
Toward an End-to-end Framework for Modeling, Monitoring and
Anomaly Detection for Scientific Workflows

Anirban Mandal, Paul Ruth, Ilya Baldin
RENCI - UNC Chapel Hill

{anirban,pruth,ibaldin}@renci.org

Dariusz Król, Gideon Juve, Rajiv Mayani,
Rafael Ferreira da Silva, Ewa Deelman

USC Information Sciences Institute
{darek,gideon,mayani,rafsilva,deelman}@isi.edu

Jeremy Meredith, Jeffrey Vetter, Vickie Lynch,
Ben Mayer, James Wynne III

Oak Ridge National Laboratory
{jsmeredith,vetter,lynchve,

mayerbw,wynnejr}@ornl.gov

Mark Blanco, Chris Carothers,
Justin LaPre

Rensselaer Polytechnic Institute
blancm3@rpi.edu,

{chrisc,laprej}@cs.rpi.edu

Brian Tierney
LBL

bltierney@es.net

Abstract—Modern science is often conducted on large
scale, distributed, heterogeneous and high-performance
computing infrastructures. Increasingly, the scale and
complexity of both the applications and the underly-
ing execution platforms have been growing. Scientific
workflows have emerged as a flexible representation to
declaratively express complex applications with data and
control dependences. However, it is extremely challenging
for scientists to execute their science workflows in a
reliable and scalable way due to a lack of understanding
of expected and realistic behavior of complex scientific
workflows on large scale and distributed HPC systems.
This is exacerbated by failures and anomalies in large
scale systems and applications, which makes detecting,
analyzing and acting on anomaly events challenging.
In this work, we present a prototype of an end-
to-end system for modeling and diagnosing the run-
time performance of complex scientific workflows. We
interfaced the Pegasus workflow management system,
Aspen performance modeling, monitoring and anomaly
detection into an integrated framework that not only
improves the understanding of complex scientific appli-
cations on large scale complex infrastructure, but also
detects anomalies and supports adaptivity. We present
a black box modeling tool, a comprehensive online
monitoring system, and anomaly detection algorithms
that employ the models and monitoring data to detect
anomaly events. We present an evaluation of the system
with a Spallation Neutron Source workflow as a driving
use case.

Keywords-scientific workflows, performance modeling,
monitoring, anomaly detection

I. INTRODUCTION

Modern computational and data science often
involves processing and analyzing vast amounts
of data through large scale simulations of un-
derlying science phenomena. In addition, access
to remote sensors, instruments, data-sets, high-
performance computing resources, and demands
for high-volume data flows are making modern
scientific analysis highly dynamic, heterogeneous
and distributed. This is evident in diverse fields
of science including astronomy, bioinformatics,
physics, and climate modeling among many oth-
ers.

Not only are applications growing in scale and
complexity, the distributed and high-performance
computing infrastructure required to support sci-
ence applications is increasingly diverse in scale
and complexity — DOE Leadership Computing
Facilities, OSG [1], XSEDE [2], cloud infrastruc-
tures [3], [4] and national and regional network
transit providers like ESnet [5] and Internet2 [6]. It
is extremely challenging for scientists to navigate
the complexity of applications and infrastructures
to execute their computational campaigns in a

reliable and scalable way. This, in part, stems from
a lack of understanding of expected and realistic
behavior of complex scientific workflows on large
scale and distributed HPC systems. Furthermore,
there are bound to be failures and anomalies in
large scale systems and applications, and detect-
ing, analyzing the root causes for, and acting on
anomaly events are challenging.

In order to address some of the above chal-
lenges, the Panorama project [7] aims to further
our understanding of the behavior of scientific
workflows as they are executing in large scale,
heterogeneous environments by modeling and di-
agnosing the run-time performance of complex
scientific workflows. We are developing tools that
analyze the workflow and that develop models of
expected behavior given a particular computing
environment, such as an HPC system, clusters
distributed over wide area networks, or clouds.
We are also investigating the use of analytical
models for resource provisioning, scheduling and
data management decisions. This is coupled with
correlating real-time monitoring of application and
infrastructure to verify application behavior, to
detect and diagnose anomalies, and to support
adaptivity.

