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ABSTRACT

Estimates of task runtime, disk space usage, and memory consumption, are commonly
used by scheduling and resource provisioning algorithms to support efficient and reliable

workflow executions. Such algorithms often assume that accurate estimates are available,

but such estimates are difficult to generate in practice. In this work, we first profile five
real scientific workflows, collecting fine-grained information such as process I/O, run-

time, memory usage, and CPU utilization. We then propose a method to automatically
characterize workflow task requirements based on these profiles. Our method estimates

task runtime, disk space, and peak memory consumption based on the size of the tasks’

input data. It looks for correlations between the parameters of a dataset, and if no cor-
relation is found, the dataset is divided into smaller subsets using a clustering technique.

Task estimates are generated based on the ratio parameter/input data size if they are

correlated, or based on the probability distribution function of the parameter. We then
propose an online estimation process based on the MAPE-K loop, where task executions

are monitored and estimates are updated as more information becomes available. Exper-

imental results show that our online estimation process results in much more accurate
predictions than an offline approach, where all task requirements are estimated prior to
workflow execution.

Keywords: Scientific workflow, workflow characterization, online resource usage task es-
timation, MAPE-K loop

1. Introduction

Scientific workflows have been used by computational scientists to orchestrate com-

plex simulations and analyses in a wide variety of domains [1]. Workflows enable

users to easily express multi-step computational pipelines so that they can be effi-

ciently and reliably executed on distributed infrastructures. Efficient workflow exe-

cution depends primarily on how resources are allocated and how tasks are sched-

uled. However, current algorithms for these problems suffer from the lack of accurate

information about the resource requirements of workflows.

1
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Task scheduling, for example, is known to be an NP-complete problem [2]. As

a result, many heuristics have been developed over the years to address the allo-

cation of tasks to resources. Heuristics such as Min-min, Max-min [3], HEFT [4],

and others [5, 6, 7], have demonstrated the ability to improve the performance

and the efficiency of workflow execution. However, all these algorithms assume the

existence of accurate estimates for tasks resource requirements such as execution

and communication times, disk space, or memory usage. In practice, it is difficult

to generate estimates that are simple to compute, require little information about

the internal composition of the tasks, and have good accuracy. Many task resource

need estimation techniques used for scheduling are based on analytical modeling

techniques that require significant effort to develop [8, 9], or statistical techniques

that are typically not very accurate [10, 11].

Similarly, resource provisioning techniques benefit from accurate task estimates

when determining the optimal number and characteristics of resources required to

perform a computation. For instance, when a researcher uses a cloud infrastructure

for processing scientific computations, accurate estimates of task requirements can

have a significant impact on cost and resource utilization [12]. Ideally, the number

and characteristics of resources used should be carefully chosen to minimize cost

and maximize resource utilization.

In our previous work [13] we characterized the detailed resource usage of tasks

in many real workflow executions. We developed monitoring tools [14, 15] to col-

lect fine-grained resource usage profiles for I/O, runtime, memory usage, and CPU

utilization. These tools use techniques that have sufficiently low overhead to use

in production environments. In this work, we use these tools to profile five real

workflow applications, and we propose, as our first contribution, a method to au-

tomatically estimate workflow task requirements such as runtime, disk usage, and

memory consumption based on profiling data. Our method currently assumes that

these parameters can be estimated based on the input data size, because this is a

parameter that could be known in advance, and because the resource requirements

of tasks in real workflows often depends on the size of input data [16, 17, 18, 19].

Our method looks for correlations between the size of input data and the desired

parameters (runtime, disk usage, memory) by examining historical profiling data

from previous executions of the workflow. If no correlation is detected, the profiling

data is partitioned using a density clustering technique to identify subsets of the

data that behave similarly. These subsets may have a higher correlation coefficient,

or a lower standard deviation of the mean value. By repeatedly subdividing the

data we generate a regression tree that can be used to estimate values for future

executions of the workflow.

Task estimation for scientific workflows differs from the general case of task

estimation [20, 21] because of the number of tasks involved in one workflow and

the unique effects of dependencies between tasks. To illustrate, a poor estimate

for the output of a task estimated before the workflow is submitted for execution
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(offline), will propagate and grow through the remainder of the workflow by skew-

ing the estimates for the children and grandchildren of the task. To address this

issue, we propose an online estimation process based on the MAPE-K loop (Moni-

toring, Analysis, Planning, Execution, and Knowledge) [22], where task executions

are constantly monitored and estimations are updated upon task completion. This

online process automatically corrects estimation errors as the workflow is running

and prevents them from growing and spreading.

The main contributions of this paper are:

(1) fine-grained characterization of five real scientific workflows;

(2) an automated method that characterizes scientific workflow executions;

(3) an online estimation process to predict fine-grained task requirements.

The characterization and estimation methods were introduced and evaluated on

three real scientific workflows in [23]. In this paper, we extend our previous work

by studying 1) the influence of workflow parameters for the characterization of

scientific workflows; and 2) the advantage of using probability distribution functions

to estimate task requirements instead of using simple mean values. In addition,

two new workflow applications were added to the experiments, and the number of

different datasets was increased from 3 to 10 for the Montage workflow, and from 3

to 6 for the Epigenomics workflow.

This paper is organized as follows. Section 2 describes the real scientific workflow

applications used in this work. In Section 3, we present execution profiles of these

workflows, and we introduce our automated method to characterize workflow exe-

cutions. Our online task estimation process is presented in Section 4, and evaluated

in Section 5. Section 6 discusses related work, and Section 7 concludes the paper.

2. Scientific workflows

A scientific workflow describes a set of computational tasks and the dependencies

between them. In many cases, workflows can be described as a directed acyclic graph

(DAG), where the nodes represent tasks and the edges represent dependencies.

This model (among others) is supported by several workflow management systems

(WMS), including Pegasus [24, 25], Makeflow [26], Askalon [27], and Taverna [28].

