
Novel Proposals for FAIR, Automated,
Recommendable, and Robust Workflows

Ishan Abhinit∗, Emily K. Adams∗, Khairul Alam†, Brian Chase∗, Ewa Deelman
xi

, Lev Gorenstein‡

Stephen Hudson§, Tanzima Islam¶, Jeffrey Larson§ Geoffrey Lentner‡, Anirban Mandal∥, John-Luke Navarro§

Bogdan Nicolae§, Line Pouchard∗∗, Rob Ross§ Banani Roy†, Mats Rynge
xi

, Alexander Serebrenik††

Karan Vahi
xi

, Stefan Wild§, Yufeng Xin∥, Rafael Ferreira da Silva‡‡, Rosa Filgueira
x

∗Indiana University, Bloomington, IN, USA †University of Saskatchewan, Saskatoon, SK, Canada
‡Purdue University, West Lafayette, IN, USA §Argonne National Laboratory, Lemont, IL, USA

¶Texas State University, San Marcos, TX, USA ∥Renaissance Computing Institute, Chapel Hill, NC, USA
∗∗Brookhaven National Laboratory, Upton, NY, USA ††Eindhoven University of Technology, Eindhoven, Netherlands

xi
University of Southern California, Marina del Rey, CA, USA ‡‡Oak Ridge National Laboratory, Oak Ridge, TN, USA

x
University of St Andrews, St Andrews, UK

Abstract—Lightning talks of the Workflows in Support of
Large-Scale Science (WORKS) workshop are a venue where the
workflow community (researchers, developers, and users) can
discuss work in progress, emerging technologies and frameworks,
and training and education materials. This paper summarizes the
WORKS 2022 lightning talks, which cover five broad topics: data
integrity of scientific workflows; a machine learning-based rec-
ommendation system; a Python toolkit for running dynamic en-
sembles of simulations; a cross-platform, high-performance com-
puting utility for processing shell commands; and a meta(data)
framework for reproducing hybrid workflows.

Index Terms—scientific workflows, FAIR, high performance
computing, data integrity, ensembles, machine learning.

I. INTRODUCTION

Scientific workflows have been almost universally used
across scientific domains and have underpinned some of the
most significant discoveries of the past several decades. As
workflows have been adopted by a number of scientific com-
munities, they are becoming more complex and require more
sophisticated workflow management capabilities [1]. In this
context, the workshop on Workflows in Support of Large-Scale
Science (WORKS) has positioned itself as the primary venue
for workflow researchers and developers to share and discuss
innovative ideas to enhance the current workflow research
and development landscape. Specifically, WORKS’ lightning
talks provide a venue where members of the community can
introduce short talks on works in progress, emerging technolo-
gies and frameworks, and training and education materials to

The submitted manuscript has been created in part by 1) Brookhaven
Science Associates, LLC operator of Brookhaven National Laboratory, a
U.S Department of Energy Office of Science laboratory operated under
Contract No. DESC0012704, 2) by UChicago Argonne, LLC, Operator of
Argonne National Laboratory, a U.S. Department of Energy Office of Science
laboratory, operated under Contract No. DE-AC02-06CH11357, and 3) UT-
Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department
of Energy (DOE). The publisher, by accepting the article for publication,
acknowledges that the U.S. Government retains a non-exclusive, paid up,
irrevocable, world-wide license to publish or reproduce the published form of
the manuscript, or allow others to do so, for U.S. Government purposes. The
DOE will provide public access to these results in accordance with the DOE
Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

lower the entry barrier and thus increase adoption. This paper
provides overviews of the five lightning talks from the 17th
edition of the workshop (WORKS 2022):

Data integrity of scientific workflows (Section II) – This
work describes two popular cybersecurity classification frame-
works – OSCRP and MITRE ATT&CK®; can be leveraged
to systematically model threats to the integrity of scientific
workflows and data in a research setting. We enumerate non-
malicious and malicious threats to the integrity of scientific
workflows, and present the relevant assets, concerns, avenues
of attacks and impact of the threats in typical scientific
workflow execution scenarios.

