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Abstract—We observe the emergence of a new generation of
scientific workflows that process data produced at a sustained
rate by scientific instruments and large scale numerical simula-
tions. This data is consumed by multiple analysis, visualization,
or Machine Learning components not only to enable inference
and justify the scientific program, but also to monitor and
steer the evolution of these experiments. In such workflows,
moving intermediate data efficiently is key to performance, more
than efficiently scheduling computational tasks. However, most
traditional workflow management systems focus on optimizing
task scheduling and then deal with data management, assuming
a “move little, compute for long” model, which makes them unfit
to the efficient management of this new generation of workflows.

Therefore, we advocate for a new way to manage scientific
workflows. We propose to consider an efficiently and indepen-
dently managed data plane that can store and stream data.
Workflows compute components, in the application plane can
then interact with the data plane, abstracted from complexities
of data management. Then, the role of a workflow management
system would become that of a control plane that allows users to
connect services together to execute the workflow and manages
connections between the application and data planes.

In this position paper, we characterize several next-generation
workflow motifs and describe how their interaction with the data
plane is a challenge to traditional workflow management systems.
Then, we express a set of requirements that a workflow manage-
ment system should meet to efficiently manage next-generation
workflows at different scales. Based on these requirements, we
expose our vision of driving next-generation workflows from the
data plane and list remaining open challenges.

Index Terms—Workflow management, data management

I. INTRODUCTION

Scientific workflows that compose multiple data-driven
computational tasks to produce a scientific result, have become
a cornerstone of modern scientific computing [1]. In many
scientific fields, workflows have underpinned some of the
most significant discoveries of the last two decades and will
play a crucial role in the data-oriented and post-Moore’s Law
computing landscape. Many of these workflows exhibit high
computational, storage, and/or communication demands. Their
execution thus usually targets a wide range of computing
infrastructures, from edge devices to exascale computers [2].
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To manage the composition, planning, orchestration, and
efficient execution of such workflows, a plethora of Workflow
Management Systems (WMSs) have been proposed over the
years [3]. The first aim and focus of a vast majority of these
systems is to optimize the orchestration of the compute part
of the workflows, i.e., minimizing the completion time of the
workflow. The rationale is that for a long time, workflows had
a “move little, compute for long” structure: compute resources
were the bottleneck and data transfers could be afforded.
However, three recent evolutions must lead to a profound
reevaluation of this aim and focus of WMS design: (i) the
evolution of processors following the end of Moore’s law and
the generalization of GPUs led to a dramatic increase of the
number of available cores. The compute resources is now the
most affordable one, which can even be exploited to reduce
communication by introducing redundant computations [4];
(ii) the relative stagnation of network and I/O bandwidth
in comparison with the increase in compute performance,
making data movement the new bottleneck in many scientific
experiments [5]; and (iii) the emergence of next-generation
workflow motifs in which data access and movement are the
most complex tasks to optimize [2].

Therefore, we advocate in this position paper for a new way
to manage scientific workflows in which we separate the con-
cerns between a data plane that can store, stream, and move
data and metadata, an application plane in which workflow
compute components can either put data in or get data from
this data plane, and a control plane that connects services
together to run the workflow and manages the interactions
between the application and data planes. In this approach, each
plane can be efficiently and independently managed and hide
complex optimization techniques from the other planes.

The contributions of this paper are to:
• Characterize a series of next-generation workflow motifs

and describe how their interaction with the data plane is a
challenge for traditional workflow management systems
(Section III).

• Express a set of requirements that the control and data
planes have to meet to efficiently manage such next-
generation workflows (Section IV)

• Expose our vision for a workflow ecosystem in which
next-generation workflows can be driven from the data
plane, based on the expressed requirements (Section VI).

• List remaining open research challenges to achieve this
vision (Section VII).
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This paper is organized as follows. In Section II, we present
what are traditional scientific workflows and how the majority
of workflow management systems handle them. Then, in
Section III we detail five generic motifs of next-generation
workflows and present the challenges they cause to traditional
workflow management systems. In Section IV, we list a
series of requirements to the development of a next-generation
workflow management system and review how related work
fulfill these requirements in Section V. Then, we detail our
own vision of such a system in Section VI. Finally, we list
remaining open research challenges in Section VII before
summarizing our work in Section VIII.

II. TRADITIONAL WORKFLOWS AND WORKFLOW
MANAGEMENT SYSTEMS

Traditional scientific workflows are usually structured as a
Directed Acyclic Graph (DAG) such as the one depicted in
Fig. 1. Vertices correspond to computational tasks, that take
some data, stored in files, as input and produce intermediate,
or final, data as output, while the edges represent the flow and
control dependencies between the tasks.

Fig. 1. Generic motif of a traditional workflow represented by a Directed
Acyclic Graph. Each compute task takes one or several files as input, and
produces one or several files as output. Files transfers (plain arrows) or control
dependencies (dashed arrow) between tasks enforce their execution order.

A vast number of workflow management systems [3] have
been proposed to describe such workflows in an abstract way,
i.e., independent of specific inputs, versions of each compo-
nents, or mapping to resources, and facilitate the automation
of their execution. The workflow engine can then plan and
orchestrate a more concrete version of the workflow once the
specific inputs and available resources are known. Three main
properties have been identified in [6] to characterize these
workflow management systems. The execution model defines
how workflow components interact with each other, i.e.,
sequentially, concurrently, iteratively, in a strongly coupled
way, or with external steering. Then, the data access methods
supported by the WMS range from in-memory transfers to the
use of the entire storage hierarchy through message passing.
The third property is related to the capacity of the workflow
system to deploy workflows over multiple computing sites.

This study concludes that the majority of the considered
workflow management systems focus on the support of work-
flows based on a “read-compute-write” task model using file-
based transfers between components. This traditional model is
also at the core of the proposition of the Common Workflow
Language (CWL) open standard [7] which has been designed
for workflows that loosely connect multiple command-line
tools together to perform a complex data analysis. However,
this model does not consider that data can be produced
throughout the execution of a task and may need to be
immediately transferred, or streamed, to another workflow
component. This kind of data exchange pattern is central to
a new class of scientific workflows, which we describe in the
next section, that require new workflow and data management
techniques to be executed efficiently.