In this work, we have used the following real scientific workflows:

Montage. The Montage workflow [29] was created by the NASA Infrared Pro-

cessing and Analysis Center (IPAC) as an open source toolkit that can be used to

generate custom mosaics of astronomical images in the Flexible Image Transport

System (FITS) format. In a Montage workflow, the geometry of the output mosaic

is calculated from the input images. The inputs are then re-projected to have the

same spatial scale and rotation, the background emissions in the images are cor-

rected to have a uniform level, and the re-projected, corrected images are co-added

to form the output mosaic. Fig. 1.a illustrates a small (20 node) Montage workflow.
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Fig. 1. Simplified visualization of the scientific workflows.
The size of the workflow depends on the number of images required to construct

the desired mosaic. The workflow instances used in this paper generate 2, 4, or 8

degree square mosaics respectively using 275, 840, and 2640 input images from the

2 Micron All Sky Survey (2MASS).

Epigenomics. The USC Epigenome Center [30] is mapping the epigenetic state of

human cells on a genome-wide scale. The Epigenomics workflow (Fig. 1.b) processes

multiple sets of genome sequences in parallel. These sequences are split into subsets,
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the subsets are filtered to remove contaminants, reformatted, then mapped to a

reference genome. The mapped sequences are finally merged and indexed for later

analysis. In this paper, the Epigenome workflow was used to align 13 million genome

sequence reads to a reference genome for human chromosome 21. The size of the

workflow depends on the chunking factor used on the input data (binsize), which

determines the number of sequence reads in each chunk.

Periodogram. The Periodogram workflow [31] searches for extra-solar planets, ei-

ther by detecting “wobbles” in the radial velocity of a star, or dips in the star’s

intensity caused by orbiting and transiting planets. The workflow searches through

time series datasets of star brightness called “light curves” to identify periodic vari-

ations in the brightness or color of the star caused by these orbiting planets. Fig. 1.c

shows an illustration of a Periodogram workflow. The workflow is a simple bag-of-

tasks consisting of independent periodogram wrapper tasks. In this paper, we ran

the Periodogram workflow on a dataset from NASA’s Kepler mission consisting of

28,872 light curve files.

Rosetta. The Rosetta workflow [32] computes the energies of interactions within

and between macromolecules to find the lowest energy structure for an amino acid

sequence (protein-structure prediction) or a protein-protein complex, and to find the

lowest energy amino acid sequence for a protein or protein-protein complex (protein

design). Fig. 1.d shows an illustration of the Rosetta workflow. The workflow can be

seen as a bag-of-tasks of rosetta.exe tasks, where each task can execute different

search strategies. The workflow instances used in this work were composed of 20,

30, and 50 Protein Data Banks (PDBs).

SoyKB. The SoyKB workflow [33, 34] is a genomics pipeline that re-sequences soy-

bean germplasm lines selected for desirable traits such as oil, protein, soybean cyst

nematode resistance, stress resistance, and root system architecture. The workflow

(Fig. 1.e) implements a SNP and injection/deletion (indel) identification and analy-

sis pipeline using the GATK haplotype caller [35] and a soybean reference genome.

The workflow analyzes samples in parallel to align them to the reference genome,

to de-duplicate the data, to identify indels and SNPs, and to merge and filter the

results. The results are then used for genome-wide association studies (GWAS) and

genotype to phenotype analysis. The workflow instance used in this paper is based

on a sample dataset of 50 sequence reads that requires less memory than a full-scale

production workflow.

3. Workflow characterization

In this section, we characterize execution profiles for the scientific workflows de-

scribed in the previous section by using the Kickstart [14, 15] profiling tool, and the

Pegasus Workflow Management System (WMS) [24, 25].
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Kickstart monitors and records information about the execution of individual

workflow tasks. It captures fine-grained profiling data such as process I/O, runtime,

memory usage, and CPU utilization. Pegasus is a workflow management system

that bridges the scientific domain and the execution environment by automati-

cally mapping high-level, abstract workflow descriptions onto distributed resources.

This promotes workflow portability and reuse while enabling Pegasus to perform

workflow optimizations, such as task clustering. Pegasus also intelligently manages

workflow data by inferring the data transfers required by a workflow, by reusing

data when available, and by registering data into information catalogs for later pro-

cessing. In addition, Pegasus monitors the workflow using Kickstart and captures

performance, resource usage, and provenance information into a database.

Runs of each workflow were performed with different datasets and input parame-

ter options. For the Montage workflow, 10 datasets were used, and the degree input

parameter was set to 2, 4, and 8 degrees. 6 datasets were used for the Epigenomics

workflow, and the binsize input parameter was varied according to 10n, n ∈ [3, 5].

3 different input datasets were used for each of the other workflows. For each dataset

and parameter value configuration, we conducted 5 runs of the workflow to ensure

a 95% confidence interval of the measurements.

Workflows were executed on a 16-core cluster, composed of 5 dual core, 2.4 GHz

AMD OpteronTM 250 processors with 8GB of RAM, and 3 dual core, 2.2 GHz AMD

OpteronTM 275 processors with 8GB of RAM. We used a homogeneous cluster since

our method does not yet consider resource characteristics to estimate task runtimes.

3.1. Sensitivity analysis of input parameters

In order to understand the effect of input parameters on task behavior, we examined

workflow-level inputs for the Montage and Epigenomics workflows. We conducted

a sensitivity study of the degree parameter for the Montage workflow and the

binsize parameter for the Epigenomics workflow. These parameters were the only

ones that we were able to change given the datasets that were available to us. For

Montage workflows, the degree input parameter changes the size and structure of

the workflow and the overall makespan of the workflow, but has no influence on the

runtime, I/O read and write, and memory peak values of individual tasks in the

workflow. As shown in Fig. 2 (left), the probability density functions (PDF) of the

runtime parameter for different values of degree are nearly the same. For Epige-

nomics workflows, the binsize input parameter also affects the size and shape of the

workflow, but only slightly influences tasks with very short runtimes (Fig. 2-right),

or tasks that produce small outputs. Since the magnitude of these variations is very

small, when compared to the magnitude of the overhead of scheduling such tasks, it

is considered negligible. We observed no influence of binsize on memory usage. As

a result of this analysis, these input parameters are not considered to be a major

factor when characterizing these workflows. In future work we plan to identify other

workflows, data sets, and execution platforms that will enable us to investigate how
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Fig. 2. Sensitivity analysis of the runtime parameter for the Montage (left) and Epigenomics

(right) workflows.

different input parameters, environment configurations, and resource characteristics

affect task behavior, and how those factors can be incorporated into our estimation

techniques.

3.2. Estimating target parameters based on the mean

One simple approach for estimating the runtime, I/O and memory of future work-

flow tasks is to use the mean values of previous executions of similar tasks. Table 1

shows the execution profile for 15 runs of the SoyKB workflow, grouped by task type

(executable). A few task types have small standard deviation values in comparison

to the mean, thus task estimates could be based on mean values. However, for high

standard deviation sets (e.g., runtime of genotype gvcfs, and memory peak of

sort sam) task estimation based on the mean may lead to significant estimation

errors. Most of the I/O write and memory peak tasks have small standard devia-

tion values compared to the mean, thus the estimation of these requirements based

on the mean value would yield reasonable accuracy. On the other hand, runtime

standard deviation values are too high to have reasonable accuracy using the mean.