Recommendation System (Section III) – This work proposes
a recommendation system to recommend tools/sub-workflow
using machine learning approaches to help scientists create op-
timal, error-free, and efficient workflows by analyzing existing
workflows in various workflow repositories.

libEnsemble (Section IV) – A Python toolkit for running
dynamic ensembles of simulations. libEnsemble aims to min-
imize the effort of the user in describing their workflow via
generator and simulator functions written in Python, and to
maximize code reuse by maintaining a library of existing
functions. Example generator functions perform optimizations,
train models, and test candidate solutions. This work highlights
how libEnsemble’s dynamic features have enabled practical
multi-fidelity workflows.

HyperShell v2 (Section V) – An elegant, cross-platform, high-
performance computing utility for processing shell commands
over a distributed, asynchronous queue. It is a highly scalable
workflow automation tool for many-task scenarios. HyperShell
was originally created several years ago at Purdue University
to meet the specific unmet needs of researchers not satisfied
by existing solutions. Here we will outline the context for its
existence and focus on some unique capabilities it offers.

A (meta)data framework for reproducing hybrid workflows



(Section VI) – A conceptual framework and methods to extract
and share data and metadata necessary for reproducibility in
the context of complex hybrid workflows executed at extreme
scale. The framework targets Digital Objects required to repro-
duce results and performance: it captures, fuses, and analyzes
(meta)data to select parameters influencing reproducibility, and
make them FAIR Digital Objects for re-use.

II. MODELING DATA INTEGRITY THREATS FOR
SCIENTIFIC WORKFLOWS USING OSCRP AND MITRE

ATT&CK®

By: Ishan Abhinit, Emily K. Adams, Brian Chase, Anirban
Mandal, Yufeng Xin, Karan Vahi, Mats Rynge, and Ewa
Deelman

With the rise in scale and complexity of scientific work-
flows, it is extremely important to assure the the integrity
of the scientific data, as they are processed and transmit-
ted on distributed infrastructures. When data integrity is not
preserved, computational workflows can fail and result in
increased computational cost due to reruns, or worse, results
can be corrupted compromising the scientific outcomes [2].
Recent works, e.g. [3] are initial efforts to ensure that
science workflows and data transfers are guarded against data
integrity errors that might arise in complex distributed systems.
However, these works have not addressed the diagnosis and
pinpointing of the root cause of data integrity errors. Any
such analysis will need to incorporate the threat models for
data corruption, both non-malicious and malicious threats. In
this work, we leverage two existing popular cybersecurity
frameworks, Open Science Cyber Risk Profile (OSCRP) [4]
and MITRE ATT&CK knowledge base [5] to build threat
models for scientific workflows to pinpoint the root cause
of unintentional (i.e. non-malicious) integrity errors [6], and
uncover adversarial tactics and techniques (i.e. malicious) [7]
that threaten data integrity within scientific workflows.

A. Non-malicious Data Integrity Threat Model Using OSCRP

Open Science Cyber Risk Profile (OSCRP) is de-
signed to assess cybersecurity risks related to open science
projects.Open science research often has unique cybersecurity
concerns and OSCRP provides a catalog of typical scientific
research assets and the associated risks to research activities.
Steps involved in the OSCRP risk profiling process are: 1)
Identify the stakeholders; 2) Create an asset inventory; 3)
Examine the concerns, consequences and avenues of attack for
each mission critical science asset; and 4) for each relevant
concern, identify the vectors/methods of attack that could
cause the concern to be realized.

1) Categorizing Scientific Workflow Assets using OSCRP:
We first translated the OSCRP asset classifications into ver-
nacular suited explicitly for scientific workflows. The resultant
asset classification, shown in Figure 1 with their associated
OSCRP asset class (in parenthesis) are: I. Transient workflow
(”Internal” data); II. Data products (”Public” data); III. Meta-
data (”Accounting” data), IV. Researcher system (”Desktop”);

TABLE I
TWO EXCERPTS FROM ”DETAILED ANALYSIS OF ASSETS TO CONCERNS

AND AVENUES OF ATTACK” TABLE (ADAPTED)

OSCRP
Asset Concern(s) Consequence/Impact Integrity

Degradation

I
Corrupted data, in-
correct data, or lost
data

Workflow producing
incorrect/invalid
results

Issues with data
processing, issue with
sensor equipment

V Lost or incorrect
process

Workflow producing
incorrect/invalid
results

Issues with storage

V. Workflow management system (”Workflow”); VI. Compu-
tational systems (”Servers”); VII. Data storage systems (”File
storage”); VIII. Network systems (”Networks”). By subse-
quently overlaying the scientific workflow as enacted by a rep-
resentative workflow management system, Pegasus [8], with
our OSCRP asset classification, indicated with red markers in
Figure 1, it enabled us to enumerate possible sources of data
integrity errors. Thus, we were able to derive non-malicious
threats and conduct an impact analysis to the integrity of the
scientific workflow.