In this paper, we present our initial successes
in developing analytical models that can predict
the behavior of complex, data-intensive, scientific
workflows executing on large-scale infrastructures.
In particular, we describe a black-box modeling
approach for generating informed thresholds for
various performance metrics using the Aspen an-
alytical performance modeling language and suite
of tools [8] (Section II). We also present the
design and implementation of a comprehensive
performance monitoring framework (Section III)
for dynamically monitoring various workflow, ap-
plication and infrastructure metrics, and how the
monitoring data can be used to build initial black
box models for performance prediction and for
anomaly detection (Section IV) during workflow
execution. The paper makes the case for an au-
tomated, end-to-end framework (Section VI) that
ties together workflow planning and management
using Pegasus [9], Aspen performance modeling,

online monitoring, and anomaly detection and no-
tification for improving the overall performance of
complex scientific workflows on current and future
generation architectures. We present a prototype
system that used a Spallation Neutron Source
workflow (Section V) as the driving use case.

II. ANALYTICAL MODELING WITH ASPEN
BLACK-BOX MODELING TOOL

To generate more informed thresholds for the
online monitoring and anomaly detection, we turn
to the Aspen analytical performance modeling
language and suite of tools [8].

There are myriad ways of generating application
models for Aspen, including automated parsing
of source code [10] and through manual efforts
from those knowledgeable about the application
in question. In the case of modeling workflows,
our system may be exposed to applications for
which no model has yet been created, and it
must be able to generate informed thresholds for
anomaly detection even in the absence of more
detailed descriptions of these applications. For this
purpose, we created a technique to use Aspen for
black-box application model generation.

A. Black-box Modeling for Recorded Data
Suppose we have obtained information about

runtimes for some application, running on the
CPU cores of a known machine, at two different
problem sizes (n). This information is seen in the
following table:

n machine socket runtime
100 machine.aspen cpu 11
500 machine.aspen cpu 15

A simple solution to generating an analytical
performance model for this application would to
perform, say, a linear regression on the runtime.
In particular, we could predict that runtime =
10 + n

100 . This is very easy, but provides minimal
information about the application itself, and pro-
vides no ability to extrapolate to other machines
as will likely be needed by a workflow system.

A better solution is to use some known aspect of
the machine to transition away from a model based
on runtime alone. For example, as the known

abstract machine model for our system has a
clockspeed for the CPUs, such as 1 GHz, and we
know that it can perform one floating point oper-
ation per cycle, then we can refine our prediction
to flops = 1010+n⇥ 107. This prediction is now
machine-independent, and we have a performance
model based solely on application parameters and
application resource usage. In other words, we
now have an application model which can be
generate performance predictions for the current
machine as well as unknown future machines.

Our system takes this approach one step fur-
ther and can automatically generate an application
model based on other resource parameters such
as floating point operations, bytes loaded and
stored from memory, and messages communicated
between tasks – i.e., from any application resource
usage which can be described for an abstract
machine model.

Similar work has been done in this area. The
approach taken in [11] utilized runtimes and flops,
though lost some accuracy by ignoring thresh-
old factors such as I/O, contention, and network
latency. A later approach in [12] added a ge-
netic programming error correction procedure to
increase the overall accuracy. The approach we
describe here allows for greater abstraction, flexi-
bility, and portability by supporting any resource
representable in template application models and
abstract machine models within the Aspen frame-
work.

B. Aspen Black-box Modeling Tool

Measured
Application
Runtimes

Aspen
Library

Template
Aspen App

Model

Aspen
Hardware
Models

Symbolic
Runtime

Equations

Nonlinear
Optimizer

Objective
Function

Aspen Black-box
Modeling Tool

Aspen
Tool
Suite

Runtime /
Threshold
Predictions

Application-
Specific

Aspen Model

Figure 1. Aspen black box modeling tool.

The black-box modeling tool in Aspen uses the
following approach, as shown in Figure 1:

• The user chooses a template Aspen model
or creates their own. This template model
contains free parameters used to fit the data.

• The user feeds this template model and
recorded runtime data into the Aspen black-
box modeling tool.

• Aspen converts the templated Aspen model
into symbolic runtime equations for each
machine listed in the input runtime data.