Table 1. Example of an execution profile of the SoyKB executions on a distributed platform.

Task Count
Runtime I/O Read I/O Write Memory Peak

Mean Std. Mean Std. Mean Std. Mean Std.
(s) Dev. (MB) Dev. (MB) Dev. (MB) Dev.

alignment to reference 255 18.07 13.81 4508.41 650.43 616.81 0.01 1873.61 14.73
sort sam 255 1.84 1.55 322.06 87.20 471.65 133.11 1135.35 1243.36
dedup 255 2.94 2.10 399.04 51.97 591.13 79.55 2243.14 740.86
add replace 255 1.83 1.25 350.79 83.09 518.39 129.34 1567.54 1205.49
realign target creator 255 347.20 106.11 2578.02 487.53 606.50 51.88 2451.24 492.60
indel realign 255 11.46 22.84 431.45 81.71 575.54 97.24 2144.15 918.54
haplotype caller 5,100 117,82 62.23 637.24 83.64 606.27 52.02 2441.65 493.40
genotype gvcfs 300 801.09 588.51 536.58 90.06 595.62 74.01 2338.63 700.35
combine variants 15 14.71 0.77 468.56 0.85 616.83 0.03 2550.55 36.22
select variants indel 15 71.13 4.68 935.50 1.79 1101.29 0.43 2564.81 61.65
filtering indel 15 13.05 0.22 465.71 0.04 616.91 0.01 2551.17 37.98
select variants snp 15 72.71 1.61 934.83 0.96 1101.36 0.50 2528.77 1.84
filtering snp 15 12.95 0.29 465.80 0.03 616.94 0.02 2526.00 2.19
merge gcvf 15 19352.8 31081.1 2391.08 2080.98 431.88 375.03 2546.65 60.82
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3.3. Correlation between input data size and target parameters

In many cases, standard deviations of the target parameters are not small enough

to justify the use of mean values for estimating those parameters. In those cases, we

assume that the target parameters, including runtime, I/O write, and memory, can

be estimated based on the I/O read parameter, which is a reasonable proxy for input

data size. This assumption is based on observed correlations between input data size

and task requirements from previous research [16, 17, 18, 19] and observations of

the data collected for this paper. This assumption is not unreasonable. Input data

is typically read into in-memory data structures for processing, therefore there is

often a correlation between memory use and input size. Similarly, output data size

may be correlated with input data size when a task is applying a transformation to

the input data, or it may have a constant size, for example, when the output data

is a summary of the input data. Finally, runtime is often correlated with input data

size when the task performs a set of computations for each value in the input data.

Experiment results presented in Section 5 support this assumption.

The workflow data was partitioned by workflow application, and task type. For

each partition, correlation statistics were computed to identify statistical relation-

ships between the I/O read parameter and the target parameters (runtime, I/O

write, and memory). Table 2 shows the Pearson’s correlation (ρ) values for each

task type of the Epigenomics and Rosetta workflows . We consider two parameters

to be correlated if the absolute value of their correlation value, ρ, is greater than

0.8. The threshold value of 0.8 was selected somewhat arbitrarily after observing the

data. Correlated parameters, highlighted in the table, are expected to yield accurate

estimates using a simple linear relationship between the parameters.

Table 2. Correlation (ρ) values for the scientific workflows. Highlighted cells indicate
high correlation values to the I/O read parameter.

Task
ρ

Runtime I/O Write Memory Peak
fastqSplit 0.43 0.99 0.00
filterContams 0.91 0.99 0.09
sol2sanger 0.93 0.99 0.10
fast2bfq 0.79 0.99 0.13
map 0.73 0.27 0.99
mapMerge 0.98 0.99 -0.16
pileup 0.72 0.99 0.99

(a) Epigenomics workflow.

Task
ρ

Runtime I/O Write Memory Peak
rosetta.exe -0.05 0.15 0.06

(b) Rosetta workflow.
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3.4. Improving Correlations Using Density-Based Clustering

Only about 51% of the parameters show high enough correlation values to be useful

for estimation. For the other parameters, further processing is required to identify

subsets of tasks that have higher predictability. We used density-based cluster-

ing [36] to identify high-density areas in the datasets where weak correlations were

identified (e.g., Fig. 3). The goal of this clustering is to partition the dataset into

smaller subsets that have higher correlation coefficients, or lower standard devia-

tions, for the target parameters.

Fig. 3. Dataset clustering of runtime (Montage) and I/O write (Epigenomics) parameters.

We use DBSCAN [37] (density-based spatial clustering of applications with

noise) as the clustering algorithm. DBSCAN was chosen because it is one of the

most commonly used density-based clustering algorithms in the scientific literature.

DBSCAN’s definition of a cluster is based on the notion of density reachability, i.e.

a point q is directly density-reachable from a point p if the distance between them

is smaller than a given distance ε, and p is surrounded by sufficiently many points

such that one may consider p and q to be part of a cluster. A point is defined by a

pair of parameter values, where the x axis represents the I/O read parameter value,

and the y axis represents the target parameter value (runtime, I/O write, mem-

ory). For instance, Fig. 3 shows the dataset clustering of the runtime parameter for

mDiffFit tasks of the Montage workflow, and I/O write parameter for map tasks of

the Epigenomics workflow. In these datasets, clusters of related data are identified,

where the correlation value is more significant or they converge to a unique point.

Algorithm 1 shows the DBSCAN pseudocode. The value of the distance ε is chosen

by using a k-distance graph, plotting the distance to the minPts nearest neighbors;

good values of ε are where the plot shows a strong bend.

