess the realism and the accuracy of generated synthetic work-
flows, we have performed real workflow executions with Pega-
sus and Makeflow, and collected raw, time-stamped event logs
from these executions. These logs form the ground truth to
which we can compare simulated executions.

Actual workflow executions are conducted using the Chameleon
Cloud platform [45], an academic cloud testbed on which we
use homogeneous standard cloud units to run an HTCondor
pool with shared file system, a submit node (which runs Pe-
gasus or Makeflow), and a data node placed in the WAN. We
use 4 worker “cloud units,” where each each cloud unit con-
sists of a 48-core 2.3GHz processor with 128 GiB of RAM.
The bandwidth between the submit node and worker nodes on
these instances is around 10Gbps. Simulated workflow execu-
tions are obtained based on the exact same hardware platform
specification.

Whenever possible, for the experiments conducted in this
section, we contrast experimental results obtained with syn-
thetic workflow instances generated by WfCommons to results
obtained using synthetic workflow instances generated by our
previous work (WorkflowHub) [18]. For the Epigenomics and
Montage applications we also include results obtained with an
older, and very popular, framework called WorkflowGenera-
tor [10]. We analyze a subset of 6 workflow applications, 4
from Pegasus and 2 from Makeflow (see Table 2). We chose
these applications as they come from different science domains
and have different graph structures and/or computing require-
ments.

4.2. Evaluating the Realism of Synthetic Workflow Instances
To evaluate the structure of the generated synthetic work-

flow instances, we developed a metric called Type Hash Fre-
quency (THF). The THF metric is the Root Mean Square Error
(RMSE) between the frequency of task type hashes for a syn-
thetic workflow instance and that for the real workflow instance
with the same number of tasks. Recall from Section 3.2 that a
task’s type hash encodes information about the task’s type (kind
of computation), but also about the task’s ancestors and descen-
dants. Therefore, the lower the THF of a synthetic workflow
instance, the more similar it is to the real workflow instances.

For each real workflow instance of each selected applica-
tion, as archived on WfCommons, we use WfCommons’ Python
package for generating a synthetic workflow instance with the
same number of tasks. For comparison purposes, we also gen-
erate synthetic instances using the generators from our previous
works.

Figure 5 shows THF results for all 6 applications, for Wf-
Commons, WorkflowHub, and WorkflowGenerator. Workflow-
Generator only supports 2 of these application, which is why it
is not included in all 6 plots. WfCommons and WorkflowHub
use randomization in their heuristics, thus for each number of
tasks we generate 10 sample synthetic workflows with each
tool. The heights of the error bars in Figure 5 show average
THF values, and error bars show the range between the third
quartile (Q3) and the first quartile (Q1), in which 50% of the re-
sults lie. Error bars also show minimum and maximum values.
Note that error bars are of zero length for the Blast (Figure 5e)

and BWA (Figure 5f) applications. This is because workflows
for these applications comprise a simple graph structure: there
is only one task that can be replicated to produce synthetic
workflow instances of different sizes. As a result, both Work-
flowHub and WfCommons each produce ten identical synthetic
workflow instances.

Overall, WfCommons yields the lowest THF values in most
cases, often achieving low values in the absolute sense, mean-
ing that the synthetic workflow instances it generates are rep-
resentative of real workflow instances. Synthetic workflow in-
stances produced by WorkflowGenerator have fixed graph struc-
tures, thus scaling up (resp. down) the number of tasks is sim-
ply done by replicating (resp. pruning) predefined subgraphs
of the workflow. As a result, the generated workflow instances
do not capture distinct patterns of the workflow graph produced
by different sets of input data/parameters. For instance, for the
Epigenomics workflow (Figure 5a) smaller instances are com-
posed of a single or few chains of tasks, while larger instances
are composed of several chains but also multiple branches (that
can be composed of different numbers of chains). Workflow-
Generator is unable to capture this pattern. Synthetic workflow
instances generated by the manually-crafted WorkflowHub gen-
erators are on average about 52% more realistic when compared
to WorkflowGenerator. However, WorkflowHub still does not
entirely capture all workflow patterns. For the Montage work-
flow (Figure 5b), real-world instances are obtained using two
different image datasets (2MASS and DSS) [3]. Although these
workflow instances are composed of the same set of executa-
bles, their graph structures differ significantly. WorkflowHub
attempts to find a single structure to capture both cases, while
WfCommons can precisely identify both distinct patterns. Sim-
ilar results are observed for Cycles and 1000Genome (Figures 5c
and 5d). For Blast and BWA (Figures 5e and 5f), THF values
are very low, (but still with WfCommons leading to the best
results) due to the simple structure of these workflows.