III. NEXT GENERATION WORKFLOWS MOTIFS

In this section, we describe five workflow motifs originating
from diverse scientific domains. For each motif, we provide an
illustration of their structure and compelling use cases exhibit-
ing this motif. Additionally, we outline the challenges posed
by these motifs to traditional workflow management systems.
It is important to note that the challenges discussed in this
section are not mutually exclusive, and several of them may
arise within a single workflow application.

A. Strong Code Coupling and Analytics

Code coupling is a traditional method to implement multi-
physics simulations. Each code executes its own numerical
simulation and interacts with a central component, the coupler,
that enables the sharing and transformation of data between
codes and manages the execution and synchronization of the
different codes. In practice, such a code coupling can be im-
plemented by running all the codes as a single MPI application
with distinct communicators for each of the components or by
exchanging data through files stored on a shared file system.

The execution of multi-physics simulations is evolving to-
wards more complex workflows as in addition to the traditional
strong coupling of simulation codes, different performance
diagnostics, data analytics, and visualizations components are
loosely coupled to the simulations as illustrated by Fig. 2.

Fig. 2. Generic motif of multi-physics and analytics workflow. Two (or more)
numerical simulations are strongly coupled and periodically exchange data
through a coupling component. Simulations can also be loosely coupled with
analytics, visualization, or performance diagnostic components.



These additional workflow components help scientists mon-
itoring the execution, getting insight on the occurring phenom-
ena, and potentially reacting early to abnormal behaviors.

This workflow motif arises in diverse scientific domains
such as fusion science or climate modeling. For instance, the
Whole Device Modeling application (WDMApp) project [8]
aims to develop a high-fidelity model of magnetically confined
fusion plasmas by coupling two highly scalable gyrokinetic
codes: XGC [9], a particle-in-cell code for treating the edge
plasma, and GENE [10], a continuum code for the core
plasma. Then, the data produced by each code can be moni-
tored to detect anomalies, trigger a specific analysis, enable
command-and-control of the simulations, or be visualized
online on a collaborative dashboard to get early insights on the
evolution of the plasma physics. Such complex simulation and
analysis workflows are urgently needed to plan experiments on
ITER and optimize the design of future fusion facilities.

The Energy Exascale Earth System Model (E3SM) [11]
aims at better understanding how water cycle, biogeochem-
istry, and cryosphere systems govern variability and changes
in water availability and storms, air and stream temperature,
and coastal flooding and sea level rise. Obtaining answers to
the scientific questions underlying these phenomena is crucial
to try to limit the effects of global warning. To this end, E3SM
strongly couples models of oceans, atmosphere, land surface,
rivers, and land and sea ice. E3SM models are then loosely
coupled to the Community Data Analysis Tools for analysis
and visualization purposes and to the Community Diagnostics
Package for performance analyses and provenance capture.

Challenges for traditional WMSs
C#1: Enable the strong-coupling of multiple applications
without having to have them running in the same execution
domain, e.g., a shared MPI communicator.
C#2: Consume data periodically produced by a compute task
before its completion or without having to split the task in
multiple sub-tasks and flow dependencies.
C#3: Dynamically add a new analysis, visualization, or
diagnostics component at runtime.

B. Ensemble Contributing to a Common Data Set

In many domains, obtaining an answer to a scientific
question requires the execution of multiple and independent
computational tasks. Each of these tasks can either be a single
numerical simulation or a more complex pipeline composed
of several stages. The collective execution of such distinct
yet connected tasks is usually denominated as an ensemble
application [12]. The processing of each individual set of
results provides some partial insight and their combination
allows scientist to obtain the desired answer.

For this motif, we consider a slight variation of this defi-
nition of an ensemble where each individual instance in the
ensemble contributes to a common data-set. The difference is
that multiple analysis components can then query this data set
with a different access pattern, as shown in Fig. 3. For instance,
a 3D volume summarizing contributions of (x,y)-planes along

Fig. 3. Generic motif of an ensemble of independent computational tasks that
contribute to a common data set. Data is then queried by analysis components
using a different access pattern that can span over multiple contributions.

the z-axis can be read in an adversarial access pattern along the
y-axis, or individual contributions may have to be aggregated
in a certain way before getting scientific insight.

This type of access to a common data set is a typical
pattern in high energy physics. For instance, Celeritas [13]
is a Monte-Carlo particle transport code used to simulate
the behavior of high energy physics experimental detectors.
Celeritas collects electro-magnetic particle showers from either
primary collisions or subsequent hadronic interactions and
simulates their transport on GPUs. The stochastic nature of
Monte-Carlo applications requires to run an ensemble of simu-
lations to obtain statistically significant results. The problem of
data aggregation is twofold in this application. Each instance
of Celeritas produces data that has to be combined at the
ensemble level, which is a common practice. However, to
obtain these results, it is necessary to reconstruct particle
tracks from the hits, i.e., the fact that one particular layer
of the detector “saw” a particle going through. These hits are
independently generated and written by each GPU thread. This
reconstruction of tracks thus accesses to the common data set
with a very different pattern than the one used to write each
individual contribution.

Challenges for traditional WMSs
C#4: Perform in-transit data reorganization to find a good
balance between read and write performance, e.g., changes
to the data layout between production and writing.
C#5: Aggregate data into a consistent data set across in-
stances in an ensemble execution and across ensembles.

C. AI/ML-based Steering

The idea of computational steering [14] is to break the
prepare-execute-analyze cycle traditionally used to run a series
of experiments leading to a scientific discovery. It allows
scientists to change parameters of their experiment at runtime
and immediately receive feedback on the effect of that change.
With the advent of AI/ML models, an ensemble of simulations
can be steered by leveraging such models to either avoid unde-
sired results, increase the accuracy of the generated results, or
fill gaps in the covered parameter space. In workflows such as
the one in Fig. 4, the training of the AI/ML model is performed
beforehand and only the inference part is used to take quick
decisions for the next batch of simulation instances.



Fig. 4. Generic motif of the AI/ML-based steering of an ensemble of
simulations. The results of independent simulation runs are fed to an AI/ML
model to give insight to a human-in-the-loop or an autonomic decision-making
process and decide on the next set of simulation parameters to consider.

This workflow motif is commonly used in domains such
as molecular biology to get insights into how proteins fold.
Multiple molecular dynamics (MD) simulations are executed
to study the physical movements of atoms and molecules. The
initial input of each instance in the ensemble is selected from
a predetermined set of low dimensional representations of the
studied system. AI/ML-based steering is then used to prevent
MD simulations to get stuck in metastable states, and thus
ignore entire regions of the solution space. Enhanced sampling
techniques are thus periodically applied to stop and steer the
ensemble towards new starting points [15].

