
Using Simple PID-inspired Controllers for Online Resilient Resource Management
of Distributed Scientific Workflows

Rafael Ferreira da Silvaa,∗, Rosa Filgueirab,c, Ewa Deelmana, Erola Pairo-Castineirad,e, Ian M. Overtond,e,f, Malcolm P. Atkinsonc

aUniversity of Southern California, Information Sciences Institute, Marina del Rey, CA, USA
bBritish Geological Survey, Lyell Centre, Edinburgh EH14 4AP, UK

cSchool of Informatics, University of Edinburgh, Edinburgh EH8 9LE, UK
dMRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK

eUsher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
fCurrent address: Centre For Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK

Abstract

Scientific workflows have become mainstream for conducting large-scale scientific research. As a result, many workflow appli-
cations and Workflow Management Systems (WMSs) have been developed as part of the cyberinfrastructure to allow scientists
to execute their applications seamlessly on a range of distributed platforms. Although the scientific community has addressed
this challenge from both theoretical and practical approaches, failure prediction, detection, and recovery still raise many research
questions. In this paper, we propose an approach inspired by the control theory developed as part of autonomic computing to
predict failures before they happen, and mitigated them when possible. The proposed approach is inspired on the proportional-
integral-derivative controller (PID controller) control loop mechanism, which is widely used in industrial control systems, where
the controller will react to adjust its output to mitigate faults. PID controllers aim to detect the possibility of a non-steady state far
enough in advance so that an action can be performed to prevent it from happening. To demonstrate the feasibility of the approach,
we tackle two common execution faults of large scale data-intensive workflows—data storage overload and memory overflow. We
developed a simulator, which implements and evaluates simple standalone PID-inspired controllers to autonomously manage data
and memory usage of a data-intensive bioinformatics workflow that consumes/produces over 4.4TB of data, and requires over
24TB of memory to run all tasks concurrently. Experimental results obtained via simulation indicate that workflow executions may
significantly benefit from the controller-inspired approach, in particular under online and unknown conditions. Simulation results
show that nearly-optimal executions (slowdown of 1.01) can be attained when using our proposed method, and faults are detected
and mitigated far in advance of their occurrence.

Keywords: Scientific workflows, Fault detection and handling, Resilient Big Data workflows, Autonomic computing

1. Introduction

Scientists want to extract the maximum information out of
their data—which are often obtained from scientific instru-
ments and processed in large-scale distributed systems. Today’s
computational and data science applications may comprise
thousands of computational tasks and process large datasets
(from remote sensors, instruments, etc.), which are often dis-
tributed and stored on heterogeneous resources. Scientific
workflows are a mainstream solution to process large-scale
scientific computations in distributed systems, and have sup-
ported traditional and breakthrough research across several do-
mains [1]. As a result, many workflow applications and Work-
flow Management Systems (WMSs) have been developed as

∗Corresponding address: USC Information Sciences Institute, 4676 Admi-
ralty Way Suite 1001, Marina del Rey, CA, USA, 90292

Email addresses: rafsilva@isi.edu (Rafael Ferreira da Silva),
rosa@bgs.ac.uk (Rosa Filgueira), deelman@isi.edu (Ewa Deelman),
Erola.Pairo-Castineira@igmm.ed.ac.uk (Erola Pairo-Castineira),
ian.overton@qub.ac.uk (Ian M. Overton),
Malcolm.Atkinson@ed.ac.uk (Malcolm P. Atkinson)

part of the cyberinfrastructure to allow scientists to execute
their applications seamlessly on a range of distributed plat-
forms [2, 3].

In spite of impressive achievements today, failure prediction,
detection, and recovery remain a major challenge in workload
management in distributed systems, both at the application and
resource levels. Failures affect the makespan of the applica-
tions, and therefore the productivity of the scientists that de-
pend on the power of distributed computing to do their work.
Throughout the remainder of this paper, a failure may repre-
sent an inconsistent state of the system, which may be an actual
fault, poor performance, or a constraint violation.

Unsurprisingly, failure detection and handling for distributed
scientific applications has been the subject of significant effort,
both from practitioners and from researchers [4, 5, 6, 7, 8, 9, 10,
11, 12]. However, most of these approaches do not aim to pre-
vent faults, but to mitigate their impact. They also make strong
assumptions about resource and application characteristics, so
that resource management problems are rendered tractable. But
the resulting solutions may perform poorly in practice when un-

Preprint submitted to Future Generation Computer Systems January 10, 2019



expected events (e.g., network glitches, external load, etc.) oc-
cur. Therefore, there is a lack of realistic solutions, which is the
major cause for the discrepancy between proposed theoretical
techniques and methods, and their practical application [13].