4.3. Evaluating the Accuracy of Synthetic Workflow Instances
We use simulators of two state-of-the-art WMSs, Pegasus [3]

and Makeflow [34], as a case study for evaluation and valida-
tion purposes. These simulators are described in [42] (note that
the Makeflow simulator is really a simulator of WorkQueue,
an execution engine used by Makeflow). Both Pegasus and
Makeflow are being used in production to execute workflows
for dozens of high-profile applications in a wide range of sci-
entific domains and on a wide range of platforms. We used
both systems to execute workflows on a cloud environment for
the purpose of collecting execution logs for building real work-
flow instances, as described in Section 3.1. The simulators are
built using WRENCH [41, 42], a framework for implement-
ing simulators of WMSs that are accurate and can run scalably
on a single computer, while requiring minimal software devel-
opment effort. The work in [42] demonstrates that WRENCH
achieves these objectives, and provides high simulation accu-
racy for workflow executions using both Pegagus and Make-
flow.

In [42, 18], we have already demonstrated that the simu-
lation framework used in our previous set of tools [10] suffers
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Table 2: Applications, number of tasks and systems used on our experiments.

Application Number of Tasks per Workflow Instance WMS

Blast [45, 105, 305] Makeflow
BWA [106, 1006] Makeflow
Cycles [69, 135, 136, 203, 221, 268, 333, 401, 439, 440, 659, 663, 664, 876, 995, 1093, 1313, 1324, 1985, 2183, 2184, 3275, 4364, 6545] Pegasus
Epigenomics [43, 75, 121, 127, 225, 235, 243, 265, 349, 407, 423, 447, 509, 517, 561, 579, 673, 715, 795, 819, 865, 985, 1097, 1123, 1399, 1697] Pegasus
1000Genome [54, 84, 106, 158, 166, 210, 248, 262, 314, 330, 366, 412, 418, 470, 494, 522, 574, 576, 658, 740, 822, 904] Pegasus
Montage [180, 312, 474, 621, 621, 750, 1068, 1314, 1740, 2124, 4848, 6450, 7119, 9807] Pegasus

from significant discrepancies from actual executions. These
discrepancies mostly stem from the use of a simplistic network
simulation model, and from the simulator not capturing rele-
vant details of the system, and thus of the workflow execu-
tion. Therefore, to reach fair conclusions regarding the validity
of synthetic workflow instances, in this paper we only use the
more accurate WRENCH-based simulators for all experiments.
Using these simulators, we quantify the extent to which the
simulated execution of generated synthetic workflow instances
(generated using our previous work and using WfCommons) is
similar to that of real workflow instances. The simulator im-
plementations, details on the calibration procedure, and experi-
mental scenarios used in the rest of this section are all publicly
available online [46, 47].

We perform experiments using simulators for the same sub-
set of workflow applications as in the evaluation of the work-
flow generation. For each application, we run the simulator for
a reference real workflow instance and for synthetic instances.
The goal is to quantify the discrepancies between the simulated
execution of a synthetic workflow instance and that of a real
workflow instance with the same number of tasks, using the
absolute relative difference between the simulated makespans
(i.e., overall execution times in seconds). This metric is com-
monly used in the literature to quantify simulation error.

Figure 6 shows the relative error of simulated makespans
for all 6 applications for WfCommons and WorkflowHub when
compared to the real instances. The closest to zero the av-
erage value, the more realistic the synthetic instance. In this
section, we omit all results for WorkflowGenerator as it per-
forms very poorly, as is expected given the results in the previ-
ous section. Recall that WfCommons and WorkflowHub have
randomization in their heuristics, therefore the values shown in
Figure 6 are averages computed over 10 sample generated syn-
thetic workflows for each tool and application.

Overall, we observe larger discrepancy between simulated
executions of synthetic workflow instances and that of real work-
flow instances when the synthetic instances are generated by
WorkflowHub. By contrast, WfCommons’ generation method
produces workflow instances whose executions are more closely
matched to that of real workflow instances (even though some
discrepancies necessarily remain due to random sampling ef-
fects). For Epigenomics (Figure 6a), both frameworks lead
to many similar average makespan values, but WorkflowHub
leads to significantly higher (and less realistic) makespans for
instances comprised of 515, 577, 671, and 1397 tasks. By man-
ually inspecting these generated synthetic instances, we observe
a reduction in the number of branches in the workflow and an
increase in the number of tasks in chains of tasks. As a result,