Fig. 1. OSCRP Asset Mapping diagram for Workflows (Adapted).

2) Findings from Non-Malicious Data Integrity Threat
Model: We started our non-malicious scientific workflow
threat modeling by looking at each asset to determine how and
where the data integrity can be degraded. We then identified
concerns (i.e. a negative change to an asset that impacts a
research activity) for these asset. Finally, we determined the
vectors or methods of integrity degradation to complete our
non-malicious integrity analysis. Table I exhibits two examples
from our first threat model itemizing potential non-malicious
impacts to the integrity of scientific workflows.

Malicious Threat Model Using MITRE ATT&CK – The
MITRE ATT&CK Enterprise knowledge base is used as a
foundation for the development of targeted cybersecurity threat
models and methodologies. We used the MITRE ATT&CK
framework of ATT&CK Tactics and Techniques to conduct a
scoped impact analysis enumerating malicious attacks against
data integrity within scientific workflows.



TABLE II
TWO EXCERPTS FROM ATT&CK TACTIC IMPACT ANALYSIS (ADAPTED)

ATT&CK
Tactic &
Technique

OSCRP
Asset

Attack
Type

Data Integrity Con-
cern
(An adversary may...)

Scientific Workflow
Impact

[Impact
Tactic]
Data
Destruction
T1485

I
II
III

Direct

Destroy data and files.
Render stored data ir-
recoverable by foren-
sic techniques.

Scientific workflow
cannot be initiated or
executed. Data lost.

[Execution
Tactic]
Inter-
Process
Communi-
cation
T1559

I
II
III

Indirect

Abuse inter-process
communication (IPC)
mechanisms for local
code or command
execution

Scientific workflow
cannot be initiated,
executed, is degraded,
is compromised
and/or producing
invalid results.

Defining Data Assets using OSCRP and Attack Type – Prior
to leveraging ATT&CK adversarial Tactics and Techniques
to develop a threat model for malicious attacks, we scoped
our focus to only address the integrity of data within the
workflows. Thus, the following subset of OSCRP asset clas-
sifications specifically involving data were carried over from
the non-malicious threat model for this analysis: I. Transient
Data; II. Data Products; and III. Metadata.

We further scoped our malicious threat model by defining
attack types that explicitly impact scientific data integrity
within scientific workflows: Direct Attacks, defined as ma-
licious activity directly targeting research data with the goal
to impact data integrity (e.g. delete, alter); Indirect Attacks,
defined as malicious activity targeting an asset or process
that interfaces with data. (e.g. altering scientific software), but
did not include General Attacks, defined as malicious activity
that impacts the security of assets, functions, and personnel
supporting research activities.

Findings from Malicious Data Integrity Threat Model – The
analysis culminated by determining which MITRE ATT&CK
Tactics and Techniques were relevant to malicious attacks
against scientific data integrity per OSCRP-derived asset class
and attack type. Of the thirteen MITRE ATT&CK Tactics,
two ATT&CK Tactics, with a subset of seven ATT&CK Tech-
niques each, were identified to precipitate malicious activity,
which directly or indirectly impacts the integrity of scientific
data.

• Impact [TA0040] - The adversary is trying to manipulate,
interrupt, or destroy systems and data.

• Execution [TA0002] - The adversary is trying to run
malicious code.

Table II contains two examples of ATT&CK Techniques that
we determined directly or indirectly impacted data integrity
(i.e. Data Integrity Concern, and Scientific Workflow Impact).

B. Application & Future Work

By systematically identifying tactics and techniques of mali-
cious threats to data within scientific workflows, data stewards
will be equipped to proactively design scientific workflows
to ensure data integrity, better understand how malicious

attacks against data integrity are executed, and proactively
build detections and defenses to protect scientific data.

In the future, we will leverage the analysis derived from our
two threat models for pinpointing root causes of workflow data
integrity errors, by informing Machine Learning (ML) based
analysis models to more closely align to threats observed in
real systems and workflow execution scenarios. While one can
inject errors based on anecdotal evidence during ML model
development, injecting errors guided by malicious and non-
malicious threat models should be a far superior technique,
grounded in well-established cybersecurity frameworks.