Correlation (ρ) and standard deviation (σ) values, and clusters (c) per task

type are shown in Table 3. Datasets with high correlation values were not clus-

tered (highlighted cells in Table 2), for example the I/O write parameter of

filterContams (Epigenomics). Otherwise, subsets such as the runtime parame-

ter of periodogram wrapper (Table 3.b), have higher correlation values or smaller

standard deviation values. In clusters where the correlation is null and the standard

deviation is zero, the data is concentrated in a unique point, i.e. the parameter is a

constant value independent of the workflow input dataset. Note that even though
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Algorithm 1 DBSCAN algorithm.
inputs: D dataset, eps, minPts
cluster C = 0
for p ∈ D and p is unvisited do

mark p as visited
neighborPts = regionQuery(p, eps, D)
if neighborPts.size < minPts then

mark p as noise
else
C = next cluster
expandCluster(p, neighborPts, C, eps, minPts)

end if
end for

expandCluster(p, neighborPts, C, eps, minPts)
add p to C
for p′ ∈ neighborPts do

if p′ is unvisited then
mark p′ as visited
neighborPts’ = regionQuery(p′, eps, D)
if neighborPts’.size ≥ minPts then

neighborPts = neighborPts ∪ neighborPts’
end if

end if
if p′ /∈ any cluster then

add p′ to C
end if

end for

regionQuery (p, eps, D)
return D′ ⊆ D, where distance(p, q) ≤ eps, q ∈ D′

the standard deviation value is shown as zero for some clusters shown in Table 3, the

correlation value is defined. This is due to very small non-zero values of standard

deviation. This is observed for most memory peak parameter of the Epigenomics

workflows (Table 3.a). After clustering, some datasets have lower correlation values

than before, but also have lower standard deviation values. Thus, task estimation

errors based on the mean values are smaller. For datasets where the correlation

values of the subsets are smaller and the standard deviation increases, our method

discards the subsets and keeps the original dataset (e.g., alignment to reference

for the SoyKB workflow). The genotype gvcfs task type (SoyKB workflow) has the

largest number of subsets. Two of the subsets have weak correlation values, while

strong correlations are found for the two other subsets.

4. Task estimation process

Fig. 4 illustrates our estimation process for one parameter. This process is based on

regression trees. The tree is constructed offline based on the analysis of the workflow

characterizations presented in the previous section. First, tasks are classified by

application (workflow), then by task type. The next step decides whether runtime,

I/O write, or memory requirements should be estimated based on the input data

size (I/O read). Note that a set of clustered datasets (Tables 3) is associated for each

parameter. A cluster is selected according to the I/O read value of the task being

estimated. If the parameter is strongly correlated to the input data within a cluster,
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Table 3. Clustered datasets: clusters (c), correlation (ρ), and standard deviation (σ) values.

Task
Runtime I/O Write Memory Peak

c ρ σ c ρ σ c ρ σ
fastqSplit 1 -1.00 0.66 1 0.99 338.09 1 - 0.00

2 0.84 6.87
filterContams 1 0.91 0.45 1 0.99 6.09 1 0.09 0.02
sol2sanger 1 0.93 0.09 1 0.99 7.77 1 0.62 1.61

2 - 0.00
fast2bfq 1 0.79 0.21 1 0.99 1.98 1 0.82 5.52

2 - 0.00
map 1 0.73 38.67 1 0.93 0.77 1 0.99 64.10

2 0.20 0.01
mapMerge 1 0.98 10.99 1 0.99 184.02 1 0.42 9.11

2 0.99 0.03
pileup 1 0.72 51.28 1 0.99 2347.7 1 0.99 53.57

(a) Epigenomics workflow.

Task
Runtime I/O Write Memory Peak

c ρ σ c ρ σ c ρ σ
periodogram 1 0.85 28.27 1 0.64 3.07 1 0.83 0.34
wrapper 2 -0.96 2937.36 2 -1.00 37.18

(b) Periodogram workflow.

Task
Runtime I/O Write Memory Peak

c ρ σ c ρ σ c ρ σ
alignment to 1 0.23 9.4 1 -0.06 0.1 1 -0.17 14.7
reference 2 0.08 19.3 2 0.31 0.1

3 0.95 5.8
sort sam 1 0.86 1.8 1 0.99 133.1 1 0.99 1243.4

2 0.21 1.2
dedup 1 0.56 2.2 1 0.98 79.5 1 0.98 740.9

2 0.76 0.1
add replace 1 0.59 1.5 1 0.99 129.3 1 0.99 1205.5

2 0.51 0.1
realign target 1 -0.23 109.4 1 0.95 51.9 1 0.95 492.7
creator 2 0.17 54.2

indel realign 1 0.07 24.8 1 0.99 97.2 1 0.99 918.5
2 0.53 4.3

haplotype caller 1 0.26 64.4 1 0.96 52.0 1 0.96 493.4
2 0.81 56.3

genotype gvcfs 1 0.35 588.5 1 0.98 74.0 1 0.98 700.3
2 0.28 26.7
3 0.97 67.3
4 0.81 209.0

combine variants 1 0.82 0.77 1 0.98 0.4 1 0.99 36.2
2 0.01 0.1

select variants indel 1 -0.98 4.7 1 0.84 0.4 1 -0.84 61.6
filtering indel 1 -0.88 0.2 1 0.91 0.1 1 0.98 38.0
select variants 1 -0.98 1.6 1 0.99 0.5 1 0.98 2.5
snp 2 0.01 0.1

filtering snp 1 -0.98 0.4 1 0.62 0.1 1 -0.60 2.19
2 0.01 0.1

merge gcvf 1 0.98 0.00 1 0.98 0.00 1 0.01 60.8

(c) SoyKB workflow.

values are estimated according to the ratio parameter/input data size. Otherwise,

our estimation process performs a Kolmogorov-Smirnov goodness of fit test (K-

S test) [38] to determine whether the parameter distribution of the subset fits a

probability distribution. We conduct K-S tests where the null hypothesis H0 is that

the subset fits a Normal or a Gamma distribution. For subsets that do not fit one
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Fig. 4. Example of the estimation process for one parameter of the Epigenomics workflow.

of the two distributions, values are estimated according to the mean. The process

outputs rules used to estimate future workflow executions. Fig. 5 shows examples

of rules to estimate I/O write for the rosetta.exe task (Rosetta workflow).

if workflow = ‘Rosetta’ and taskType = ‘rosetta.exe’ and parameter = ‘write’
and input size > 24815452 then
return [0.225, ratio] // ratio of output and input data

end if

if workflow = ‘Rosetta’ and taskType = ‘rosetta.exe’ and parameter = ‘write’
and input size ≤ 24815452 then
return [gamma, 5597415, 3953.37] // mean and standard deviation values for distribution

end if

Fig. 5. Rules for I/O write estimation of the Rosetta workflow.

Although our method requires significant amount of time (∼6 hours) to build

the regression trees (which are built prior to the workflow execution), the overhead

produced by our estimation process is negligible since it only parses rules to perform

the predictions. As a result, this process can easily be used in practice by real

workflow management systems.

Generating estimates that match a probability distribution. The estima-

tion process uses the Marsaglia’s polar method [39] to generate values from a Normal

distribution, and the Marsaglia and Tsang method [40] to generate values from a

Gamma distribution.