In this work, we target the resource management challenge
to attain “resilience” in executions of large-scale scientific
workflows on distributed infrastructures. More specifically,
we investigate how the principles of the proportional-integral-
derivative controller (PID controller) control loop mechanism,
which is widely used in industrial systems, can be applied to
predict and prevent failures in end-to-end workflow executions
across distributed, heterogeneous computational environments.
The basic idea behind a PID controller is as follows: read data
from a sensor, then compute the desired actuator output by cal-
culating proportional (P), integral (I), and derivative (D) re-
sponses and summing those three components to compute the
output. Each of the components can often be interpreted as the
present error (P), the accumulation of past errors (I), and a pre-
diction of future errors (D), based on the current rate of change.
The main advantage of using the principles of a PID controller
is that the control loop mechanism progressively monitors the
evolution of the workflow execution, detecting possible faults
before they occur, and when needed performs actions that lead
the execution to a steady-state.

The main contributions of this paper include:

1. A process for resilient management of computing re-
sources, which uses the concepts of PID controllers to pre-
vent and mitigate two major problems of the Big Data era:
data storage overload and memory overflow;

2. The characterization of a bioinformatics workflow, which
consumes/produces over 4.4TB of data, and requires over
24TB of memory;

3. An evaluation via simulation to demonstrate the feasibility
of the proposed approach using simple PID-inspired con-
trollers; and

4. A performance optimization study to tune the parameters
of the control loop to provide nearly-optimal workflow ex-
ecutions, where faults are detected and handled far in ad-
vance of their occurrence.

Although PID controllers are commonly used in closed envi-
ronments where a steady-state can be reached and maintained,
the preliminary evaluation study conducted in this work demon-
strates their ability to tackle inconsistent states of a dynamic
distributed system by limiting the oscillation analysis to short
intervals. In [14], we have presented a first evaluation of the
use of a control loop approach, inspired by PID controllers, to
prevent faults in online distributed systems. In this work, we
detail the model of our resilient resource management process,
and extend the previous analysis by further evaluating the be-
haviors of livelocks and the characteristics of the controller re-
sponse input value.

This paper is structured as follows. Section 2 gives an
overview of related work. Section 3 presents the general re-
silient resource management process, which is inspired by the

principles of PID controllers, while Section 4 describes the two
types of faults evaluated in this paper. The experimental evalu-
ation is presented in Section 5, and Section 6 presents a study to
tune the gain parameters of the PID-inspired controllers to im-
prove error detection and handling. Section 7 summarizes our
results and identifies future work.

2. Related Work

Several offline strategies and techniques were developed
to detect and handle failures during scientific workflow ex-
ecutions [4, 5, 6, 7, 8, 9, 15]. Autonomic online methods
were also proposed to cope with workflow failures at runtime,
for example by providing checkpointing [16, 17, 18], prove-
nance [17, 19], task resubmission [10, 11], and task replica-
tion [8, 12], among others. However, these systems do not aim
to prevent faults, but mitigate their impact, and although task
replication may increase the probability of having a success-
ful execution on another computing resource, it should be used
sparingly to avoid overloading the execution platform [20].
The above systems also make strong assumptions about re-
source and application characteristics. A recent survey on fault-
tolerance mechanisms for task clustering [21], highlights ap-
proaches to cope with tasks exhibiting low performance, how-
ever most of the techniques also assume that accurate estimates
of task requirements are available.

Although several works address task requirement estimations
based on provenance data [22, 23, 24, 25], accurate estima-
tions are still challenging, and may be specific to a certain type
of application. In [26], a prediction algorithm based on ma-
chine learning (Naı̈ve Bayes classifier) is proposed to identify
faults before they occur, and to apply preventive actions to mit-
igate the faults. Experimental results show that faults can be
predicted with up to 94% accuracy; however, that approach is
tied to a small set of applications, and it is assumed that the
application requirements do not change over time. In previ-
ous work, we proposed an autonomic method described as a
MAPE-K loop to cope with online non-clairvoyant workflow
execution faults on grids [27, 28], where unpredictability is ad-
dressed by using a-priori knowledge extracted from execution
traces to identify severity levels of faults, and apply a specific
set of actions. Although this is the first work on self-healing
of workflow executions under online and unknown conditions
(e.g., workload unawareness, external load, etc.), experimen-
tal results on a real platform show an important improvement
of the QoS delivered by the system. However, the method
does not prevent faults from happening (actions are performed
once faults are detected). In this paper, we revisit the MAPE-K
loop concept to enable fault detection and handling; however,
without depending on reliable estimates obtained from a-priori
knowledge. In [29], a machine learning approach based on in-
ductive logic programming is proposed for fault prediction and
diagnosis in grids. This approach is limited to small-scale ap-
plications with a few parameters—the number of rules may ex-
ponentially increase as the number of tasks in a workflow or the
handled parameters increases. Feedback loops have also been
proposed to tackle failures in workflow systems [30], however,

2



no mechanisms are available to prevent an unrecoverable fault
from happening.