Challenges for traditional WMSs
C#6: Dynamically plan efficient resource allocations based
on decisions made at runtime by the AI/ML model.
C#7: Conciliate adversary data access patterns, i.e., high
performance parallel writes by the simulation and sequential
reads of many files by the AI model, on a shared file system.

D. Edge-to-HPC Multi-Stage Analysis

Scientific instruments, such as electron microscopes in
chemistry or light sources (e.g., the Spallation Neutron
Source [16]) in material sciences, take advantage of high-
throughput, highly available computing resources located at
the edge to analyze the produced data in near real-time.
The outcome of this near real-time data processing on edge
resources triggers either the transfer of the entire raw data
set to an HPC facility to be processed by a full-fledged
analysis workflow or the reconfiguration of the experimental
parameters of the instrument until a desirable visualization
of the studied sample is obtained. The response time of the
first workflow stage is very important, as it impacts the time
spent using the instrument which is often limited and highly
valuable. However, such instruments can produce terabytes of
data per hour whose processing is hardly compatible with the
near real-time constraint of the initial analyses.

As illustrated in Fig. 5 the first stage of a multi-stage
cross-facility workflow (i.e., that spans multiple facilities) is
executed under a near real-time constraint. The corresponding
sub-workflow may work on a highly reduced (or transformed)
version of the data produced by the instrument to satisfy tight

Fig. 5. Generic motif of an edge-to-HPC workflow in which a near real-
time analysis is executed on the edge using reduced data to enable quick
decision making. Depending on the outcome, raw or pre-processed data may
be transferred to an HPC facility for large-scale processing. The latter may
have different input parameters or configuration from the one generated by
the scientific instrument.

time constraints. Indeed, by processing a smaller data set, the
execution time of this stage can be significantly decreased.
However, the reduced data has to capture the main quantities
of interest with sufficient accuracy to enable decision making
when the experimental setup has to be reconfigured.

Challenges for traditional WMSs
C#8: Coordinate the execution of a workflow across multiple
facilities (i.e., scientific instrument and HPC center).
C#9: Adapt the data reduction level to the time constraints
of each stage of the analysis workflow.

E. Digital Twins

The last considered workflow motif can be seen as a
combination of the previous motifs. It corresponds to the de-
velopment and usage of a digital twin of a scientific instrument
as illustrated in Fig. 6. Data coming from a mixed ensemble of
HPC simulations and surrogate AI/ML models and from the
instrument itself is used for the online training of the digital
twin. The model is updated based on observed discrepancies
between what it predicts and feedback from the simulation.
Digital twins are used to steer the simulation and allow for
command-and-control on the instrument by tuning parameters
automatically in near-real time or with human-in-the-loop
interventions. They also allow scientists to quickly get insights
that could not be obtained with high-fidelity simulation or
observational models due to time or resource constraints.

Fig. 6. Generic motif of a workflow including a digital twin. Simulation
results, surrogate models, and inputs from the scientific instrument itself are
used to train the Digital Twin which is then used to steer the next simulation
runs and control the configuration of the instrument.



We can find this motif in the medical and bioinformatics
domains where multiscale simulations are combined to AI/ML
models to get new insights into disease mechanisms and
to help identify new targets and treatment strategies [17],
[18]. The resulting digital twin is used to steer the expensive
simulation code towards promising targets and help avoiding
being trapped around a local optimum. In fusion science, such
digital twins are essential to plan experiments on ITER and
optimize the design of future fusion facilities.

Challenges for traditional WMSs
C#10: Dynamically retrain the digital twin when its behavior
diverges from the simulation outcomes.
C#11: Enable command-and-control of a scientific instru-
ment based on the outcomes of the digital twin.

IV. REQUIREMENTS TO DEVELOP AN INTEGRATED
WORKFLOW AND DATA ECOSYSTEM

In this section, we describe four requirements that a modern
integrated workflow and data ecosystem should meet to drive
next-generation workflows from the data plane and address the
challenges we highlighted in the previous section.

Req. #1: Service Oriented Approach of the Data Plane

To answer several of the aforementioned challenges, it is
necessary to abstract the data movement and storage methods
from both the application that produces data and the different
workflow components that consume it. This requires to adopt a
service oriented approach, with a dedicated service controlling
the data plane with which the workflow and the workflow
management system can interact through a publish/subscribe
mechanism. Data producers only need to focus on publishing
data into the data plane, from which subscribers can easily
retrieve and process it. This mechanism addresses challenges
C#1, by enabling the strong coupling of workflow components
through the data plane, C#2, as data can be periodically and
seamlessly published and retrieved to and from the data plane,
and C#3, as new subscribing components can be dynamically
added at runtime. Then, all the decisions about how and where
to move or store data is fully delegated to data plane controller.
This data management service should offer fast serial and
parallel file-based I/O at all scales as well as the capacity
to stream data from one workflow component to another over
shared memory, and local and wide area networks. It should
also be able to perform online data transformation to address
the C#4 and C#7 challenges.

Embracing a service-oriented approach entails a small en-
try cost, as workflow components have to utilize the data
management service API for data publication or subscription.
However, it offers significant rewards in the long run, as the
workflow becomes oblivious to optimization techniques and
future changes in the underlying infrastructure. The service
should allow the workflow management system to seamlessly
switch from traditional file-based I/Os to data streaming, and
to take advantage of the entire hierarchy of storage, from

tapes to local NVMe, and of the most recent evolutions
in storage techniques (e.g., object stores or computational
storage) without any change to the application code.

Req. #2: Self-Describing Data

Traditional workflow management systems usually relies on
files to transfer data from one component to another. Even
when data is transferred over a communication network and
not shared through a common file system, the same “file”
abstraction is used. Each piece of data is a self-contained
object, usually described by a name, and both the producer
and consumer of that file have the knowledge of what this file
contains and how to interpret the information in it. However,
scientific data produced by scientific instruments or HPC
simulations usually aggregate multiple objects structurally and
temporally in a single hierarchical data container.