Marsaglia’s polar method transforms from a two-dimensional continuous dis-

tribution to a two-dimensional bivariate normal distribution. The method chooses
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random points (u, v), uniformly and independently distributed [−1,+1], until s < 1

(s = u2 + v2). Then, x and y have a normal distribution with mean µ (defined as

the median value of the probability density function) and variance σ2 (where σ is

standard deviation of the probability function) as follows:

x = µ+ σ ·
√
−2 ln s
s , y = µ+ σ ·

√
−2 ln s
s (1)

When the prediction method asks for an estimate, x is returned and y is kept

as a spare value for the next invocation.

The method for generating a Gamma variate assumes that methods for generat-

ing values from a standard Normal and Uniform distributions are available. Then,

a Gamma variate w can be generated as d · v, defined as:

d = α− 1
3 , v =

(
1 + x√

9·d

)3

(2)

where x is a generated value from a Normal distribution. Note that this method

generates Gamma variates for a scale parameter θ = 1. Therefore, we approximate

w to w′ = θ′ · d · v, where θ′ = 1
β and β is the rate parameter.

Generated estimates are then compared to the real values to determine the

accuracy of the estimation method. If the generated estimates are not accurate, the

probability distribution is then updated with the real value, thereby the probability

of generating estimates for this real value is decreased. In addition, for skewed

distributions (which is the case for most of Gamma distributions in our dataset),

predictions based on the median value of the distribution would yield poor accuracy.

Offline and online estimation. An offline task estimation approach estimates

the runtime, output data size (I/O write), and memory usage for all tasks in a

workflow before any of the tasks have been executed. Since the outputs of each

task in a workflow become inputs to subsequent tasks, and we use input size to

estimate all the target parameters, poor output data size estimates for tasks at

higher levels of the workflow may lead to a chain of increasing estimation errors for

tasks at subsequent levels. Therefore, in addition to the offline estimation process,

we also propose an online estimation process based on the MAPE-K loop (Moni-

toring, Analysis, Planning, Execution, and Knowledge), where task executions are

constantly monitored [41, 42]. Upon task completion, estimated values for the task

are updated with the real values, and, based on these values, a new prediction is

generated (using the regression tree of Fig. 4) for subsequent tasks that have data

dependencies from the completed task. Fig. 6 summarizes the online estimation

process. Note that in a workflow, tasks may have multiple parents, thus at any

given time their input data size may be a combination of estimated and real (for

completed parent tasks) values.
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Fig. 6. Online estimation process.

5. Experiment and evaluation

Experiments were conducted to evaluate the accuracy of the online estimation pro-

cess in comparison to the offline estimation process. In addition, we evaluate the

benefit of using probability distribution functions in the estimation process instead

of just the mean values as used in [23].

5.1. Experiment conditions

Trace analyzes were performed for the five scientific workflow applications described

in Section 3: Montage, Epigenomics, Periodogram, Rosetta, and SoyKB. For each

workflow, we conducted a leave-one-out cross-validation using the datasets used to

characterize the workflows: one dataset is used to test the accuracy of the estimation

process, while the others are reserved for training purposes (generation of rules).

For each execution, we performed an analysis to test the accuracy of the prediction–

results presented in the next subsection are an average of these analyses. We assume

that a parameter is statistically correlated if its correlation coefficient ρ is greater

than or equal to 0.8. Otherwise, K-S tests are conducted to determine whether the

subset fits a Normal or Gamma distribution, or none of them.

We implemented a simple DAG analyzer that parses a workflow description and

spawns tasks and their dependencies. The analyzer implements both the offline and

online estimation processes. For the online estimation process, we implemented both

the process proposed in [23], named Online-m, and the estimation process proposed

in this work, named Online-p, which uses probability density functions in addition

to mean values.

Our analysis consists of replaying a workflow execution from its execution trace

and estimating task parameters using both the offline and online approaches. Re-

playing a workflow execution trace means that our simulator processes each task

in the same order as the real execution, using the same delays and task behaviors.

The simulator estimates task requirements and compares them to the real values to

assess estimation errors. We do not aim to evaluate the efficiency of the scheduling
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algorithms used in the real execution, but rather the accuracy of our estimation

processes.

5.2. Results and discussion

Table 4 shows the average estimation error for the Montage workflow. The Offline

process yields an average estimation error of 49% for runtime, 55% for I/O write,

and 57% for memory peak, while the Online-m process yields average errors of

20%, 11%, and 14%, and the Online-p process yields average errors of 13%, 8%,

and 11%. For the first-level tasks (mProjectPP) all process have nearly the same

accuracy as tasks are estimated directly from the workflow input data. Note that

the average runtime error for Online-m is higher due to the estimation based on

the mean value. Online-m and Online-p produce the same estimate error rate for

estimates based on the correlation (e.g., I/O write and memory peak for mDiffFit).

Offline estimations for tasks such as mDiffFit, mBackground, mImgtbl, and mAdd are

greatly affected by the propagation of estimation errors. For instance, the input data

of a mDiffFit task are multiples mProjectPP output data. A bad estimation of the

input data size may lead the process to select the wrong cluster. The online process

initially faces the same issue of erroneous estimations, but upon task completion,

wrong predictions are replaced by the actual value. In most cases, Online-p yields

better accuracy than Online-m, since the subsets often fit Gamma distributions for

runtime, and Normal distributions for I/O write and memory peak requirements.

Online-m and Online-p have the same performance when the subsets are grouped

into a single point (e.g., runtime for mJPEG), since both are estimated from the mean

value.

Table 5 shows the average estimation error for the Epigenomics workflow. The

average estimation errors for the Offline process are 30% for runtime, 56% for

I/O write, and 46% for memory. For the Online-m process the errors are 14%, 5%,

and 9%. And for the Online-p process the errors are 13%, 5%, and 8%. Similarly

to Montage, first-level task estimations (fastqSplit) are nearly the same for all

approaches. Offline estimates for filterContams, sol2sanger, fast2bfq, and

mapMerge are significantly affected by the estimation errors of their parent tasks.

Since most of the parameters are strongly correlated with input data size (Table 2.a),

the Online-p process has no significant gain over Online-m. Also, most of the

subsets that are not correlated, do not fit any of the two distributions, thereby the

mean is used for prediction.