To the best of our knowledge, this is the first work that uses
the concepts of PID controllers to mitigate faults in scientific
workflow executions under online and unknown conditions.

3. General Resilient Resource Management Process

Automating fault prevention, detection, and handling is chal-
lenging for two reasons. First, the problem is online by na-
ture because no reliable user activity prediction can be assumed
(e.g., task runtime estimates are not accurate). New workloads
may arrive at any time, and resources may leave at any time.
Therefore, the decisions, actions, and considered metrics have
to remain simple and to yield good results while the applica-
tion is still executing. Second, it is unpredictable due to the
lack of reliable application and platform models [22], and due
to the lack of information about the performance of comput-
ing and network resources in production environments. Hence,
platform and application models also have to remain simple,
and adapt to the dynamic behavior of the system. In this work,
we present a novel resilient resource management process for
autonomous detection and handling of possible-future faults in
scientific workflow executions, under online and unpredictable
conditions. The process uses the MAPE-K loop principle as
a basis for constantly performing online monitoring, analysis,
planning, and execution of a set of preventative and/or correc-
tive actions (Figure 1). In this process, when an event occurs
during the workflow execution (e.g., job completion, failures,
or timeouts), an analysis event is triggered in the controller (in-
spired by PID controllers). If the controller detects that the sys-
tem is moving towards an unstable state, the controller will no-
tify a decision agent process that may trigger actions to prevent
or mitigate faults.

3.1. Overview of PID Controllers
The proportional-integral-derivative controller (PID con-

troller) [31, 32] control loop mechanism is key to address faults
under online and unknown conditions. In industrial systems,
a PID controller is typically used to assess the state of a sin-
gle fine-grained measurement (e.g., temperature, pressure, ac-
celeration, etc.) to improve the efficiency of the control loop.
Although “one-fit-all” metrics could be handled by PID con-
trollers, they usually represent complex mathematical models

Workflow
Execution

Event (e.g., job completion, 
failures, etc.) or Timeout

PID-based
Controller

Preventive or
Corrective Actions

Knowledge

Planning

Monitoring

An
al
ys
is

Ex
ec
ut
io
n

Figure 1: Overview of the Resilient Resource Management Process based on
the MAPE-K loop.

P

I

D

∑ ∑

setpoint
r + +

+

+–

Process

input
u

output
y

controller

e

Figure 2: General diagram of closed loop systems with an ideal PID controller
(based on error feedback).

Figure 3: Response of a typical PID closed loop system.

in which the output signal would be hard to interpret, and the
decision problem of what preventive or corrective action to
perform becomes more difficult. In this work, we follow the
same fine-grained approach, where we design and implement
an autonomous process for resilient resource management for
WMSs, which is inspired by PID controllers (named in this pa-
per PID-inspired controllers). We then define controllers for
different metrics at different levels (e.g., memory or disk usage
per node, shared file system usage per platform, etc.). In such
scenarios, the PID-inspired controller aims at detecting the pos-
sibility of a fault far enough in advance that an action can be
performed to prevent it from happening. Figure 2 shows a gen-
eral ideal PID control system loop. The setpoint (or reference
signal) is the desired or command value for the process vari-
able. The control system algorithm uses the difference between
the output (process variable) and the setpoint to determine the
desired actuator input to drive the system.

The control system performance is measured through a step
function as a setpoint command variable, and the response of
the process variable. The response (output) is quantified by
measuring defined waveform characteristics as shown in Fig-
ure 3. Rise time is the amount of time the system takes to go
from about 10% to 90% of the steady-state, or final, value. Per-
cent overshoot is the amount that the process variable surpasses
the final value, expressed as a percentage of the final value. Set-
tling time is the time required for the process variable to settle to
within a certain percentage (commonly 5%) of the final value.
Steady-state error is the final difference between the process
variable and the setpoint. Dead time is a delay between when
a process variable changes, and when that change can be ob-
served.

The input/output relation for an ideal PID controller with er-
ror feedback is defined as follows:

3



Figure 4: Overview of the resilient resource management process.

u(t) = Kpe(t) + Ki

Z t

0
e(t)dt + Kd

de(t)
dt

; (1)

whereKp is the proportional gain constant,Ki is the integral
gain constant,Kd is the derivative gain constant, ande is the
error de�ned as the di� erence between thesetpointand the pro-
cess variable value.

Tuning the proportional (Kp), integral (Ki), and derivative
(Kd) gain constants is challenging and a research topic in itself.
Therefore, in this paper we initially assumeKp = Ki = Kd = 1
for the sake of simplicity and to demonstrate the feasibility of
the process, and then we use theZiegler-Nicholsclosed loop
method [33] for tuning the PID controllers (see Section 6).