• The modeling tool creates an objective func-
tion which returns the error between the run-
time predictions and the recorded data for
a given set of parameters. This is currently
done via least-squares fitting.

• An optimizer (such as http://ab-
initio.mit.edu/nlopt/) solves for the free
parameters to minimize the error of the
objective function.

• The tool outputs a concrete Aspen application
model which combines the input template
model and the best solution to the free pa-
rameters.

An example input template Aspen application
model is as follows:
model NAMD_Template {

param nAtoms = 1e6 // application parameters
param nTimeSteps = 100 // (defined in the input file)
param c = 1 in 1 .. 1e18 // solve for these parameters
param d = 1 in 1 .. 1e18 // (within the given ranges)
kernel main // application behavior: execution and control flow
{ iterate [nTimeSteps] {

execute {
loads [c * nAtomsˆ2]
flops [d * nAtoms]

}}}
}

Here, we see problem parameters like nAtoms
and nTimeSteps. These values can be defined in
the input data file for each recorded runtime. We
also see free parameters c and d; the modeling
tool recognizes the allowable ranges on these
parameters and uses them as constraints during
the optimization phase. Finally, we see the control
flow and resource usage (flops and loads);
this is a simple example but shows how some
minimal knowledge about the application (e.g.
resource usage scaling versus problem size, and
a linear effect of number of time steps) can be
used to generate a more informed template file for

modeling. The model output by the tool, now in
concrete form with problem-specific parameters,
is as follows:
model NAMD_Equilibrate {

param nAtoms = 1e6 // NAMD input parameters
param nTimeSteps = 100
param c = 402.1 // calculation-specific constants
param d = 10.95
kernel main // NAMD application behavior
{ iterate [nTimeSteps] {

execute {
loads [c * nAtomsˆ2]
flops [d * nAtoms]

}}}
}

C. Interaction with CODES

CODES [13] is an HPC storage and network
simulation framework built on the ROSS [14]
parallel simulation framework which implemented
the Time Warp parallel discrete-event simulation
protocol using reverse computation [15]. ROSS
has been shown to efficiently scale to nearly 2 mil-
lion cores on the largest supercomputers available
to date [14]. These scaling results have enabled
CODES to model Dragonfly, Slimfly and Torus
topologies with over 1 million nodes.

These large-scale network models can be linked
to Aspen compute node models to provide a com-
bined, overall picture of an applications perfor-
mance. In the current integration, CODES drives
Aspen to report computational kernel time infor-
mation. That information is used by CODES to
both delay and generate application specific com-
munication patterns into the simulated network.
When executing together, the Aspen/CODES inte-
grated model reports no performance loss over just
CODES along when executing a large-scale Drag-
onfly network model using 1024 Blue Gene/Q
nodes with 8,192 MPI ranks.

III. MONITORING

Workflow modeling and analysis methods re-
quire detailed event traces and online monitoring
data in order to build models of system behavior
and perform anomaly detection and diagnosis as
the workflow is running. The Panorama project
has developed a sophisticated set of tools and
infrastructure for collecting traces and monitoring
data for workflows.

A. Workflow and application monitoring

The monitord component of Pegasus collects,
aggregates and publishes all the monitoring data
produced by the workflow. This includes high-
level information on the state of the workflow gen-
erated by the workflow execution engine (DAG-
Man) and the workflow scheduler (HTCondor),
as well as low-level information published by job
monitoring tools.

Job-level monitoring is performed by Kick-
start [16], a monitoring and tracing tool used to
launch computation and data management jobs to
collect information about the behavior of the jobs
and their execution environment. A Kickstart pro-
cess forks application processes on the compute
node and uses its position as the parent process to
inspect the behavior of the application. Kickstart
writes trace data to a file for offline analysis, and
reports real-time monitoring data to monitord.

As part of the DOE dV/dt project [17], we
added functionality to Kickstart to automati-
cally capture resource usage metrics of workflow
jobs [18]. This functionality uses operating sys-
tem monitoring facilities such as procfs and
getrusage() as well as library call interpo-
sition to collect fine-grained profile data that in-
cludes process I/O, file accesses, runtime, memory
usage, and CPU utilization.