Table 6.a presents average estimation errors for the Periodogram workflow. As

the workflow has only one task level (periodogram wrapper, see Fig. 1.c), the on-

line approaches produce the same result as Offline for runtime and memory peak

requirements. For the I/O write parameter, the non-correlated subset fits a Nor-

mal distribution. As a result, Offline and Online-p yield better accuracy than

Online-m.

Similarly, Online-p yields better runtime accuracy for Rosetta workflows (Ta-
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Table 4. Montage: average estimation errors of task runtime, I/O write, and memory peak.

Task Estimation
Runtime I/O Write Memory

Avg. Error Avg.Error Avg.Error
(%) (%) (%)

mProjectPP Offline 19.59 1.97 4.03
Online-m 20.78 1.97 4.03
Online-p 19.59 1.97 4.03

mDiffFit Offline 201.62 172.64 103.21
Online-m 46.22 50.41 53.27
Online-p 41.25 50.41 53.27

mConcatFit Offline 9.91 17.46 21.77
Online-m 7.13 12.10 18.41
Online-p 4.33 8.88 11.29

mBgModel Offline 21.32 33.09 22.08
Online-m 1.98 26.57 3.43
Online-p 1.98 13.99 3.43

mBackground Offline 69.35 97.17 104.62
Online-m 48.36 1.41 1.84
Online-p 47.88 1.41 1.84

mImgtbl Offline 69.96 111.19 131.77
Online-m 29.95 7.47 9.11
Online-p 18.01 5.29 9.11

mAdd Offline 29.46 116.60 107.07
Online-m 18.12 3.82 10.22
Online-p 8.99 3.82 10.22

mShrink Offline 15.91 27.36 28.75
Online-m 8.44 15.06 12.15
Online-p 4.11 3.97 5.23

mJPEG Offline 1.96 8.29 23.89
Online-m 1.41 1.87 12.03
Online-p 1.41 1.11 12.03

Table 5. Epigenomics: average estimation errors of task runtime, I/O write, and memory peak.

Task Estimation
Runtime I/O Write Memory

Avg. Error Avg.Error Avg.Error
(%) (%) (%)

fastqSplit Offline 10.11 4.76 0.95
Online-m 10.11 4.76 0.95
Online-p 10.11 4.76 0.95

filterContams Offline 23.87 10.68 62.38
Online-m 12.20 5.43 9.39
Online-p 12.20 5.43 4.21

sol2sanger Offline 59.34 84.16 76.90
Online-m 14.42 1.48 2.33
Online-p 14.42 1.48 2.17

fast2bfq Offline 31.74 82.33 93.40
Online-m 19.02 18.77 11.26
Online-p 14.96 18.77 11.26

map Offline 21.73 20.01 24.12
Online-m 5.38 4.28 3.99
Online-p 4.85 4.02 3.99

mapMerge Offline 51.55 103.00 43.04
Online-m 12.48 9.91 3.28
Online-p 12.48 9.91 1.09

pileup Offline 17.90 6.14 29.66
Online-m 5.54 1.82 2.15
Online-p 4.83 1.82 2.15

ble 6.b), since one of the subsets fits a Normal distribution. All processes result in

high accuracy for I/O write and memory peak, since the parameters have nearly
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Table 6. Average estimation errors of task runtime, I/O write, and memory peak.

Task Estimation
Runtime I/O Write Memory

Avg. Error Avg.Error Avg.Error
(%) (%) (%)

periodogram Offline 45.13 9.29 1.02
wrapper Online-m 45.13 16.72 1.02

Online-p 45.13 9.29 1.02

(a) Periodogram workflow.

Task Estimation
Runtime I/O Write Memory

Avg. Error Avg.Error Avg.Error
(%) (%) (%)

rosetta.exe Offline 11.79 1.89 1.68
Online-m 35.08 1.89 1.68
Online-p 11.79 1.89 1.68

(b) Rosetta workflow.

constant values.

Table 7 shows the average estimation error for the SoyKB workflow. The average

estimation error for runtime, I/O write, and memory peak is 61%, 49%, and 44%

for Offline, 20%, 6%, and 7% for Online-m, and 12%, 6%, and 7% for Online-p.

Like Montage, most of the subsets for runtime that are not correlated fit a Gamma

distribution. Subsets for I/O write and memory peak have very low standard devi-

ation values, thus the estimation based on the mean yields high accuracy for both

Online-m and Online-p (e.g., alignment to reference and merge gvcf).

In the analyses for all 5 scientific workflows, the online processes are more ac-

curate than the offline process. In particular, the use of probability distributions

significantly improves the accuracy of the predictions, notably for task runtimes.

The importance of using a loop to constantly monitor task executions to update

estimations is emphasized in workflows due to their task dependency model. Al-

though the online strategy counterbalances the propagation of estimation errors, the

estimation of first-level tasks still have strong influence in subsequent estimations.

Therefore, efforts should be concentrated on techniques to address more accurate

offline predictions. One approach to improve offline predictions would be to consider

other parameters, such as command-line arguments, when estimating workflow ex-

ecutions, or the quality of the collected dataset (e.g., failures, time window, etc.).

6. Related Work

Workload archives are widely used for research in distributed systems to validate

assumptions, to model computational activity, and to evaluate methods in simula-

tion or in experimental conditions. Available workload archives, such as the Par-

allel Workloads Archive [43], the Grid Workload Archive [44], the Failure Trace

Archive [45], and the Grid Observatory [46], provide workloads from parallel and

grid execution environments. These workloads mainly capture information about

task executions, but lack fine-grained information of scientific workflow executions,

such as dependencies among tasks, task sub-steps, and artifacts introduced by
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Table 7. SoyKB: average estimation errors of task runtime, I/O write, and memory peak.