3.2. Model and Design

Although the PID controller shown in Figure 2 represents an
idealized controller and several modi�cations are often required
to obtain a controller that is practically useful [32]. We argue
that the concepts provided by this abstraction su� ce to derive
a controller-inspired model for our resilient resource manage-
ment process. Figure 4 shows an overview of the proposed pro-
cess. In our model, process variables (output) are determined
by fault-speci�c metrics quanti�ed online (see Section 4). In
contrast to a typical PID closed loop, theProcessoutput is
a set of fault degree measurements as previously referred (y0,
y00, etc.)—each corresponding output measurement feeds its re-
spective controller. Fault degrees are computed from metrics
assuming that faults have outlier performance, e.g. low network
bandwidth, data packet losses, low CPU utilization, etc. [27].
The setpointis constant and de�ned as 1. Our process may
be composed by a set of standalone PID-inspired controllers,
in which each control signalu is an input value for aDecision
Agent. The Decision Agent collects all control signal values
(formed entirely from the errore), and determines whether a
preventive or curative set of actionsu� should be performed.
Note that an action is not represented by a value that will be fed
to the process, instead it indicates actual operations that will
be performed. Negative errore values mean the control sys-
tem is rising too fast and may tend to an overshoot state (i.e.,
reach a faulty state), therefore preventive or corrective actions
should be performed. Actions may include task preemption,
task resubmission, task clustering, task cleanup, storage man-
agement, etc. In contrast, positive values indicate the system is
in an undershot state. Lowe values indicate the control system
is smoothly moving towards the steady state.

4. Modeling Simple Controller-inspired Processes

In our proposed approach, a standalone PID-inspired con-
troller is de�ned and used for each possible-future fault iden-
ti�ed from workload traces (historical data). In some cases, a
particular type of fault cannot be modeled using the principles
of a three-term controller. For example, there are faults that can-
not be predicted far in advance (e.g., unavailability of resources
due to a power cut). In this case, a PI-inspired (proportional-
integral) controller could be de�ned and deployed. In produc-
tion computing systems, a large number of controllers may be
de�ned and used to control, for example, CPU utilization, net-
work bandwidth, etc. In this paper, we demonstrate the feasibil-
ity of our proposed process by tackling two common, yet practi-
cal, issues of work�ow executions: data and memory over�ow.

4.1. Work�ow Data Footprint and Management

In the era of Big Data Science, applications are producing
and consuming ever-growing data sets. A run of scienti�c
work�ows that manipulates these data sets may lead the system
to an out of disk space fault if no mechanisms are in place to
control how the available storage is used. To prevent this, data
cleanup tasks are often automatically inserted into the work-
�ow by the work�ow management system [34], or the number
of concurrent task executions is limited to prevent data usage
over�ow. Cleanup tasks remove data sets that are no longer
needed by downstream tasks or temporarily move current un-
locked data into permanent storage devices (to free local stor-
age space for running tasks), but nevertheless they may add an
important overhead to the work�ow execution [35]—a cleanup
task may involve staging data out to an external storage device
and registering the data into a data catalog. As a result, ad-
ditional operations may be required to stage in these data for
future task executions.

PID-inspired Controller. The process variable for the data
management process (outputyd) is de�ned as the ratio between
the actual used disk space! 0 including current tasks in execu-
tion, and the total disk space! , i.e. yd = ! 0

! . In an ideal sce-
nario,yd ! 1 (i.e., thesetpoint) maximizes utilization, however
no over�ow is allowed. Thus, a lower threshold is typically
used to accommodate over�ow and prevent non-recoverable
failures. Therefore, the system is in anon-steadystate if the
total amount of available disk space is below or above a pre-
de�ned threshold� d (i.e., yd = ! 0

! �� d
). The proportional (P) re-

sponse is computed as the error between thesetpoint r, and the
process variableyd; the integral (I) response is computed from
the sum of the disk usage errors (cumulative value of the pro-
portional responses, i.e.e = r � yd); and the derivative (D) re-
sponse is computed as the di� erence between the current and
the previous disk over�ow (or underutilization) error values.
Therefore, the control signalud is de�ned as follows:

ud(t) = Kp � (r � yd(t)) + Ki

tX

n=1

e(n) + Kd � (e(t) � e(t � 1)): (2)

4



Corrective Actions.The output of the PID-inspired controller
(control signalud, Equation 2) indicates whether the controller
identi�ed an anomaly behavior w.r.t. data management. Neg-
ative values indicate that the current disk usage is above the
threshold of the minimum required available disk space (a
safety measure to avoid an unrecoverable faulty state). In con-
trast, positive values indicate that the current running tasks
do not maximize disk usage. For values ofud < 0, (i) data
cleanup tasks can be triggered to remove unused intermediate
data (adding cleanup tasks may imply rearranging the priority
of all tasks in the queue), or (ii ) tasks can be preempted due to
the inability to remove data—the inability of cleaning up data
may lead the execution to an unrecoverable state, and thereby to
a failed execution. Otherwise (forud > 0), the number of con-
current task executions may be increased. The control signal
value is then used as input for the Decision Agent (Section 4.3),
which accounts for all control signal values from all controllers
to perform preventive/corrective actions when necessary.