the parallelism of the workflow is decreased, which explains the
longer makespans. In the real instances, this parallelism reduc-
tion does not occur. WfCommons-generated instances are more
representative of real instances but some discrepancies still oc-
cur for instances comprised of 713, 793, and 1695 tasks, albeit
with smaller magnitude. Results for Montage (Figure 6b) cor-
roborate the findings presented in Section 4.2, with a large ad-
vantage for WfCommons over WorkflowHub. Results for Cy-
cles (Figure 6c) are similar, with WfCommons instances lead-
ing to makespans more in line with that of real instances for
most cases. Simulated results for 1000Genome instances (Fig-
ure 6d) are similar to Epigenomics results, in that WorkflowHub
leads to very inaccurate makespans for some instances. These
large discrepancies occur for particular numbers of tasks (246,
328, 410, 492, 574, 656, and 738), which correspond to cases in
which a new chromosome is added. WorkflowHub is not able to
capture these changes in the workflow structures. By contrast,
WfCommons leads to more accurate results, albeit with some
remaining discrepancies. Finally, results for Blast (Figure 6e)
and BWA (Figure 6f) show that both WorkflowHub and Wf-
Commons lead to accurate makespans, which is expected given
the simple structure of these workflows.

5. Case Study: Estimating Energy Consumption of Large-
Scale Workflows

Energy-efficient computing has received much attention in
the past few years. With the advance of computing capabili-
ties, applications become more complex and consume more re-
sources, thus leading to increased energy usage [48]. While the
development of fully renewable computing facilities is on the
rise, there is still a pressing need to reduce the power consump-
tion of computation, which in turn reduces its carbon footprint.
In the context of scientific workflows, several works have pro-
posed solutions to optimize workflow executions while respect-
ing energy consumption constraints [49].

In [50, 51], we have proposed and validated a power con-
sumption model that accounts for CPU utilization, computa-
tions that execute on multi-core compute nodes, and I/O opera-
tions (including the idle power consumption caused by waiting
for these operations to complete). In this work, we leverage
this model, to estimate the energy consumption of the execu-
tion of large-scale workflows. We use Montage workflows as
a case-study and compute the estimated energy consumption of
the execution of real workflow instances using our model. We
then compute the estimated energy consumption of the execu-
tion of synthetic Montage instances generated by WfCommons.
We generate synthetic instances with approximately the same

8



43 75 12
1

12
7

22
5

23
5

24
3

26
5

34
9

40
7

42
3

44
7

50
9

51
7

56
1

57
9

67
3

71
5

79
5

81
9

86
5

98
5

10
97

11
23

13
99

16
97

0

0.02

0.04

0.06

0.08

0.1

WorkflowGenerator WorkflowHub WfCommonsepigenomics

#tasks

Ty
pe

 H
as

h 
F

re
qu

en
cy

 (
T

H
F

)

(a) Epigenomics

18
0

31
2

47
4

62
1

75
0

10
68

13
14

17
40

21
24

48
48

64
50

71
19

98
07

0

0.05

0.1

0.15

0.2

0.25

0.3

WorkflowGenerator WorkflowHub WfCommonsmontage

#tasks

Ty
pe

 H
as

h 
F

re
qu

en
cy

 (
T

H
F

)

(b) Montage

69 13
5

13
6

20
3

22
1

26
8

33
3

40
1

43
9

44
0

65
9

66
3

66
4

87
6

99
5

10
93

13
13

13
24

19
85

21
83

21
84

32
75

43
64

65
45

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

WorkflowHub WfCommonscycles

#tasks

Ty
pe

 H
as

h 
F

re
qu

en
cy

 (
T

H
F

)

(c) Cycles

54 84 10
6

15
8

16
6

21
0

24
8

26
2

31
4

33
0

36
6

41
2

41
8

47
0

49
4

52
2

57
4

57
6

65
8

74
0

82
2

90
4

0

0.02

0.04

0.06

0.08

0.1

0.12

WorkflowHub WfCommons1000genome

#tasks

Ty
pe

 H
as

h 
F

re
qu

en
cy

 (
T

H
F

)

(d) 1000Genome

45 10
5

30
5

0

0.005

0.01

0.015

WorkflowHub WfCommonsblast

#tasks

Ty
pe

 H
as

h 
F

re
qu

en
cy

 (
T

H
F

)

(e) Blast

10
6

10
06

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

WorkflowHub WfCommonsbwa

#tasks

Ty
pe

 H
as

h 
F

re
qu

en
cy

 (
T

H
F

)

(f) BWA

Figure 5: THF of synthetic workflow instances. Bar heights are average values. Error bars show the range between the third quartile (Q3) and the first quartile (Q1),
and minimum and maximum values as black dots.

number of tasks as their real counterparts, so as to validate the
accuracy of the generated instances. Additionally, we gener-
ate larger instances of that available real Montage workflow in-
stances, that is, with 10K, 25K, 50K, 75K, 100K, 150K, 200K,
and 250K tasks. The goal is to demonstrate the usefulness of

WfCommons in assessing the energy consumption of Montage
applications at scales for which data from actual executions is
not available.