Library call interposition is used to implement
monitoring functionality that requires access to the
internal state of an application process. It is imple-
mented by a component called libinterpose,
which uses LD_PRELOAD to intercept calls to
POSIX functions for file and network I/O and
threads, as well as performing monitoring activ-
ities at process start and exit, such as starting
monitoring threads, activating CPU counters, and
reporting final performance metrics.

We extended Kickstart and libinterpose to col-
lect CPU performance counters using the PAPI
library [19]. libinterpose enables the CPU counters
when the process starts, and reports their values
periodically to Kickstart. This includes counters
for the number of floating-point operations, in-
structions, loads, stores, and cache misses exe-

cuted by the application. We expect this informa-
tion to be very useful in modeling because it tells
us more about the computational requirements of
the application that is independent of the execution
hardware. Previously, our modeling was focused
on metrics such as runtime, which are a function of
both the computation requirements and the hard-
ware capability. By measuring the computation in
terms of loads, stores, and operations, we expect to
be able to construct machine-independent models
of the application using Aspen (Section II-A) that
have the potential to be evaluated against different
execution hardware.

We also extended Kickstart to support MPI
jobs. Previously Kickstart was not able to monitor
MPI processes running on multiple compute nodes
without running a Kickstart process for each MPI
rank. Using libinterpose, however, there can be
one Kickstart process that invokes mpiexec (or
equivalent) to launch the MPI job, and libinterpose
can attach to each MPI process and report results
back to the Kickstart process. To facilitate this,
libinterpose sends MPI rank information along
with monitoring data to Kickstart, and this data is
aggregated across all MPI ranks to produce one,
unified time series for the entire MPI job.

B. Infrastructure monitoring
We are also collecting infrastructure-level mon-

itoring data for network, storage system, and host
performance. Our current tools collect monitoring
data from the infrastructure with particular em-
phasis on I/O and network performance, which
are critical for many workflows. The goals are
to gather monitoring data to help build initial
models. Workflow- and job-level monitoring is
correlated with infrastructure-level monitoring to
identify anomalies and their potential sources.
We are using a combination of standard system
monitoring tools, including sar, and automated
scripts, as well as active monitoring infrastruc-
ture such as perfSONAR [20] and fio [21]. We
are using racks on the ExoGENI [3] testbed as
a controlled environment to collect monitoring
data, both application-level monitoring data and
infrastructure-level monitoring data, because it of-

fers minimal performance interference, which is
extremely important to build and validate initial
models.

During workflow execution, we launch auto-
mated monitoring scripts as a part of workflow
launch bootstrap to observe various OS level per-
formance metrics on the nodes. The monitoring
scripts use the sar tool from the “sysstat” [22]
linux utilities for online monitoring of I/O and
network. For example, if the workflow applica-
tions are using a shared filesystem like NFS, we
monitor the I/O performance of the node that
acts as the NFS server. In this case, we moni-
tor number of observed read/write requests and
observed read/write bandwidth on a node using
the ‘-b’ option in sar. In the network case, we
observe receive/transfer bandwidth and the num-
ber of packets received/transferred using the ‘-n’
option in sar on the data-plane network interface,
which is used for application data movement.
All the above infrastructure monitoring data is
collected every five seconds and stored as a time
series.

In addition, we have created a tool for actively
monitoring block storage I/O performance, which
involves running periodic tests on the ExoGENI
racks. The tool works by probing each ExoGENI
site and submitting a resource request that provi-
sions a machine, runs a suite of I/O performance
benchmarks, and stores the performance results
as a time series. Our tool uses fio to simulate
and benchmark I/O load. fio is a flexible tool
for benchmarking I/O performance and generat-
ing simulated I/O load. We have configured fio
to simulate several representative patterns of I/O
including reading and writing of sequential and
random I/O blocks. For each pattern of I/O in
the benchmark suite, we are collecting several
metrics that include read/write bandwidth, latency,
and latency percentiles. For active network moni-
toring, we created a perfSONAR image based on
Docker for the ExoGENI infrastructure testbed.
We updated the base image with client tools that
can push perfSONAR network monitoring data
to our monitoring database. We have provisioned
resources between different pairs of racks, and ran

perfSONAR bwctl tests with appropriate parame-
ters to bwctl.