4.2. Work�ow Memory Usage and Management

Large scienti�c computing applications rely on complex
work�ows to analyze large volumes of data. These tasks are
often running in HPC resources over thousands of CPU cores
and simultaneously performing data accesses, data movements,
and computation, dominated by memory-intensive operations
(e.g., reading a large volume of data from disk, decompress-
ing in memory massive amounts of data or performing a com-
plex calculation which generates large datasets, etc.). The per-
formance of those memory-intensive operations are quite often
limited by the memory capacity of the resource where the ap-
plication is being executed. Therefore, if those operations over-
�ow the physical memory limit the result may be application
performance degradation or application failure. Typically, the
end-user is responsible for optimizing the application, modify-
ing the code if necessary to comply with the amount of mem-
ory that can be used on that resource. This work addresses the
memory challenge by proposing an in-situ analysis of mem-
ory usage, to adapt the number of concurrent tasks executions
according to the memory usage required by an application at
runtime.

PID-inspired Controller. The process variable for the memory
management process (outputym) is de�ned as the ratio between
the actual peak memory usage� 0 by current tasks in execution,
and the total memory capacity of the computing node� . Sim-
ilarly to the data management controller, a threshold� m is also
used to accommodate over�ows, thusym = � 0

� �� m
. The system

is in a non-steadystate if the amount of memory available is
below or above� m. The proportional (P) response is computed
as the error between the memory consumptionsetpointvalue,
and the outputym; the integral (I) response is computed from
cumulative proportional responses (previous memory usage er-
rors); and the derivative (D) response is computed as the dif-
ference between the current and the previous memory over�ow
(or underutilization) error values. The control signalum is then
de�ned as follows:

um(t) = Kp � (r � ym(t)) + Ki

tX

n=1

e(n) + Kd � (e(t) � e(t � 1)): (3)

Corrective Actions.Negative values for the control signalum

indicate that the collection of running tasks are leading the sys-
tem to an over�ow state (i.e., anomalous behavior), thus some
tasks should be preempted to prevent the system from running
out of memory. For positiveum values, the memory consump-
tion of current running tasks is below a prede�ned memory con-
sumptionsetpoint(i.e., underutilization). Therefore, the work-
�ow management system may spawn additional tasks for con-
current execution.

4.3. Decision Agent
In a typical PID control loop, the response variable of the

control loop that leads the system to asetpoint(or within a
steady-state error) is de�ned as waveforms, which can be com-
posed of over�ows or underutilization of the system. As afore-
mentioned, in order to accommodate over�ows, we arbitrarily
de�ne thesetpointof our resource management process as 80%
of the maximum total capacity (for both storage and memory
usage), and a steady-state error of 5%. The evaluated pro-
cess is composed of a single PID-inspired controllerud, used
to manage disk usage (shared network �le system); while an in-
dependent memory controllerun

m is deployed for each comput-
ing noden. As discussed in the previous subsections, the con-
trol signal values indicate whether the system is leading to an
over�ow or underutilization state, and thus actions may be trig-
gered. These values are the input for the Decision Agent, which
weights them to decide the appropriate set of actionsu� to be
performed (Figure 4). The Decision Agent may also be based
on an Intelligent System, where decisions do also account, for
example, for historical data, system performance metrics (e.g.,
I/O or network throughput, etc.), work�ow structure and look-
ahead planning [11, 36], and the use of statistical and machine
learning methods [22, 37].

In order to demonstrate the feasibility of our proposed ap-
proach, we consider that values ofu > 0 indicate that the
amount of disk space or memory consumed by the current run-
ning tasks �ts the system resources and additional tasks may be
spawned (resp. tasks are preempted). When managing a set of
controllers, it is important to ensure that an action performed by
a controller does not counteract an action performed by another
one. Therefore, the decision about the number of tasks to be
scheduled/preempted is driven bybuc, which represents themin
between the response value of the unique disk usage controller,
and the memory controller per resourcen:

bun(t)c = min(ud(t); un
m(t)): (4)

The Decision Agent process uses the mean values of disk and
memory requirements (as the ones used in this work shown
in Table 1, Section 5.2) to estimate the number of tasks to be
scheduled/preempted. The Decision Agent seeks then for a set
of tasks, in which the sum of their disk ¯! and memory ¯� re-
quirements are less than or equal to the thresholds. For the task