Figure 7 shows simulated energy consumption vs. number
of workflow tasks, for both real and synthetic Montage work-
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Figure 6: Relative error of simulated makespan for workflow instances. Square markers show average values. Error bars show the range between the third quartile
(Q3) and the first quartile (Q1).
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Figure 7: Estimated energy consumption (in kWh) of the (simulated) executions
of synthetic and real Montage workflow instances. Synthetics instances are
generated at scales beyond that of the available real instances.

flow instances. Simulated executions are for the same hardware
platform specification as that described in Section 4.1. Intrigu-
ingly, energy consumption for real instances does not mono-
tonically increase with the number of workflow tasks. Similar
non-monotonic behavior is observed for all other 5 applications
considered in this work (results not shown). For Montage in-
stances that comprise 2,212 and 6,448 tasks we note large en-
ergy consumption spikes. Manual inspection of these instances
reveals that the number of tasks in the fan-out portions of the
workflow graph significantly diminishes when compared to the
adjacent instances (which have fewer branches and stretched
fan-out patterns). This application-specific feature leads to a
reduction of the number of tasks that are ready for execution at
particular points in time, thus causes the WMS (or rather the
scheduling algorithm it employs) to underutilize the resources.
This lowered resource utilization results in higher makespans
(as seen in Figure 6b). It also results in a large increase in en-
ergy consumption due to the inherent energy consumption of
having machines in operation, even if idle (i.e., due to static
power consumption).

The key results here is that synthetic workflow instances
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generated by WfCommons produce very similar energy con-
sumption profiles to that of the result instances. More impor-
tantly, the spikes observed for the real instances are also ob-
served for synthetic instances. This shows that WfCommons
is able to account for application-specific features and patterns
accurately when producing workflow recipes. Figure 7 shows
8 data points for synthetic instances that go beyond the scale of
available real instances. These data points show a large energy-
consumption spike for the instance with 75K tasks. Given the
accuracy of the energy consumption estimate with synthetic in-
stances for scales up to 9,805 tasks, there is good confidence
that a real Montage execution with 75K tasks would also expe-
rience a large energy consumption spike.

The overall conclusion from the above results, which cor-
roborates results in previous sections, is that WfCommons gen-
erates accurate (both at structural and performance metrics level)
synthetic workflow instances. These instances can be used to
study workflow execution behavior, as demonstrated for energy
consumption behavior in this case study, at scales beyond that
for which real execution data is available.

6. Conclusion

In this paper, we have presented the WfCommons project,
a community framework for constructing and archiving work-
flow instances, analyzing these instances, producing realistic
synthetic workflow instances, and simulating workflow execu-
tions using these instances. WfCommons provides a collection
of tools for constructing “workflow recipes” based on instances
collected from the real-world execution of workflow applica-
tions. These workflow recipes can then be used to produce syn-
thetic workflow instances. These synthetic instances that can
enable a variety of novel workflow systems research and devel-
opment activities. We have demonstrated experimentally that
the synthetic instances generated by WfCommons are realis-
tic, much more so than those produced by previously available
generators. More specifically, WfCommons is able to generate
synthetic workflow instances at various scales while preserv-
ing key application-specific structural patterns and performance
characteristics. We have showcased the usefulness of WfCom-
mons via a case study focused on the energy consumption of
workflow executions. Specifically, we have shown that using
the generated synthetic workflow instances lead to experimen-
tal results that are in line with that obtained with real work-
flow instances, while making it possible to explore scenarios
for workflow scales beyond that of available real workflow in-
stances.

WfCommons is open-source and welcomes contributors. It
currently provides a collection of 165 workflow instances de-
rived from actual executions, and can generate synthetic work-
flows from 9 applications from 4 science domains. Version 0.7
was released in August 2021. We refer the reader to https:

//wfcommons.org for software, documentation, and links to
collections of instances and simulators.

A short-term future work direction is the development of
additional execution logs parsers for state-of-the-art workflow

systems [52]. These parsers will enable WfCommons to pro-
vide continuous automated development of novel workflow recipes
to broaden the number of science domains in which WfCom-
mons can potentially impact research and development efforts.
Another future work direction is the use of synthetic workflow
instances to support workflow-focused education and training,
e.g., for designing simulation-driven activities in which stu-
dents acquire knowledge by experimenting with various work-
flow scenarios [53].
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