III. RECOMMENDING TOOLS AND SUB-WORKFLOWS FOR
SCIENTIFIC WORKFLOW MANAGEMENT SYSTEMS

By: Khairul Alam, Banani Roy, and Alexander Serebrenik

The objective of recommender systems is to help people
find suitable, exciting, and newly released products. The
task of recommender systems is to turn data on users and
their preferences into predictions of users’ possible future
likes and interests [9]. Recommender systems have been
used in online shopping, travel booking, and media service
providers for many years. It is also used extensively in the
scientific community for scientific literature searches to help
scientists explore relevant and recent papers quickly. The
recommended products are primarily chosen based on past
usage and purchasing patterns. Decreasing the data storage and
processing cost led to the significant improvement of recom-
mender systems by making predictions on the available data.
Commercial companies like Alibaba and Amazon use their
customers’ preferences to select products from an extensive
collection. Production companies like YouTube and Netflix
suggest new songs, movies, etc., based on the previous usage
of the customer. In short, recommender systems make life
smoother for the users to find appropriate things among the
ocean of products. Recommender systems differ in how they
analyze data sources to develop notions of affinity between
users and items, which can be used to identify well-matched
pairs [10]. The successful usage of recommendation systems
by companies to find relevant things encouraged us to create
a tools/sub-workflows recommendation system in SWfMSs

Workflows are becoming essential in analyzing scientific
data, and there are hundreds of scientific workflow manage-
ment systems where researchers can create, collaborate and
share workflows for their analysis. However, a critical issue
for a workflow is that it is not always state-of-the-art or even
valid at all. A workflow may run on a system without creating
an issue and produce some results, but the generated result
may not always be correct due to the wrong selection of
tools and techniques. There are several [11]–[16] publicly
available workflow repositories, and there are also several
tools/workflow recommendation systems [17]–[19] available
which usually recommends based on the previous usages of
the tools. But tools and techniques are becoming updated every
now and then. Also, many new optimized tools are being
added to the workflow management system, many tools are



becoming deprecated, and many workflows have errors. So
recommendation system based on these workflows will surely
recommend the wrong tools/sub-workflows at some point in
the workflow construction. So in this paper, we proposed a
tools/sub-workflows recommendation system. While develop-
ing the system, we will consider the usage frequencies of
tools, high-quality and low-quality sequences, usage period,
workflow naming, tagging, annotations, and other parameters.

SWfMSs contain thousands of tools to analyze scientific
datasets, and they are increasing rapidly. We also noticed that
scientists are now more eager to publish their workflows and
datasets so that other users can benefit from them. Galaxy
SWfMS has several workflow histories repositories [20]–[22],
and is the most popular SWfMS to date. So for conducting this
research, we explored Galaxy Main Server [20] published his-
tories and identified that a significant percentage of workflows
have issues with them, and we are expecting similar results
for the other SWfMSs. So recommendation systems based on
the existing workflows may provide undesired suggestions.
For our case, in the beginning, we will identify the poorly
designed workflow using manual (inconsistent but running
workflows) and automated (tools compatibility, obsolete tools,
broken workflow, and so on) processes and discard them so
that our system can suggest the best combinations of tools
while constructing a workflow.

At first, we will explore all available Galaxy workflow
repositories to gather the reusable workflows and discard
error-containing, irrelevant and obsolete workflows. After that,
using machine learning approaches, we will build an intuitive
and user-friendly tools/sub-workflow recommendation system
using reusable workflows. We also have a plan to work with
other SWfMSs. We believe that our work will contribute in
the following ways:

1) Our analysis data will help raise awareness to create
workflow appropriately so that researchers can understand
and re-use it without facing too many difficulties.

2) Our proposed system will save time researchers waste in
creating erroneous or less optimal workflows by choosing
improper tools which produce unexpected results.

3) It will relieve researchers from memorizing a vast amount
of tools and also increase the accessibility.

4) It will promote high-quality tools by checking the previ-
ous (a certain period) usage frequencies and downgrading
those having lower usage frequencies.