Task Estimation
Runtime I/O Write Memory

Avg. Error Avg.Error Avg.Error
(%) (%) (%)

alignment to Offline 14.73 22.98 10.34
reference Online-m 17.31 22.98 10.34

Online-p 14.73 22.98 10.34
sort sam Offline 28.02 19.31 15.50

Online-m 21.44 4.16 2.65
Online-p 13.97 4.16 2.65

dedup Offline 35.11 29.66 21.41
Online-m 18.76 6.09 5.77
Online-p 10.01 6.09 5.77

add replace Offline 59.55 29.35 25.84
Online-m 22.14 5.98 4.08
Online-p 9.08 5.98 4.08

realign target Offline 63.22 31.04 40.69
creator Online-m 31.18 8.57 10.15

Online-p 27.83 8.57 10.15
indel realign Offline 51.02 20.92 37.41

Online-m 29.47 3.78 7.09
Online-p 18.15 3.78 7.09

haplotype Offline 103.77 94.17 76.23
caller Online-m 28.39 7.90 8.44

Online-p 14.06 7.90 8.44
genotype gvcfs Offline 88.50 44.11 51.98

Online-m 21.96 4.99 5.53
Online-p 7.14 4.99 5.53

combine Offline 22.27 30.53 18.34
variants Online-m 8.44 5.16 3.10

Online-p 8.44 5.16 3.10
select variants Offline 17.89 16.45 22.32
indel Online-m 3.12 9.02 10.43

Online-p 3.12 9.02 10.43
filtering indel Offline 15.70 12.70 10.95

Online-m 5.86 2.77 3.49
Online-p 5.86 2.77 3.49

select variants Offline 18.01 14.43 24.70
snp Online-m 3.03 1.86 10.41

Online-p 3.03 1.86 10.41
filtering snp Offline 13.45 28.14 37.08

Online-m 2.93 7.29 18.16
Online-p 2.93 7.29 18.16

merge gvcf Offline 37.30 42.68 49.99
Online-m 4.91 2.04 1.88
Online-p 4.91 2.04 1.88

application-level scheduling. Therefore, some efforts have been made to collect and

publish traces and performance statistics for real scientific workflows. We recently

published traces for a few workflows executed using Pegasus [47], and traces of sev-

eral workflow executions obtained from a science-gateway [48]. We also published

synthetic workflows based on statistics from real applications for use in simula-

tions [47, 49]. Similarly, Ramakrishnan and Ganon [50] have provided information

for many real workflow applications, and Ostermann et al. [51, 52] have provided

analyses of workflow-based workload traces from the Austrian grid.

With respect to workload characterization in distributed environment, Iosup

and Epema [53] and Hart [54] presented analyses of grid and HPC workload char-

acteristics including system usage, user population, application characteristics, and



July 8, 2015 10:38 WSPC/INSTRUCTION FILE task-estimation

Online Task Resource Consumption Prediction for Scientific Workflows 19

characteristics of grid-specific application types. Ren et al. [55] presented an anal-

ysis of a MapReduce trace derived from a production Hadoop cluster, where they

analyzed job characteristics such as CPU utilization, memory usage, slots alloca-

tion, I/O operations, and network transfers. Mahambre et al. [56] identified cloud

workload patterns based on behavioral characteristics and presented statistical tech-

niques to understand them. They categorized the virtual machine workload with

respect to the following patterns: periodicity, threshold, relationship, variability,

and image similarity. Madougou et al. [57] provided a characterization of workflow

executions using provenance data captured from a workflow management system.

They analyzed usage and failure patterns at the workflow and task levels.

Workload estimations are generally used by resource allocation strategies and

task scheduling algorithms in distributed platforms, such as clouds and grids. Ver-

boven et al. [10] presented GIPSy, a parameter sweep prediction framework that

estimates task runtimes based on previous runtime information. They performed

evaluations using six different models: polynomial approach, radial basis functions,

kriging models, neural networks, support vector machines, and nearest neighbor

prediction. Their approach yields good accuracy, but is not applicable to an online

environment. Sonmez et al. [20] studied job runtime and queue wait time prediction

methods and their application in grid scheduling. They evaluated time series pre-

diction methods when predicting job runtimes, and point-valued and upper-bound

predictions when estimating queue wait times. A comparison with scheduling tech-

niques that do not use prediction show that the use of these techniques does not

imply better performance of the grid scheduling. Pacheco-Sanchez et al. [58] pro-

posed a Markovian Arrival Process (MAP) to predict HTTP workloads in cloud

infrastructures. The process captures moments of the probability distribution, au-

tocorrelation, and temporal dependencies of a time series. Khan et al. [59] also

proposed a method to characterize and predict workloads in a cloud environment.

Their method discovers and leverages repeatable workload patterns within groups of

virtual machines (VMs) that belong to a cloud customer. They also developed a co-

clustering technique for identifying such VM groups and common workload patterns.

A method based on Hidden Markov Modeling is used to capture temporal corre-

lations and to predict the changes of workload pattern. The use of Markov-based

techniques provides good accuracy for workload prediction, but it adds a significant

overhead to the application execution. In this work, our method builds regression

trees ahead of the workflow execution, thus the overhead to perform the predictions

is negligible. Recently, we performed an exploratory analysis of an HTC workload

using the statistical recursive partitioning method and conditional inference trees

to identify patterns that characterize particular behaviors of the workload [60].

On workflow estimation, Duan et al. [61] proposed a hybrid Bayesian neural net-

work method for modeling and predicting execution time of workflow activities on

grids. Contrary to this work, they use resource characteristics to estimate runtime.

Thus, their approach is useful for the task scheduling problem, but it is not ap-
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plicable for the resource provisioning problem. On the other hand, Eun-Kyu Byun

et al. [62] and Huang et al. [63] proposed heuristics and models to estimate the

number of resources required to execute a workflow, but they assume task runtimes

are available. Nadeem and Fahringer [64] proposed a workflow performance pre-

diction system using similarity templates. Templates are generated from different

workflow attributes reflecting workflow performance at different grid infrastructure

levels, and are evaluated through an exhaustive search method. The drawback of

their approach is that they rely on an expert user to emphasize attributes when

defining templates. Recently, Pallipuram et al. [65] proposed a distribution-based

frequency analysis tool to benchmark DAG-based workflows to estimate modeling

window sizes to predict resource behavior on non-dedicated resources. Although

their technique yields high levels of accuracy, it is limited to homogeneous DAGS,

where all the tasks execute the same type of computation. Chirkin et al. [66] pro-

posed an algorithm to estimate task runtimes for workflow scheduling based on

distribution function models. The model was evaluated with simple pipelines com-

posed of a few sequential tasks. For complex workflows, such as the ones used in

this work, restricting the task estimation only for distribution functions would yield

poor results, since some task resource need estimates do not often fit a distribution

function. Pietri et al. [67], proposed a model to estimate the makespan of scientific

workflows for a given number of resources. However, task runtimes are assumed to

be generated from traces of past executions.

7. Conclusion

We presented a method for online estimation of fine-grained task requirements such

as runtime, disk usage, and memory consumption in scientific workflows. We profiled

five real scientific workflows using execution traces and defined a process to auto-

matically predict task requirements based on these profiles. We assume that task

requirements can be estimated based on the size of the input data. Our process looks

for correlations between the target task parameters and the input data size. If no

strong correlation is found, density-based clustering is performed to identify groups

of high density areas. Smaller groups may have higher correlation, lower standard

deviation values, or may fit a probability distribution. Then, we defined an online

process, based on the MAPE-K loop, to estimate task requirements according to

workflow execution profiles.