5



scheduling operation, a taskk will be scheduled to a resourcen
at instantt i� :

(
!̄ k � b un(t)c � !;
�̄ k � b un(t)c � � n:

(5)

For task preemption, current running tasks are added to the set
of tasks to be preemptedP while the sum of disk ¯! and memory
�̄ requirements for all tasksp 2 P do not satisfy the following
conditions:

(
bun(t)c � ! >

P
p2P !̄ p;

bun(t)c � � n >
P

p2P �̄ p:
(6)

In the �rst condition, the disk usage requirement (bun(t)c � ! )
may be reduced if data cleanup tasks can be executed. Thus,
the condition is scaled down by the magnitude of the amount
of data that can be removed (i.e., data �les that are not used
by the current running tasks). Strategies to de�ne the optimal
number of data cleanup tasks and their positioning in the work-
�ow graph are out of the scope of this work, and can be found
in [34].

Typically, mean values yield high values of standard devia-
tion (due to variations inherent to the application itself, or the
system including external load), thus estimations may not be
accurate. Task characteristics estimation is beyond the scope
of this work, and sophisticated methods to provide accurate es-
timates can be found in [22, 23, 24, 25]. However, this work
intends to demonstrate that even using inaccurate estimation
methods, our proposed process can cope with the poor estimates
and still yield good results.

5. Experimental Evaluation

5.1. Scienti�c Work�ow Application

The 1000 genomes project provides a reference for human
variation, having reconstructed the genomes of 2,504 individ-
uals across 26 di� erent populations [38]. The test case used
in this work identi�es mutational overlaps using data from the
1000 genomes project in order to provide a null distribution for
rigorous statistical evaluation of potential disease-related mu-
tations. This test case (Figure 5) has been implemented as a
Pegasus [39, 40] work�ow, and is composed of �ve di� erent
tasks:

Individuals. This task fetches and parses the Phase 3 data [38]
from the 1000 genomes project per chromosome. These �les
list all of the Single nucleotide polymorphisms (SNPs) variants
in that chromosome and which individuals have each one. An
individual task creates output �les for each individual ofrs
numbers, where individuals have mutations in at least one of
the two alleles.

Populations. The 1000 genome project has 26 di� erent pop-
ulations from many di� erent locations worldwide [41]. The
populations task fetches and parses �ve super populations
(African, Mixed American, East Asian, European, and South
Asian), and a set of all individuals.

Sifting. This task computes theSIFT scores of all of theSNPs
variants, as computed by the Variant E� ect Predictor (VEP).
SIFT is a sequence homology-based tool that Sorts Intolerant
From Tolerant amino acid substitutions, and predicts whether
an amino acid substitution in a protein will have a phenotypic
e� ect. VEP determines the e� ect of individual variants on
genes, transcripts, and protein sequences, as well as regulatory
regions. For each chromosome, thesifting task processes
the correspondingVEP, and selects only theSNPsvariants that
have aSIFT score.

Pair OverlapMutations. This task measures the overlap in
mutations (SNPs) among pairs of individuals. Considering two
individuals, if both individuals have a given SNP then they have
a mutation overlap. It performs several correlations including
di� erent numbers of pairs of individuals, and di� erent numbers
of SNPsvariants (only theSNPsvariants with a score less than
0.05, and all theSNPsvariants); and computes an array (per
chromosome, population, andSIFT level selected), which has
as many entries as individuals—each entry contains the list of
SNPsvariants per individual according to theSIFT score.

FrequencyOverlapMutations. This task calculates the fre-
quency of overlapping mutations across n subsamples of j in-
dividuals. For each run, the task randomly selects a group of 26
individuals from this array and computes the number of over-
lapping mutations among the group. Then, theindividuals
task computes the frequency of mutations that have the same
number of overlapping mutations.

5.2. Work�ow Characterization

We pro�led the 1000 genome sequencing analysis work�ow
using the Kickstart [42] pro�ling tool. Kickstart monitors and
records task execution in scienti�c work�ows (e.g., process I/O,
runtime, memory usage, and CPU utilization). Runs were con-
ducted on theEddie Mark 3, which is the third iteration of the
University of Edinburgh's compute cluster. The cluster is com-
posed of 4,000+ cores with up to 2 TB of memory. For running
the characterization experiments, we have used three types of
nodes, depending of the size of memory required for each task:

1. 1 Large node with 2 TB RAM, 32 cores, IntelR

XeonR
 Processor E5-2630 v3 (2.4 GHz), for running the
individual tasks;

2. 1 Intermediate node with 192GB RAM, 16 cores, IntelR

XeonR
 Processor E5-2630 v3 (2.4 GHz), for running the
sifting tasks;

3. 2 Standards nodes with 64 GB RAM, 32 cores, IntelR

XeonR
 Processor E5-2630 v3 (2.4 GHz), for running the
remaining tasks.