A. Proposed Recommendation System

Our proposed system will suggest tools/sub-workflows for
designing a new workflow by deriving structural informa-
tion from the existing shared reusable workflows from the
workflow repository. At first, we will discard all irrelevant,
error-containing workflows. After that, based on the remaining
workflows, our system will predict tools/sub-workflows for
completing the new workflow. We will consider each workflow
as a graph to easily find out which node is connected with
which node and store them in a database. The co-relation
between nodes will be used to rank the tools. The higher

ranked nodes will get high preferences to be selected. Besides
node frequency, we will also collect additional information
like pipeline structure, sequential pattern, tools usage pattern,
annotations of the tools, tools compatibility, annotation of tools
and workflows, tagging information, and proper workflow
naming. We will assign weights to these nodes since they
might help workflow designers better understand a workflow.
If any new tool is developed, the system will be able to
recommend the tool wherever appropriate. Sometimes, tools
with low usage frequencies are useful, like high usage tools;
these criteria will also be maintained while suggesting tools.

B. Related Work

Researchers developed several recommendation systems to
simplify workflow construction and scientific analysis. Mass
spectrometry-based proteomics [23] used EDAM and semantic
annotations of tools to compose a workflow automatically.
DiBernardo et al. [24] used data types to create a workflow
automatically. Koop et al. built VisComplete, a system to aid
users in creating visualization pipelines based on VisTrails
SWfMS using a database of previously created visualization
pipelines but did not consider the correctness of the previous
pipelines. All these approaches apply to a limited set of
bioinformatics analyses and are subject to error as the analysis
tools become updated frequently. Kumar et al. [17] developed
a model for suggesting tools while constructing a workflow
using a deep learning approach by analyzing workflows avail-
able in the European Galaxy server. But they did not consider
the type compatibility, tools annotations, errors, obsolete tools,
and so on issues while suggesting the tools. To the best of
our knowledge, our proposed approach is the first to consider
previous workflow correctness while suggesting tools/sub-
workflow while constructing a new workflow.

C. Conclusion and Future Work

For proposing this research work, we explored various
workflow repositories, extracted workflows, and identified sev-
eral issues in the existing workflows. We also explored state-
of-the-art tools and techniques for recommending workflows
in scientific workflows and found that none of them considered
existing workflows’ correctness in building their systems. So,
we planned to work on it. As designing scientific workflow
is not an easy task but vital for many scientific domains,
our future plan is to build a recommender system to suggest
tools while creating workflows based on error-free reusable
workflows.

IV. LIBENSEMBLE: FLEXIBLE WORKFLOWS THROUGH
DYNAMIC ASSIGNMENT OF WORKERS AND RESOURCES

By: Stephen Hudson, Jeffrey Larson, John-Luke Navarro, and
Stefan M. Wild

libEnsemble [25], [26] coordinates computations via a
simple manager-workers paradigm, which can run on one
of three communication mediums: MPI (via mpi4py), mul-
tiprocessing (via Python’s built-in module), and TCP (for
distributed/cloud-based environments).



Workers call the user-provided Python generator and simu-
lator functions to perform any type of computation. An allo-
cation function on the manager, also exposed to users, controls
at any time which workers are running generators/simulators,
and what data is given to them. The full ensemble data is
always maintained in a central data structure known as the
history array (a NumPy structured array).

Each generator and simulator function can be either persis-
tent or non-persistent. A non-persistent function simply carries
out a given task in a fire-and-forget manner, while persistent
functions continue to run on workers while communicating
with the manager. This is useful, for example, to maintain the
state of a model, or to report back intermediate results from a
still-running simulation. Persistent workers can self-terminate
based on a local condition or be shut down by the allocation
function.

In addition to updating simulation input/output data, man-
ager/worker communications may be used to request cancel-
lation of previously issued points or to send kill signals to
terminate running simulations.

A workflow can consist of a combination of persistent
and non-persistent workers, with one or multiple generators,
enabling multiple-stage workflows. This includes the reassign-
ment of workers between running generators or simulators as
the ensemble progresses.

libEnsemble also manages resources including both nodes
and partitions within nodes. The detected resources are divided
into a given number of resource sets and each simulation can
be given some number of resource sets alongside other inputs.

The task scheduler aims to assign resources to each task in
an efficient way and splits evenly across nodes if necessary.
Scheduler behavior can be customized by user options, and by
inheritance if required.

A user (simulator or generator) function can access all infor-
mation about local resources in order to assign environment
variables or run-line commands (such as requesting GPUs).
This feature has been demonstrated on systems including
Summit, Perlmutter, Spock, Crusher, and multiple clusters, in-
cluding test systems using Intel GPUs. By handling resources
in a consistent way, libEnsemble enables resource management
to work seamlessly across these systems, despite their different
application level scheduling capabilities.