Enriching raw data with semantic descriptions of individual
objects it encompasses (e.g., a multi-dimensional array captur-
ing spatial distribution or temporal evolution of performance
metrics) is essential for maximizing the efficiency of the data
plane within a next-generation workflow and data ecosystem.
However, the handling of metadata necessitates careful and
efficient management, as uncontrolled costs can escalate sig-
nificantly and consume more space than the actual data.

Rich metadata allows both the application plane and the
control plane to easily understand, access, or query (very)
specific pieces of information within a data set. For instance,
it makes it possible to retrieve the evolution of a variable
over a certain number of timesteps, which would be more
complicated by accessing a set of files viewed as byte streams
with only an offset and a size to navigate. It also allows
users to add more annotations (e.g., units or description of
the underlying mesh/topology) or extra statistics to the data so
that it can be understood better and be leveraged by advanced
data management systems to, aggregate data in a certain way
(C#5), mitigate adversary access patterns (C#7), or program
threshold-based mechanisms to trigger specific actions (C#6,
C#10, and C#11).

Another important aspect related to self-describing data is
that in next-generation workflows many different tools will
have to operate on the same data (i.e., I/O libraries, data
reduction algorithms, analytics and visualization software,
AI/ML frameworks, and workflow management systems). This
calls for data interoperability across workflow components.
However, imposing a common data format would bring more
harm than benefit as it would tightly link software components
together. A more promising approach would be to define a
common language under the form of the open standards of
a schema that provides a clear separation between intent and
implementation. This would allow each component to expose
data in a way that can be understood by other components even
though some transformation may be required to ensure the
interoperability. Thanks to such a common schema, it becomes
easier to dynamically add new components to a workflow
(C#3) or perform in-transit data reorganization (C#4).



Req. #3: Adaptive Data Reduction

As mentioned in the introduction of this paper, one of the
key motivations for driving next-generation workflows through
the data plane stems from the increasing gap between the
evolution of data volumes produced by scientific instruments
and large-scale simulations and the computing and storage
capacities of HPC centers.

If we consider that a computing software infrastructure is
currently correctly sized to execute a workflow for a given
amount of data and produce scientific results in a given time,
an increase of the data production would mean that either it
takes longer to obtain the results or the infrastructure has to
be upgraded to deliver results under the same time constraint.

By integrating adaptive data reduction techniques (e.g.,
decimation, reduction of the precision, lossy or lossless
compression) in the management of its data plane, a next-
generation workflow and data ecosystem would dispose of
an additional degree of freedom to take scheduling decisions
under tight time constraints. Interesting trade-offs could then
be investigated between time to solution and data quality. In
many cases, it can be more interesting to obtain results in
time, even though they are slightly less accurate, rather than
risking to lose work because processing the raw data took
too long. Pushed to the extreme, this approach would allow
the workflow and data ecosystem to address C#9 by allowing
the near real-time part of a multi-stage analysis workflow to
execute on highly reduced data.

Req. #4: Dynamic Control Plane

A recurring need that arises in the considered next-
generation workflow motifs is that of a dynamic control of
the execution of the workflow. The allocation of resources
may have to be reconsidered as the workflow runs (C#6)
depending on recommendations made by AI/ML models to
steer the execution, because of the detection of an interesting
phenomenon in the produced data that would require to spawn
new analysis components (C#3), to retrain a diverging digital
twin (C#10), or to perform command-and-control operations
of the scientific instrument (C#11). All these dynamic use
cases require to go beyond the static planning of the workflow
execution that is commonly offered by traditional workflow
managements and calls for event- or human-driven dynamic
decision making processes. The control plane of a modern
workflow ecosystem should, as for the data plane, follow
a service-oriented approach, where new services could be
triggered or stopped according to data-related events.

Another motivation for a service oriented control plane
is the management of cross-facility workflows (C#8), which
are increasingly prominent in computational sciences. These
workflows span multiple sites, which could include experiment
sites and various computing facilities (e.g., local compute
resources, HPC centers, cloud infrastructure, edge computing
resources, campus clusters, and edge sensors) [19]. In the con-
text of cross-facility computing, it is crucial for the workflow
ecosystem to be designed with the data plane in mind. This

entails accommodating diverse representations and underlying
storage systems, thereby ensuring flexibility and compatibility
across different environments. It is also essential to be able to
interact with the different computing services available at the
different sites and to enable their composition and cooperation
to create the proper execution environment.

V. RELATED WORK

Several works in the literature offer partial solutions to the
efficient management of next-generation workflows motifs.

The execution of the Strong Code Coupling and Analysis
motif has been addressed in [20] by combining the respective
features of a traditional workflow management system (Pega-
sus) and an in situ middleware (Decaf). The authors propose
to improve inter-job communication by replacing a Pegasus
sub-workflow, launched as a controller-worker MPI program,
by a Decaf sub-workflow, run as a Multiple Program Multiple
Data MPI job. Indeed, Pegasus uses MPI only to coordinate
jobs that still exchange data through files while Decaf also
rely on MPI for such data transfers. However, this approach
is less flexible than fully delegating the control of the data
plane, and thus the choice of the most efficient data transport
method, to an efficient data management framework.

Stimulus [21] is a library designed to ingest scientific data
into popular AI frameworks in an efficient and portable way.
It addresses the problem of data format and access pattern
incompatibility when HPC simulations and AI models are
combined within a single workflow. Authors claim that a
strongly coupled approach in which HPC simulations and AI
models would share the same format is intractable and dupli-
cates efforts. Stimulus thus unifies several popular scientific
data formats under a single interface that hides the complexity
of each, and proposes a generic data ingestion pipeline that can
be executed by any tensor-operator-based framework.

The Vera C. Rubin Observatory’s Legacy Survey of Space
and Time project has proposed the concept of a Data But-
ler [22] whose objective is for the workflow developer to
not have to know from where data is read or to where it
is written, nor in which format. Each workflow component
interacts with the Data Butler at the beginning and end of
its execution to respectively ingest and export data. The Data
Butler’s implementation relies on a registry that organizes data
sets conceptually, but ignores where data is located, and a
datastore, that transforms the objects used in the workflow in
the specific data format used by the target storage.

The Radical-Cybertools [23] are an example of the devel-
opment of a complex workflow management system from a
cohesive set of building blocks. The rationale is to support
the agile development of workflow management systems. Each
building block manipulates entities through a well-defined and
stable interface that establishes a clear separation between
computational and compositional features. Conversion layers
are also offered to perform the translation of concepts from
one representation to another. The Radical-Cybertools are
composed of a toolkit to manage ensembles, a pilot job
manager, and a homogeneous interface to batch schedulers.