IV. ANOMALY DETECTION

Monitoring DB
<InfluxDB>

Monitoring
Timeseries

Actual
Performance
(App + Infra)

Message Broker
Anomaly
Exchange

Anomaly

Anomaly

Aspen Models
e.g. sns-model.json

Estimated
Performance from

Aspen Models

Anomaly Detection Engine

Detection Algorithm 1
(Threshold based)

Detection Algorithm 2
(Auto Regression based)

Detection Algorithm 3
……..

Workflow State,
Performance, Estimates,

Pegasus Dashboard

ge
t M

on
ito

rin
gD

at
a

ge
t P

er
fM

od
el

s

Publish Anomaly

Figure 2. Anomaly detection components.

Figure 3. AR based detection example (training series).

Coupling online monitoring data from workflow
application and infrastructure with the Aspen per-
formance models gives us a powerful tool to detect
anomalies during workflow executions. An accu-
rate attribution of the anomalies to the observed
workflow performance is critical for fixing the un-
derlying problem, or adapting the system. In this
section, we describe the various components of the
anomaly detection engine and its interactions with
the rest of the system (Figure 2).

The “getMonitoringData” component interacts
with the online monitoring data to obtain the

different time series for relevant performance met-
rics. The “getPerfModel” component is designed
to interact with the Aspen performance model-
ing system to obtain the estimated performance
of workflow applications from the Aspen mod-
els. In the current implementation, it statically
reads the generated thresholds from the Aspen
black box modeling tool. In future, we plan a
tighter integration with the modeling system. The
“Publish Anomaly” component is responsible for
generating anomaly events and publishing the
anomaly messages to an AMQP message broker.
The anomaly messages are then consumed by
the Pegasus dashboard to enable users to see the
details of the anomalies and the corresponding
time series data, which is useful for attribution of
anomalies.

The heart of the anomaly detection engine is
a suite of detection algorithms, which are plug-
gable modules. These detection algorithms can be
coupled in different ways to detect and correlate
anomalies. Three types of detection algorithms are
currently implemented in the system. The first
is a simple threshold based detection algorithm
that does continuous diffs between Aspen gen-
erated thresholds and online measurements for
application specific metrics. This can be coupled
with a “MovingAverage” (MA) based detection
algorithm for analyzing time-series data for in-
frastructure related metrics. We have also devel-
oped “AutoRegression” (AR) based algorithms to
detect anomalies by analyzing time-series data
for application related metrics. An AR model is
first developed from non-anomalous runs, which
includes the AR coefficients and the degree of AR
that fits best for a metric. When ran against online
monitoring data, the AR model is used to predict
the errors that become significant in presence of
anomalies.

We now present an example of the AR based
detection technique. The first graph (Figure 3)
shows the time series plots of two application
metrics (write bytes and iowait) related to I/O
performance of the NAMD application from the
SNS workflow (Section V) and one infrastruc-
ture related metric (write bandwidth) related to

Figure 4. AR based detection example (anomalous series).

observed I/O on the node for a non-anomalous
run. The X-axis represents time since the start of
the application. In this example, the AR model is
calculated for the iowait metric. Figure 4 shows
the time series plots of the three metrics for
an anomalous run where a write anomaly was
introduced one hour into the run for an hour by
utilizing the stress benchmark1 on the node that
acts as the NFS server. The stress benchmark
is a workload generator for POSIX systems, and
provides the capability to impose a configurable
amount of CPU, memory, I/O, and disk stress on
the system. In this case, we employed stress
to inject I/O anomaly by only running disk stress
threads. We observe the anomaly showing up as
a step in the infrastructure time series plot. The
second subfigure plots the errors from the AR
model for iowait for each point of time during
execution of NAMD. We observe that the errors
are maximum in the region where anomaly existed
and they cease to exist when anomaly is removed.
We can use the AR model errors to trigger ob-
served anomalies in an online fashion.

V. SNS WORKFLOW

We have developed several use-case applica-
tions to evaluate our workflow modeling, moni-
toring and anomaly detection system. The research
described in this paper uses the Spallation Neutron
Source (SNS) Workflow as a test case.