Table 1 shows the execution pro�le of the work�ow. Most
of the work�ow execution time is allocated to theindividual
tasks. These tasks are in the critical path of the work�ow due
to their high demand for disk (174GB on average per task) and
memory (411GB on average per task). The total work�ow data

6



Figure 5: Overview of the 1000 genome sequencing analysis work�ow.

footprint is about 4.4TB. Although the large node provides 2
TB of RAM and 32 cores, we would only be able to run up
to 4 concurrent tasks per node. InEddie Mark 3, the standard
disk quota is 2GB per user, and 200GB per group. Since this
quota would not su� ce to run all tasks of the 1000 genome se-
quencing analysis work�ow (even if all tasks run sequentially),
we had a special arrangement to increase our quota to 500GB.
Note that this increased quota allows us to barely run 3 con-
currentindividual tasks in the large node, and some of the
remaining tasks in smaller nodes. Therefore, data and mem-
ory management are crucial to perform a successful run of the
work�ow, while meeting the life scientists' expectations.

5.3. Experiment Conditions

Scienti�c work�ows and work�ow systems must be evalu-
ated on large-scale platforms, since scalability is a major con-
cern for next-generation applications. However, large-scale
platforms are typically non-dedicated with shared network in-
frastructures and shared compute resources (e.g., space-shared
via batch queues). Furthermore, real-world platforms are
known to exhibit transient behaviors due to load spikes, mainte-
nance, software upgrade, and (mis)con�gurations. As a result,
evaluation experiments are not inherently repeatable. Addition-
ally, executing large-scale work�ows merely to compare the
performance of work�ow executions consumes resources and
energy—it is typical to run series of back-to-back experiments
to address concerns for the validity of the drawn conclusions.
Therefore, the experiments use cycle-based simulation. Since
most work�ow simulators are event-based [43, 44], we devel-
oped an activity-based simulator to simulate every time slice
(or cycle) of the controllers' behavior (which is available on-
line [45]), while in an event-based simulation, each event oc-
curs at a particular instant in time and marks a change of state
in the system. The simulator provides support for task schedul-
ing and resource provisioning at the work�ow level. The sim-
ulated computing environment represents the three nodes from
theEddie Mark 3cluster described in Section 5.2 (total 80 CPU

cores). Additionally, we assume a shared network �le system
among the nodes with total capacity of 500GB.

We use an FCFS policy with task preemption and back�ll
for task scheduling—tasks submitted at the same time are ran-
domly chosen (may introduce variability in the execution), and
preempted tasks return to the top of the queue. To avoid unre-
coverable faults due to running out of disk space, we imple-
mented afault-tolerancedata cleanup mechanism to remove
data that are no longer required by downstream tasks [34]. In
this case, data cleanup tasks are only triggered if the maximum
storage capacity is reached: all running tasks are preempted,
the data cleanup task is executed, and the work�ow resumes its
execution. Recall that this mechanism may add a signi�cant
overhead to the work�ow execution (see Section 4.1). For this
set of experiments, we initially assumeKp = Ki = Kd = 1 to
demonstrate the feasibility of the approach regardless the use of
tuning methods.

The goal of this experiment is to ensure that correctly de-
�ned executions complete, that performance is acceptable, and
that possible-future faults are quickly detected and automati-
cally handled before they lead the work�ow execution to an
unrecoverable state (measured by the number of data cleanup
tasks dispatched by thefault-tolerancemechanism described
above). Therefore, we do not attempt to optimize task preemp-
tion (which criteria should be used to select tasks for removal,
or perform checkpointing) since our goal is to demonstrate the
feasibility of the approach with simple use case scenarios.

Reference Work�ow Execution.In order to measure the e� -
ciency of our proposed method under online and unknown con-
ditions, we compare the work�ow execution performance (in
terms of work�ow makespan) to a reference work�ow execu-
tion. The reference work�ow is computed o� ine under known
conditions, i.e., all requirements (e.g., runtime, disk, memory)
are accurate and known in advance. We performed several runs
for the reference work�ow using the FCFS policy with back�ll,
which yielded an averaged makespan of 382,887.7s (� 106h,
standard deviation� 5%).

7



Task Count
Runtime Data Footprint Memory Peak

Mean (s) Std. Dev. Mean (GB) Std. Dev. Mean (GB) Std. Dev.