TABLE I
SUMMARY OF THE CHALLENGES TO TRADITIONAL WORKFLOW MANAGEMENT SYSTEMS BY THE CONSIDERED NEXT-GENERATION WORKFLOW MOTIFS.

FOR EACH CHALLENGE, WE INDICATE TO WHICH REQUIREMENT AND PLANE(S) THIS CHALLENGE PERTAINS, THE RISK TO NOT BEING ABLE TO
ADDRESS THIS CHALLENGE AND THE POTENTIAL REWARD TO SOLVE IT USING SOFTWARE DEVELOPED AT OAK RIDGE NATIONAL LABORATORY.

Challenge Requirement Plane Risk Reward Tool
C#1: Enable strong coupling without a single execution domain #1 Data/Control Low High ADIOS/EFFIS
C#2: Consume data produced by a workflow component as it runs #1 Data/Control Low High ADIOS/EFFIS
C#8: Coordinate cross-facility workflows #4 Control Medium High Zambeze
C#9: Adapt data reduction to time constraints #3 Data/control Medium High MGARD
C#3: Dynamically add new components to the workflow #1, #2, and #4 Data/Control Medium High ADIOS/EFFIS
C#10: Dynamically retrain digital twin #2 and #4 Data/Control High High EFFIS/Zambeze
C#11: Enable Command-and-Control of a scientific instrument #2 and#4 Data/Control High High ADIOS/EFFIS

C#4: Reorganize data in-transit to balance read/write performance #1 and #2 Data Medium Medium ADIOS
C#5: Consistently aggregate data within and across ensembles #2 Data Medium Medium ADIOS
C#7: Conciliate adversary data access patterns #1 and #2 Data Medium Medium ADIOS

C#6: Dynamically plan AI/ML-informed resource allocations #2 and #4 Data/Control High Medium EFFIS/Zambeze

In the Managing Event Oriented Workflows (MEOW) [24]
framework, workflows are designed from the ground up to
be dynamic. Users create individual components by defining
patterns, that describe what events (e.g., accessing a specific
file path, or getting an input file with a certain extension)
should result in the processing, defined by recipes, of the
input files and the production of output files. This original
approach where events coming from the data plane trigger
data processing is a good candidate to address some of the
challenges raised by our workflow motifs, but the current
implementation is limited to file system events.

Globus Flows [25] is an automation platform for complex
data-intensive processes in distributed computing environ-
ments. Users can seamlessly create, execute, and manage
workflows, orchestrate tasks, automate data transfers, and
integrate with diverse computational resources and storage
systems. The platform offers both a user-friendly graphical
interface for designing workflows and a programmatic API.

The NERSC’s SuperFacility API [26] enables researchers
to access and utilize computational resources and data across
multiple facilities. It simplifies the management of cross-
facility workflows, offering streamlined resource allocation,
job submission, data management, and workflow coordination.
With the SuperFacility API, researchers can optimize their
scientific workflows, collaborate effectively, and leverage the
combined computing power of various facilities, fostering sci-
entific discovery and efficient computational problem-solving.

The developers of the Maestro middleware [27] share the
observation that data movement is of paramount importance in
the exascale era and should be handled by dedicated software.
They propose a memory- and data-aware middleware for data
orchestration that allows applications to delegate data access
and movement to Maestro. The framework is based on two
main abstractions: Core Data Objects (CDO) that encapsulate
data and their metadata, and a pool of CDOs to which
workflow components can contribute or from which they can
request CDOs. When an object is in the pool, Maestro has full
control over it to move, copy, re-layout, or redistribute it.

VI. TOWARDS DRIVING NEXT-GENERATION WORKFLOWS
FROM THE DATA PLANE

To tackle the challenges outlined in Section III and fulfill the
requirements described in Section IV, our approach involves
harnessing and integrating the capabilities of various tools de-
veloped at the Oak Ridge National Laboratory. By leveraging
these tools, we aim to develop an integrated workflow and
data ecosystem for the next-generation workflows.

Table I summarizes the challenges to traditional workflow
management systems caused by the considered next-generation
workflow motifs. For each challenge, we indicate to which
requirement and plane(s) this challenge pertains, the risk to not
being able to address this challenge and the potential reward to
solve it, according to the current capabilities of the following
software packages.

To manage the data plane, we rely on the ADIOS
community-driven high-performance I/O framework [28].
ADIOS provides the necessary abstractions and a pub-
lish/subscribe API to allow applications to explicitly describe
the data they produce, when it is ready for output, and what
data an application needs to read and when. It is thus fully
compliant with requirements #1 and #2. A key feature of
ADIOS are its multiple engines that can either write directly
to the storage system or stream data from the application to
the memory of staging nodes or remote resources where it can
be consumed by in situ analysis and visualization components.
Thanks to this flexibility, these components can connect and
disconnect to and from one another as the application runs
by directly “taping in” the data plane without any further
code modification. ADIOS has been successfully used in the
Exascale Computing Project’s WDMapp application and was
able to achieve write performance over 5 TB/s on Frontier.

ADIOS also exposes the concept of Operator to define
operations to be applied on ADIOS-managed data. One or
many operators can be associated with any, or any group
of, data objects and are executed by the selected ADIOS
engine. In particular, ADIOS implements lossy and lossless
data compression/decompression operators that can be used to



satisfy requirement #3 about adaptive data reduction. One of
these operators is MGARD [29] which is a lossy compressor,
which leverages multigrid structure, quantization, and lossless
encoding. The main strength of MGARD is to achieve high
compression ratios while providing error bounds for specific
quantities of interest. MGARD has been successfully used to
compress data produced by the XGC HPC simulation [9] and
double the accuracy of cyclone detection in the E3SM model
for about one fourth of the storage footprint.

To manage the control plane and make the connections
between the application and data planes, we rely on two
complementary tools. The Exascale Framework for High Fi-
delity coupled Simulations (EFFIS) [8] enables the arbitrary
composition of multiple applications, providing users with a
uniform syntax to describe their workflows. EFFIS also has
the capacity to dispatch data to remote sites, such as a local
cluster or laptop, for additional analysis and has been designed
to integrate with checkpoint-restart to improve the resilience
of the workflow components. One of the key feature of EFFIS
is to work in conjunction with ADIOS to both organize and
optimize the I/O for large scale runs. Thanks to the combined
strengths of EFFIS and ADIOS, it has been possible to couple
multiple analysis and visualization components to the XGC
fusion code to uncover new physics phenomena [30].