1http://people.seas.harvard.edu/⇠apw/stress/

The Spallation Neutron Source (SNS) [23] is
a research facility at the Department of Energy’s
Oak Ridge National Laboratory that uses pulsed
neutron beams to investigate the properties of ma-
terials for scientific and industrial research. SNS
uses a particle accelerator to impact a mercury-
filled target with a stream of protons, generat-
ing neutrons by the process of spallation. These
neutrons are directed toward a sample, causing
some neutrons to scatter. The scattering events
are collected by array of detectors and distilled
into different science products depending on the
experiment. This reduced data is then analyzed
and compared to materials simulations to extract
scientific information about the material.

In collaboration with the Center for Accelerat-
ing Materials Modeling (CAMM), we created a
workflow that executes an ensemble of molecular
dynamics and neutron scattering simulations to fit
model parameter values to experimental results.
This parameter refinement workflow has been used
to investigate temperature and hydrogen charge
parameters for models of water molecules.

The workflow executes one job to unpack a
reference database along with 5 jobs for each
set of parameter values. Each parameter value is
fed into a series of parallel molecular dynamics
simulations using NAMD [24]. The output from
the MD simulations has the global translation and
rotation removed using AMBER’s [25] cpptraj
utility [26] and is passed to Sassena [27] for the

calculation of coherent and incoherent neutron
scattering intensities. The final outputs of the
workflow are transferred to the user’s desktop
and loaded into Mantid [28] for analysis and
visualization.

The production version of this workflow has
been run on the Hopper supercomputer at NERSC
and is in the process of being ported to the Titan
supercomputer at OLCF.

VI. END-TO-END SYSTEM

The end-to-end workflow modeling, monitor-
ing, and anomaly detection system is illustrated
in Figure 5.

The workflow is planned and executed using
the Pegasus Workflow Management System. Pe-
gasus converts an abstract workflow description
into an executable, directed acyclic graph (DAG)
of jobs that is managed by the DAGMan [29]
workflow engine. DAGMan submits the jobs in the
DAG to HTCondor [30], which executes them on
the distributed infrastructure. As the workflow is
running, the Pegasus monitord service collects
workflow monitoring data, and updates the state
of the workflow in the Pegasus database.

Application monitoring is implemented by
wrapping each job in the workflow with Kickstart.
Kickstart performs two functions: it collects trace
data for offline analysis and modeling, and it
monitors the job and reports real-time performance
metrics via a RabbitMQ2 message broker. The
monitord service aggregates monitoring data for
a job from RabbitMQ, updates the current metrics
for the job in the Pegasus database, and publishes
job performance metrics to an InfluxDB3 time
series database.

Infrastructure monitoring is implemented using
the infrastructure monitoring tools as described
in Section III-B. These tools continuously collect
monitoring metrics for the hosts, storage systems
and networks used by the workflow and store them
as time series in InfluxDB.

2https://www.rabbitmq.com
3https://influxdata.com

Anomaly detection tools use models to predict
application performance, and compare the pre-
dicted performance to the observed performance
from InfluxDB. When an anomaly is detected,
a message is published via RabbitMQ that de-
scribes the details of the anomaly. These anomaly
messages are collected and stored in the Pegasus
database by monitord.

Monitoring and anomaly data are displayed in
a web-based user interface called the Pegasus
Dashboard. Users can select a job and see current
values for all of the performance metrics collected
by the online monitoring infrastructure, as well
as time series plots of the data for the job from
InfluxDB. The Dashboard also displays anomalies
that were detected by the anomaly detection tools.
The Dashboard reads these anomalies from the
Pegasus database and displays them with along
with time series plots from InfluxDB that help to
illustrate and explain the cause of the anomaly.

Infrastructure

Dashboard
<web UI>

Monitoring DB
<InfluxDB>

Workflow
Monitor

<monitord>

Real Time
Job Monitor
<Kickstart>

Monitoring
Timeseries

Monitoring
Events

Infrastructure
Monitoring
Timeseries

Actual
Performance
(App + Infra)

Infrastructure Monitoring

I/O Network

Resource

Workflow
Planner

<Pegasus>

Workflow Logs

Workflow Engine
<DAGMan>

Job Manager
<Condor>

Application
Job

Message
Broker

<RabbitMQ> App Monitoring
Timeseries

Anomaly Detection
Engine

Pegasus DB
<RDBMS>

Message Broker
Anomaly
Exchange

Anomaly

Anomaly

Aspen Models

Workflow State,
Performance, Estimates

Estimated
Performance from

Aspen Models

Figure 5. End-to-end workflow modeling, monitoring and anomaly
detection system. Red indicates existing components, blue indicates
modified components, and green indicates new components.