The method was evaluated using a set of workflow execution traces where the

accuracy of our process was measured in comparison with the real value. We also

compared the accuracy of the online method proposed in this work against an offline

estimation process (all tasks of a workflow are estimated at once), and the online

estimation process proposed in [23]. Experimental results show that our estimation

process often produces more accurate estimates than the other methods. In addition,

we showed that poor estimates of output data size lead to a chain of estimation

errors in scientific workflows. This motivates the use of an online strategy where
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task executions are constantly monitored and estimates are updated as new data

becomes available. In the future, we plan to analyze the impact of re-planning

a workflow when using an online estimation strategy. We also plan to conduct a

sensitivity analysis of the correlation value ρ. Finally, we intend to incorporate the

estimation process to the Pegasus workflow management system.
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[14] J.-S. Vöckler, G. Mehta, Y. Zhao, E. Deelman, M. Wilde, Kickstarting remote appli-
cations, in: 2nd International Workshop on Grid Computing Environments, 2006.

[15] G. Juve, B. Tovar, R. Ferreira da Silva, C. Robinson, D. Thain, E. Deelman, W. All-
cock, M. Livny, Practical resource monitoring for robust high throughput computing,
Tech. rep., University of Southern California (2014).

[16] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, K. Vahi, Characterizing
and profiling scientific workflows, Future Generation Computer Systems 29 (3) (2014)
682–692.

[17] F. Nadeem, M. Yousaf, R. Prodan, T. Fahringer, Soft benchmarks-based application
performance prediction using a minimum training set, in: 2nd IEEE International
Conference on e-Science and Grid Computing, 2006.

[18] W. Tang, J. Bischof, N. Desai, K. Mahadik, W. Gerlach, T. Harrison, A. Wilke,
F. Meyer, Workload characterization for mg-rast metagenomic data analytics service
in the cloud, in: IEEE International Conference on Big Data, 2014.

[19] T. Shibata, S. Choi, K. Taura, File-access patterns of data-intensive workflow appli-
cations and their implications to distributed filesystems, in: 19th ACM International
Symposium on High Performance Distributed Computing (HPDC), 2010.

[20] O. Sonmez, N. Yigitbasi, A. Iosup, D. Epema, Trace-based evaluation of job runtime
and queue wait time predictions in grids, in: 18th ACM international symposium
on High performance distributed computing, HPDC ’09, ACM, 2009, pp. 111–120.
doi:10.1145/1551609.1551632.

[21] D. Mart́ınez-Rego, M. Pontil, Multi-task averaging via task clustering, in: E. Hancock,
M. Pelillo (Eds.), Similarity-Based Pattern Recognition, Vol. 7953 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2013, pp. 148–159. doi:10.1007/
978-3-642-39140-8_10.

[22] J. Kephart, D. Chess, The vision of autonomic computing, Computer 36 (1) (2003)
41–50. doi:10.1109/MC.2003.1160055.

[23] R. Ferreira da Silva, G. Juve, E. Deelman, T. Glatard, F. Desprez, D. Thain, B. To-
var, M. Livny, Toward fine-grained online task characteristics estimation in scientific
workflows, in: Proceedings of the 8th Workshop on Workflows in Support of Large-
Scale Science, WORKS ’13, 2013, pp. 58–67. doi:10.1145/2534248.2534254.

[24] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
G. B. Berriman, J. Good, A. Laity, J. C. Jacob, D. S. Katz, Pegasus: A framework for
mapping complex scientific workflows onto distributed systems, Sci. Program. 13 (3)
(2005) 219–237.

[25] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani,
W. Chen, R. Ferreira da Silva, M. Livny, K. Wenger, Pegasus, a workflow management
system for science automation, Future Generation Computer Systemsdoi:10.1016/
j.future.2014.10.008.

[26] M. Albrecht, P. Donnelly, P. Bui, D. Thain, Makeflow: a portable abstraction for data
intensive computing on clusters, clouds, and grids, in: 1st ACM SIGMOD Workshop
on Scalable Workflow Execution Engines and Technologies, SWEET ’12, ACM, 2012,
pp. 1:1–1:13. doi:10.1145/2443416.2443417.

[27] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto, Jr., H.-L. Truong,
Askalon: a tool set for cluster and grid computing: Research articles, Concurr. Com-
put. : Pract. Exper. 17 (2-4) (2005) 143–169.

[28] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover, C. Goble,
A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. Stevens,

http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1145/1551609.1551632
http://dx.doi.org/10.1007/978-3-642-39140-8_10
http://dx.doi.org/10.1007/978-3-642-39140-8_10
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1145/2534248.2534254
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1145/2443416.2443417


July 8, 2015 10:38 WSPC/INSTRUCTION FILE task-estimation

Online Task Resource Consumption Prediction for Scientific Workflows 23

A. Wipat, C. Wroe, Taverna: lessons in creating a workflow environment for the life
sciences: Research articles, Concurr. Comput. : Pract. Exper. 18 (10) (2006) 1067–
1100.

[29] G. B. Berriman, E. Deelman, J. C. Good, J. C. Jacob, D. S. Katz, C. Kesselman,
A. C. Laity, T. A. Prince, G. Singh, M.-H. Su, Montage: a grid-enabled engine for
delivering custom science-grade mosaics on demand, SPIE Conference 5493 (2004)
221–232. doi:10.1117/12.550551.

[30] USC epigenome center, http://epigenome.usc.edu/.
[31] Periodogram workflow, http://portal.futuregrid.org/projects/77.
[32] Rosetta Commons, http://www.rosettacommons.org.
[33] T. Joshi, B. Valliyodan, S. M. Khan, Y. Liu, J. V. Maldonado dos Santos, et al.,

Next generation resequencing of soybean germplasm for trait discovery on xsede using
pegasus workflows and iplant infrastructure, in: XSEDE 2014, 2014.

[34] T. Joshi, M. R. Fitzpatrick, S. Chen, Y. Liu, H. Zhang, R. Z. Endacott, E. C.
Gaudiello, G. Stacey, H. T. Nguyen, D. Xu, Soybean knowledge base (soykb): a web
resource for integration of soybean translational genomics and molecular breeding,
Nucleic Acids Research 42 (D1) (2014) D1245–D1252. doi:10.1093/nar/gkt905.

[35] GATK, https://www.broadinstitute.org/gatk.
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