The second tool, called Zambeze [31], is an innovative
distributed orchestration framework designed to facilitate ex-
periment campaigns across the edge-to-HPC continuum. It
caters to scenarios that demand advanced network capabilities
for large data movement, along with processing and storage
resources. Zambeze framework seamlessly integrates diverse
services, including workflow and data management systems,
using distributed agents deployed on each facility. These
agents efficiently translate user requests into executable actions
on the computational platform. Adopting an adapter system
design, Zambeze is adaptable and versatile, making it suitable
for different architectures and platform requirements. It excels
at orchestrating various workflow systems and facilitating data
movement while remaining domain-agnostic.

VII. OPEN RESEARCH CHALLENGES

While the tools presented in the previous section addresses
the different challenges caused to traditional workflow man-
agement systems by the considered next-generation workflow
motifs, some additional open research challenges remain.

ORC #1: On demand Remote and Local Data Access

The proposition to store the data produced by a workflow in
a data-plane along with a rich description of its contents and
relying on a data management framework that can understand
and exploit this description open the way for users to the
on-demand remote and local access to scientific data. The
motivation is a common practice for scientist that consists
in performing a first data analysis on their laptop, which is
hardly possible with data sets in the range of the Terabytes
or the Petabytes. This is also true for academic institutions
which have some computing an storage resources available

on premises to analyse data, but not at the same scale as
leadership class facilities. In this context, scientists face an
interesting problem, which is related to one of the FAIR
principles: Accessibility. While huge amounts of data may be
accessible at a HPC center, analysing them may not be possible
by lack of sufficient local resources. However, depending
on the analysis, visualization, or, more generally, processing
that scientists want to perform at a given moment, it is not
necessary to access the entire raw data set at the best accuracy
level available. Instead, scientist may want to access a very
specific subset of the entire data set or be satisfied with a
much lower accuracy. The objective is then to offer the same
kind of tools as those available to person accessing photos
stored in the cloud, looking for a picture at a specific event.
They will first narrow down the scope (e.g., by date or album)
and then browse low-resolution thumbnails to select only
group pictures. This vastly reduced set of selected pictures
can be downloaded at full resolution to complete the search.
Once such on-demand remote access is available, interesting
research challenges related to caching and indexing the locally
stored data will have to be addressed.

ORC #2: Visualization as a Service
Scientific data visualization is a key component of the

decision processes at the core of several of the considered
next-generation motifs. However, the current state-of-the-art
in that field usually requires calls to the visualization software
to be made directly from the application code using bespoke
APIs. The Visualization as a Service [32] approach gives
ability to break visualization and analysis tasks into pieces
that can be deployed, managed, automated by a workflow
management system, and be driven from the data plane. The
main research challenge associated to this approach is thus to
efficiently and dynamically manage the resource allocation of
the visualization services in the control plane and to find the
best trade-offs between the resource needs of the application
and the additional insight brought by visualization.

ORC #3: Resilient Workflow Execution
The resilient execution of scalable cross-facility workflows

must be ensured to guarantee the production of new scientific
results. However, the dramatic growth in data production poses
challenges in terms of replicating all data and computations, as
traditionally practiced. To address this, a promising approach
is to harness data reduction techniques and leverage the data
plane’s capability to generate and store multiple versions of a
data set with varying levels of accuracy. This would enable the
workflow and data ecosystem to execute less accurate replicas
of a workflow, which consume fewer resources and execute
faster. These replicas could also serve as fallback options in the
event of failure during the execution of the original workflow.

ORC #4: Privacy-Preserving Workflows

The Edge-to-HPC Multi-Stage Analysis motif manifests not
only in traditional scientific workflows but also in federated
learning applications. In that context, an interesting privacy-
preserving challenge arises that consists in ensuring the confi-



dentiality of individual contributions across the edge-to-HPC
continuum during collaborative AI/ML processes. It implies
to allow multiple parties to collaborate on training a model
while ensuring the local security and privacy of their individual
data sets. One promising approach is to employ techniques
such as encryption or differential privacy to exchange model
updates or gradients among participants, rather than sharing
raw data [33]. Investigating such privacy-preserving mecha-
nisms will play a crucial role in enabling secure and privacy-
conscious collaborative model improvement.

ORC #5: Provenance Data Capture

With workflows spanning across multiple facilities and the
ability to dynamically adjust their structure based on AI/ML-
driven steering recommendations, the capture of provenance
data is key to ensuring result reproducibility. It becomes
even more important with the increasing role of AI/ML for
which tracing, understanding, and explaining how data has
been transformed to feed the models is mandatory to ensure
the transparency and explainability of their results. It is for
instance important to keep track of the complete training
process, with information about the including parameters,
model architecture, data sets, and data transformations.

One of the primary performance challenges associated with
provenance data capture lies in striking the right balance
between capturing sufficient metadata to be valuable and
avoiding overwhelming the system with excessive information.
It also amounts to finding the best trade-off between the time
and space devoted to scientific data and to provenance data. As
for visualization, the right balance between the insight brought
by provenance data capture and the additional resources it
requires has to be found.

These challenges related to provenance data capture also
pertain to the capture of the metadata that can be associated
to scientific data to enrich their semantic description. This
additional information has to be extracted from the workflow
components at the same pace as that of scientific data pro-
duction, which call for a unified use of the publish/subscribe
paradigm and the delegation of delegating data movement
and storage to a high-performance data management. It also
means that this high-performance data management framework
must take advantage of the efficient mechanisms used by
provenance and metadata management (i.e., key-value stores,
databases, efficient indexing and querying methods) to handle
this additional wealth of data.