We deployed the SNS workflow application on
an ExoGENI [3] rack located at the Pittsburgh Su-
percomputing Center. We instantiated a virtualized

HTCondor system capable of running MPI simula-
tions utilizing 100 cores and ran the SNS workflow
application using Pegasus. As discussed earlier, we
collected online monitoring data from application
and infrastructure during workflow execution. We
introduced an I/O anomaly using the stress
tool. This anomaly was designed to simulate com-
petition with other jobs for I/O resources, which
is a common source of job performance variability
on production HPC systems. The Aspen model
thresholds were available to the anomaly detection
engine, and we ran the MA- and threshold-based
detection algorithms. The I/O anomaly appears
in the application monitoring as a spike in the
iowait metric, which measures the amount of
time that the process was blocked waiting on
I/O. It was detected by the system and shown
on the Pegasus dashboard with the corresponding
relevant time series, as shown in Figure 6.

Figure 6. Pegasus dashboard anomaly notification.

VII. CONCLUSION

We presented a prototype of an integrated, end-
to-end system that models, executes, monitors,
and detects anomalies for complex scientific work-
flows. The system has been applied and evaluated
in the context of executing SNS workflows on the
ExoGENI testbed. It is a foundational framework
for our future work on developing more complex
predictive models, anomaly detection algorithms,
workflow adaptation mechanisms, and adaptive
resource provisioning for workflows executing on
distributed, heterogeneous and HPC systems.

ACKNOWLEDGMENT

This work was funded by DOE under contract
#DE-SC0012636, “Panorama - Predictive Model-
ing and Diagnostic Monitoring of Extreme Science
Workflows”. The development of the neutron scat-
tering simulation workflow was supported by the
U.S. Department of Energy (DOE), Office of Sci-
ence, Basic Energy Sciences, Materials Sciences
and Engineering Division. The use of Oak Ridge
National Laboratory’s Spallation Neutron Source
was sponsored by the Scientific User Facilities
Division, Office of Basic Energy Sciences.

REFERENCES

[1] “Open Science Grid,” http://www.opensciencegrid.org.

[2] “Extreme Science and Engineering Discovery Environ-
ment,” http://www.xsede.org.

[3] I. Baldine, Y. Xin et al., “Exogeni: A multi-domain
infrastructure-as-a-service testbed,” in 8th Interna-
tional ICST Conference on Testbeds and Research
Infrastructures for the Development of Networks and
Communities, 2012, pp. 97–113.

[4] “CloudLab,” http://cloudlab.us.

[5] “ESnet,” http://www.es.net.

[6] “Internet2,” http://www.internet2.edu.

[7] E. Deelman, C. Carothers, A. Mandal, B. Tierney,
J. S. Vetter, I. Baldin, C. Castillo, G. Juve, D. Król,
V. Lynch, B. Mayer, J. Meredith, T. Proffen, P. Ruth,
and R. Ferreira da Silva, “PANORAMA: An ap-
proach to performance modeling and diagnosis of ex-
treme scale workflows,” International Journal of High
Performance Computing Applications, vol. to appear,
2015.

[8] K. Spafford and J. S. Vetter, “Aspen: A domain spe-
cific language for performance modeling,” in SC12:
ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis,
2012.

[9] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan,
P. J. Maechling, R. Mayani, W. Chen, R. Ferreira da
Silva, M. Livny, and K. Wenger, “Pegasus: a workflow
management system for science automation,” Future
Generation Computer Systems, vol. 46, pp. 17–35,
2015.

[10] S. Lee, J. S. Meredith, and J. S. Vetter, “COMPASS:
A framework for automated performance modeling
and prediction,” in ACM International Conference on
Supercomputing (ICS). Newport Beach, California:
ACM, 2015.

[11] G. Mahinthakumar, M. Sayeed, J. Blondin, P. Worley,
A. Mezzacappa, and R. Hix, “Performance evaluation
and modeling of a parallel astrophysics application,”
in Proceedings of the High Performance Computing
Symposium, J. Meyer, Ed., 2004, pp. 27–33.