Individual 22 31593.7 17642.3 173.79 82.34 411.08 17.91
Population 7 1.14 0.01 0.02 0.01 0.01 0.01
Sifting 22 519.9 612.4 0.94 0.43 7.95 2.47
Pair OverlapMutations 154 160.3 318.7 1.85 0.85 17.81 20.47
FrequencyOverlapMutations 154 98.8 47.1 1.83 0.86 8.18 1.42

Total (cumulative) 359 590993.8 – 4410.21 – 24921.58 –

Table 1: Execution pro�le of the 1000 genome sequencing analysis work�ow.

Con�guration Avg. Makespan (h) Slowdown

Reference 106.36 –
P 138.76 1.30
PI 126.69 1.19
PID 114.96 1.08

Table 2: Average work�ow makespan for di� erent con�gurations of the con-
trollers: (P) proportional, (PI ) proportional-integral, and (PID) proportional-
integral-derivative.Reference denotes the makespan of a reference work�ow
execution computed o� ine and under known conditions.

5.4. Experimental Results and Discussion

We have conducted work�ow runs with three di� erent types
of controller: (P) only the proportional component is evaluated:
Kp = 1, andKi = Kd = 0; (PI) the proportional and inte-
gral components are enabled:Kp = Ki = 1, andKd = 0; and
(PID) all components are activated:Kp = Ki = Kd = 1. The
reference work�ow execution is reported asReference. We
have performed several runs of each con�guration to produce
results with statistical signi�cance (errors below 5%).

5.4.1. Overall makespan evaluation
Table 2 shows the average makespan (in hours) for the three

con�gurations of the controller and the reference work�ow ex-
ecution. The degradation of the makespan is expected due to
the online and unknown conditions (no information about the
tasks is available in advance). In spite of the fact that the mean
does not provide accurate estimates, the use of a control loop
mechanism diminishes this e� ect. The use of controllers may
also degrade the makespan due to task preemption. However, if
tasks were scheduled only using the estimates from the mean,
the work�ow would not complete its execution due to lack of
disk space or memory over�ows.

Executions using our resilient resource management process
(enabled by PID-inspired controllers) outperform executions
using only the proportional (P) or thePI components. ThePID-
inspired controller slows down the application by 1.08, while
the application slowdown is 1.19 and 1.30 for thePI and P
controllers, respectively. This result suggests that the deriva-
tive component (prediction of future errors) has a signi�cant
impact on the work�ow executions, and that the accumulation
of past errors (integral component) is also important to prevent
and mitigate faults. Therefore, below we analyze how each of
these components in�uence the number of tasks scheduled, and
the peaks and troughs of the controller response function. We
did not perform runs where mixedPID, PI , andP controllers

were part of the same simulation (i.e., all controllers that com-
pose the process shown in Figure 4 have the same components),
since it would be very di� cult to determine the in�uence of
each controller.

5.4.2. Data footprint
Figure 6 shows the time series of the number of tasks sched-

uled or preempted during work�ow executions. For each con-
troller con�guration, we present a single execution, where the
makespan is the closest to the average makespan value shown
in Table 2. Task preemptions are represented as negative values
(red bars), while positive values (blue bars) indicate the number
of tasks scheduled at an instant of time. Additionally, the right
y-axis shows the step responseud of the controller input value
(black/gray line) for disk usage during the work�ow execution.
Recall thatpositiveinput values (ud(t) > 0, Equation 2) trigger
task scheduling, whilenegativeinput values (ud(t) < 0) trigger
task preemption and/or data cleanup tasks.

The proportional controller (P, Figure 6a) is limited to the
current error, i.e., the Decision Agent is driven by the amount
of disk space that is over/underutilized. Since the controller in-
put value is strictly proportional to the error, there is a burst in
the number of tasks to be scheduled during the work�ow execu-
tion. This bursty pattern and the nearly constant variation of the
input value lead the system to an inconsistent state (livelock),
where the remaining tasks to be scheduled cannot let the con-
troller reach the steady-state (appears as a black opaque rect-
angle in the �gure). Consequently, tasks are constantly sched-
uled and then preempted. In the example scenario shown in
Figure 6a, this process occurs for approximately 4h (between
48-52h), and performs more than 6,000 preemptions. Figure 7a
shows a 1-hour snippet of this behavior (between 49h and 50h),
that characterizes the livelock—the act of scheduling a task is
followed by that task's preemption. Note that the response of
the controller input value (black line) oscillates with a similar
magnitude. Since the proportional controller has no mechanism
to attenuate the proportional component (current error), the sys-
tem remains in an inconsistent state until some external distur-
bance change the current state of the system. In this particular
example, the livelock is only resolved upon task completion, so
that other tasks can start to run.

Table 3 shows the average number of preemptions and
cleanup tasks occurrences per work�ow execution. On aver-
age, proportional controllers produced more than 7,000 pre-
emptions, but no cleanup tasks. The lack of cleanup tasks
indicate that the number of concurrent executions is very low

8