ORC #6: Performance Assessment

The efficient execution of next-generation workflows will
depend on the quality of the decision-making strategies im-
plemented by the workflow ecosystem. These strategies have
to be informed by adaptive performance models of both the
workflow and the target computing and storage infrastructure.
These models can be used in a proactive way to determine
the initial deployment of a workflow given the resources
available at schedule time, but also in a more reactive way,
at runtime, to be able to react to dynamic events and make

appropriate decisions. To design such performance models,
we must overcome challenges related to the complexity of
the considered next-generation workflows in the edge-to-
HPC continuum. Performance models have long been pursued
in HPC; yet, developing tractable, practical, and accurate
models for (nontrivial) use cases remains challenging. This
is because capturing complex interactions between activities
(i.e., computation, communication, I/O) that use hardware
resources concurrently renders the modeling problem highly
combinatorial. Thus, most existing performance models make
simplifying assumptions that do not hold in practice, caus-
ing a theory/practice disconnect. An interesting alternative
is to model performance via simulation. Instead of pursuing
mathematical models, simulators (i.e., software artifacts) that
perform discrete-event simulation of a workflow’s execution
on a computing and storage infrastructure can be developed.
The simulator outputs a time stamped trace of (simulated)
workflow execution events, from which performance metrics
can be easily computed as they arise naturally from the simu-
lated events. This is the approach followed by the WRENCH
cyberinfrastructure and workflow simulation workbench [34].

VIII. CONCLUSION

Scientific workflows are undergoing a significant transfor-
mation from the conventional “move little data, compute for
long” model, where computational aspects take precedence, to
a more modern “move a lot, compute for cheap” model. This
evolution is driven by the increasing volumes of data being
generated and the need to efficiently utilize available compu-
tational resources. In this shifting paradigm, optimizing data
access, transfer, and storage has emerged as the primary focus
to enable efficient and cost-effective scientific computations.

In this paper, we provide concrete examples to illustrate
this paradigm shift by describing five distinct workflow motifs
originating from various scientific domains. These motifs
demonstrate the changing landscape where the effective man-
agement of data becomes a critical optimization challenge in
contemporary scientific workflows. We then identified four
requirements we think a modern workflow and data ecosystem
should meet and detailed how they are met by software
developed at the Oak Ridge National Laboratory. Finally,
through six open research challenges, we showed how the
considered motifs highlight the need for strategies that balance
computational requirements with efficient data management
across distributed computing environments.

ACKNOWLEDGEMENTS

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.
This research is partially supported by Laboratory Directed
Research and Development Strategic Hire funding No. 11134
from Oak Ridge National Laboratory, provided by the Direc-
tor, Office of Science, of the U.S. Department of Energy.



REFERENCES
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munity, “Methods Included: Standardizing Computational Reuse and
Portability with the Common Workflow Language,” Communications
of the ACM, vol. 65, no. 6, p. 54–63, May 2022.

[8] E. Suchyta, S. Klasky, N. Podhorszki, M. Wolf, A. Adesoji, C. S. Chang,
J. Choi, P. Davis, J. Dominski, S. Ethier, I. Foster, K. Germaschewski,
B. Geveci, C. Harris, K. Huck, Q. Liu, J. Logan, K. Mehta, G. Merlo,
S. Moore, T. Munson, M. Parashar, D. Pugmire, M. Shephard, C. Smith,
P. Subedi, L. Wan, R. Wang, and S. Zhang, “The Exascale Framework
for High Fidelity coupled Simulations (EFFIS): Enabling Whole De-
vice Modeling in Fusion Science,” The International Journal of High
Performance Computing Applications, vol. 36, no. 1, pp. 106–128, 2022.

[9] S. Ku, C. S. Chang, and P. H. Diamond, “Full-f Gyrokinetic Particle
Simulation of Centrally Heated Global ITG Turbulence from Magnetic
Axis to Edge Pedestal Top in a Realistic Tokamak Geometry,” Nuclear
Fusion, vol. 49, no. 11, p. 115021, Sep. 2009.

[10] K. Germaschewski, B. Allen, T. Dannert, M. Hrywniak, J. Donaghy,
G. Merlo, S. Ethier, E. D’Azevedo, F. Jenko, and A. Bhattacharjee,
“Toward Exascale Whole-Device Modeling of Fusion Devices: Porting
the GENE Gyrokinetic Microturbulence Code to GPU,” Physics of
Plasmas, vol. 28, no. 6, p. 062501, 2021.

[11] L. R. Leung, D. Bader, M. Taylor, and R. McCoy, “An Introduction
to the E3SM Special Collection: Goals, Science Drivers, Development,
and Analysis,” Journal of Advances in Modeling Earth Systems, vol. 12,
no. 11, p. e2019MS001821, 2020.

[12] V. Balasubramanian, M. Turilli, W. Hu, M. Lefebvre, W. Lei, R. Modrak,
G. Cervone, J. Tromp, and S. Jha, “Harnessing the Power of Many:
Extensible Toolkit for Scalable Ensemble Applications,” in Proc. of
the IEEE International Parallel and Distributed Processing Symposium,
2018, pp. 536–545.

[13] S. R. Johnson, A. Lund, S. Y. Jun, S. Tognini, G. Lima, P. Romano,
P. Canal, B. Morgan, T. Evans, V. R. Pascuzzi, and D. Deeb, “Celeritas,”
[Computer Software] https://doi.org/10.11578/dc.20221011.1, Jul. 2022.

[14] R. van Liere, J. Mulder, and J. van Wijk, “Computational Steering,”
Future Generation Computer Systems, vol. 12, no. 5, pp. 441–450, 1997.

[15] H. Lee, M. Turilli, S. Jha, D. Bhowmik, H. Ma, and A. Ramanathan,
“DeepDriveMD: Deep-Learning Driven Adaptive Molecular Simulations
for Protein Folding,” in Proc. of the IEEE/ACM Third Workshop on Deep
Learning on Supercomputers (DLS), nov 2019, pp. 12–19.

[16] T. Mason, T. Gabriel, R. Crawford, K. Herwig, F. Klose, and J. Ankner,
“The Spallation Neutron Source: A Powerful Tool for Materials
Research.” [Online]. Available: https://arxiv.org/abs/physics/0007068

[17] K. Gillette, M. Gsell, A. Prassl, E. Karabelas, U. Reiter et al., “A
Framework for the Generation of Digital Twins of Cardiac Electrophys-
iology from Clinical 12-leads ECGs,” Medical Image Analysis, vol. 71,
p. 102080, 2021.

[18] F. Di Natale, H. Bhatia, T. S. Carpenter, C. Neale, S. Kokkila-
Schumacher et al., “A Massively Parallel Infrastructure for Adaptive

Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer,”
in Proc. of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, 2019.