[12] K. Raghavachar, G. Mahinthakumar, P. Worley,
E. Zechman, and R. Ranjithan, “Parallel performance
modeling using a genetic programming-based error
correction procedure,” SIMULATION, vol. 83, no. 7,
pp. 515–527, 2007.

[13] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns,
“A case study in using massively parallel simulation for
extreme-scale torus network codesign,” in Proceedings
of the 2nd ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, ser. SIGSIM PADS ’14.
New York, NY, USA: ACM, 2014, pp. 27–38.

[14] P. D. Barnes, Jr., C. D. Carothers, D. R. Jefferson, and
J. M. LaPre, “Warp Speed: Executing Time Warp on
1,966,080 Cores,” in Proc. 2013 ACM SIGSIM Conf.
Principles of Advanced Discrete Simulation, ser. PADS
’13, Montreal, Canada, 19–22 May 2013, pp. 327–336.

[15] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto,
“Efficient optimistic parallel simulations using reverse
computation,” ACM Trans. Model. Comput. Simul.,
vol. 9, no. 3, pp. 224–253, Jul. 1999.

[16] J. S. Vockler, G. Mehta, Y. Zhao, E. Deelman, and
M. Wilde, “Kickstarting remote applications,” in Inter-
national Workshop on Grid Computing Environments,
2007.

[17] “dv/dt: Accelerating the rate of progress towards ex-
treme scale collaborative science,” https://sites.google.
com/site/acceleratingexascale/.

[18] G. Juve, B. Tovar, R. Ferreira da Silva, D. Król,
D. Thain, E. Deelman, W. Allcock, and M. Livny,
“Practical resource monitoring for robust high through-
put computing,” in 2nd Workshop on Monitoring and
Analysis for High Performance Computing Systems
Plus Applications, ser. HPCMASPA’15, 2015, pp. 650–
657.

[19] K. London, S. Moore, P. Mucci, K. Seymour, and
R. Luczak, “The papi cross-platform interface to hard-
ware performance counters,” in Department of Defense
Users? Group Conference Proceedings, Biloxi, Missis-
sippi, vol. 3, no. 4, 2001.

[20] B. Tierney, J. Metzger, J. Boote, E. Boyd, A. Brown,
R. Carlson, M. Zekauskas, J. Zurawski, M. Swany,
and M. Grigoriev, “perfsonar: Instantiating a global
network measurement framework,” SOSP Wksp. Real
Overlays and Distrib. Sys, 2009.

[21] “fio - Flexible I/O Tester,” https://github.com/axboe/
fio.

[22] “sysstat,” http://sebastien.godard.pagesperso-orange.fr.

[23] T. Mason, D. Abernathy et al., “The spallation neutron
source in oak ridge: A powerful tool for materials
research,” Physica B: Condensed Matter, vol. 385, pp.
955–960, 2006.

[24] J. C. Phillips, R. Braun et al., “Scalable molecular
dynamics with NAMD,” Journal of Computational
Chemistry, vol. 26, no. 16, pp. 1781–1802, 2005.

[25] D. Case, V. Babin et al., “AMBER 14, university of
california, san francisco,” 2014.

[26] D. R. Roe and I. Thomas E. Cheatham, “Ptraj and cpp-
traj: Software for processing and analysis of molecular
dynamics trajectory data,” Journal of Chemical Theory
and Computation, vol. 9, no. 7, pp. 3084–3095, 2013.

[27] B. Lindner and J. Smith, “Sassena: X-ray and neutron
scattering calculated from molecular dynamics trajec-
tories using massively parallel computers,” Computer
Physics Communications, vol. 183, no. 7, pp. 1491–
1501, 2012.

[28] O. Arnold, J. C. Bilheux et al., “Mantid: Data analysis
and visualization package for neutron scattering and
sr experiments,” Nuclear Instruments and Methods in
Physics Research Section A, vol. 764, pp. 156–166,
November 2014.

[29] “DAGMan,” http://research.cs.wisc.edu/htcondor/
dagman/dagman.html.

[30] “HTCondor,” http://research.cs.wisc.edu/htcondor.