[19] K. Antypas, D. Bard, J. Blaschke, R. S. Canon, B. Enders, M. Shankar,
S. Somnath, D. Stansberry, T. Uram, and S. Wilkinson, “Enabling
Discovery Data Science Through Cross-Facility Workflows,” in Proc.
of IEEE International Conference on Big Data, 2021, pp. 3671–3680.

[20] T. M. A. Do, L. Pottier, O. Yildiz, K. Vahi, P. Krawczuk, T. Peterka, and
E. Deelman, “Accelerating Scientific Workflows on HPC Platforms with
In Situ Processing,” in Proc. of the 22nd IEEE International Symposium
on Cluster, Cloud and Internet Computing, 2022, pp. 1–10.

[21] H. Devarajan, A. Kougkas, H. Zheng, V. Vishwanath, and X.-H. Sun,
“Stimulus: Accelerate Data Management for Scientific AI applications
in HPC,” in Proc. of the 22nd IEEE International Symposium on Cluster,
Cloud and Internet Computing, 2022, pp. 109–118.

[22] T. Jenness, J. Bosch, N. Lust, N. Pease, M. Gower, M. Kowalik,
G. Dubois-Felsmann, F. Mueller, and P. Schellart, “The Vera C.
Rubin Observatory Data Butler and Pipeline Execution System,” 2022.
[Online]. Available: https://arxiv.org/abs/2206.14941

[23] M. Turilli, V. Balasubramanian, A. Merzky, I. Paraskevakos, and S. Jha,
“Middleware Building Blocks for Workflow Systems,” Computing in
Science & Engineering, vol. 21, no. 4, pp. 62–75, 2019.

[24] D. Marchant, R. Munk, E. O. Brenne, and B. Vinter, “Managing Event
Oriented Workflows,” in Proc. of the 2nd IEEE/ACM Annual Workshop
on Extreme-scale Experiment-in-the-Loop Computing, 2020, pp. 23–28.

[25] R. Chard, J. Pruyne, K. McKee, J. Bryan, B. Raumann, R. Anan-
thakrishnan, K. Chard, and I. Foster, “Globus Automation Services:
Research Process Automation Across the Space–Time Continuum,”
Future Generation Computer Systems, 2023.

[26] D. Bard, M. Day, B. Enders, R. Hartman-Baker, J. Riney III, C. Snavely,
and G. Torok, “Automation for Data-driven Research with the NERSC
Superfacility API,” in High Performance Computing: ISC High Perfor-
mance Digital International Workshops, Jun. 2021, pp. 333–345.

[27] C. Haine, U.-U. Haus, M. Martinasso, D. Pleiter, F. Tessier, D. Sarmany,
S. Smart, T. Quintino, and A. Tate, “A Middleware Supporting Data
Movement in Complex and Software-Defined Storage and Memory
Architectures,” in Proc. of the International Conference on High Per-
formance Computing, 2021, pp. 346–357.

[28] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer,
J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck, A. Huebl,
M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta, G. Ostrouchov,
M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta, K. Takahashi,
N. Thompson, S. Tsutsumi, L. Wan, M. Wolf, K. Wu, and S. Klasky,
“ADIOS 2: The Adaptable Input Output System. A framework for high-
performance data management,” SoftwareX, vol. 12, p. 100561, 2020.

[29] X. Liang, B. Whitney, J. Chen, L. Wan, Q. Liu, D. Tao, J. Kress, D. Pug-
mire, M. Wolf, N. Podhorszki, and S. Klasky, “MGARD+: Optimizing
Multilevel Methods for Error-Bounded Scientific Data Reduction,” IEEE
Transactions on Computers, vol. 71, no. 7, pp. 1522–1536, 2022.

[30] E. Suchyta, J. Y. Choi, S.-H. Ku, D. Pugmire, A. Gainaru, K. Huck,
R. Kube, A. Scheinberg, F. Suter, C.-S. Chang, T. Munson, N. Pod-
horszki, and S. Klasky, “Hybrid Analysis of Fusion Data for Online
Understanding of Complex Science on Extreme Scale Computers,” in
Proc. of the IEEE International Conference on Cluster Computing, 2022,
pp. 218–229.

[31] T. J. Skluzacek, R. Souza, K. C. Maheshwari, S. R. Wilkinson, and
R. Ferreira da Silva, “Zambeze: Enabling Cross-Facility Workflows
Orchestration,” [Online] https://github.com/ORNL/zambeze, accessed
2023-07-27.

[32] D. Pugmire, J. Kress, J. Chen, H. Childs, J. Choi, D. Ganyushin,
B. Geveci, M. Kim, S. Klasky, X. Liang, J. Logan, N. Marsaglia,
K. Mehta, N. Podhorszki, C. Ross, E. Suchyta, N. Thompson, S. Walton,
L. Wan, and M. Wolf, “Visualization as a Service for Scientific Data,” in
Proc. of the Smoky Mountains Computational Sciences and Engineering
Conference, 2020, pp. 157–174.

[33] A. Clyde, X. Liu, T. Brettin, H. Yoo, A. Partin, Y. Babuji, B. Blaiszik,
J. Mohd-Yusof, A. Merzky, M. Turilli et al., “AI-Accelerated Protein-
Ligand Docking for SARS-CoV-2 is 100-fold Faster with no Significant
Change in Detection,” Scientific Reports, vol. 13, no. 1, p. 2105, 2023.

[34] H. Casanova, R. Ferreira da Silva, R. Tanaka, S. Pandey, G. Jethwani,
W. Koch, S. Albrecht, J. Oeth, and F. Suter, “Developing Accurate and
Scalable Simulators of Production Workflow Management Systems with
WRENCH,” Future Generation Computer Systems, vol. 112, pp. 162–
175, 2020.

https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems
https://doi.org/10.11578/dc.20221011.1
https://arxiv.org/abs/physics/0007068
https://arxiv.org/abs/2206.14941
https://github.com/ORNL/zambeze

	Introduction
	Traditional Workflows and Workflow Management Systems
	Next Generation Workflows Motifs
	Strong Code Coupling and Analytics
	Ensemble Contributing to a Common Data Set
	AI/ML-based Steering
	Edge-to-HPC Multi-Stage Analysis
	Digital Twins

	Requirements to Develop an Integrated Workflow and Data Ecosystem
	Related Work
	Towards Driving Next-Generation Workflows from the Data Plane
	Open Research Challenges
	Conclusion
	References