A collaboration between DESY (Deutsches Elektronen-
Synchrotron), Hamburg University, Lawrence Berkeley Na-
tional Laboratory, and Argonne National Laboratory has used
libEnsemble for tuning inputs to Laser-plasma accelerators
using multi-fidelity simulations on GPUs. This work has in-
volved various optimization libraries such as Dragonfly and
BoTorch and simulation codes including Wake-T, FBPIC
and the ECP application WarpX. This work has examples
demonstrating an order of magnitude performance gain over
the single-fidelity method [27].

Figure 2 shows an example of multi-fidelity versus single-
fidelity simulations using Dragonfly and BoTorch optimization
methods combined with FBPIC simulations. The methods
observe simulation output and request subsequent simulations

Fig. 2. Progress from ten replications of libEnsemble+FBPIC with two
multifidelity methods and a single (highest) fidelity method. Objective value
is computed from the highest fidelity simulation.

at various fidelity levels. libEnsemble dynamically allocates
CPU/GPU resources as requested by the methods. Computa-
tional efficiency is increased as less-expensive, lower fidelity
simulations can guide numerical optimization methods.

V. HYPERSHELL V2: A BETTER WORKFLOW
AUTOMATION TOOL FOR MANY-TASK COMPUTING

By: Geoffrey Lentner and Lev Gorenstein

Many-task computing refers to workflows composed of
some large number of relatively small tasks all of which
are only loosely coupled if not entirely independent. Un-
like traditional high-performance computing (HPC) workloads
such as large-scale simulations, these many-task scenarios
are both more flexible and yet potentially more complex.
Such use-cases include data processing pipelines, machine-
learning experiments, genomics or bioinformatics tasks, pa-
rameter sweeps in a calculation, or any such collection of
tasks.

Researchers will often write such workflows using their cho-
sen application language (Python, R, MATLAB, etc.) because
the task itself is defined within such code already. There exist
many frameworks or packages within most of these languages
that allow for parallel and even distributed execution. Some of
these are easier to work with than others. This can be difficult
for researchers, fraught with inefficiencies, lacking flexibility,
and unnecessarily time consuming at best. In all cases, we
suggest the best practice is to instead define tasks as singular
execution elements and abstract the scale-out procedure using
some kind of workflow automation tool.

In a high-performance computing environment this is most
readily accomplished with the available workload manager or
scheduler; e.g., SLURM [28]. However, it is common with
these sorts of many-task workloads to have many thousands
of tasks or more. Submitting these alone may be an option,
but even if the scheduler can manage the throughput, the
site administrators may not allow such volumes of jobs.
Additionally, queuing and startup overhead for a large number
of small jobs could accumulate to prohibitively long total
workflow execution time. Instead, the accepted paradigm is to
submit a single pilot job to the scheduler that merely acquires



TABLE III
FEATURE COMPARISON

Distributed Restart /
Failures

Scalable Observable Cross
Platform

Persistent

HyperShell X X X X X X
xargs
srun X X

GNU Make X
GNU Parallel X X

ParaFly X
Launcher X X X

TaskFarmer X X

the resources and launches an external workflow automation
tool to scale-out within the single allocation.

A. Solution Category

There already exists quite a lot of work in this space with
some projects dominating within a particular scientific domain
or focusing on a particular use-case. Some of these solutions
are feature rich and delve into the related challenge of data
locality by integrating data movement between elements of
the workflow system. And often the necessary prerequisite is
to define the workflow within some domain-specific language
(DSL) and/or provide an actual directed acyclic graph (DAG)
of tasks and their dependency relationships; such as Swift [29],
GNU Make [30], or Snakemake [31]. Workflow systems can
even be defined entirely within a library particular to a specific
programming language, such as Parsl [32].

We are going to specifically confine ourselves within a nar-
rowly defined category of solutions that exist with a particular
focus on simplicity of design and use. These tools simply
operate on a monolithic continuous stream a single command
lines, typically allowing for these lines to be provided by file
or from standard input.

Several solutions exist in this space; some of them are
common to Linux and BSD systems; xargs, or GNU Par-
allel [33]. Some of these tools are born of other projects,
such as ParaFly from Trinity [34]. Others are developed by
HPC centers themselves, such as Launcher at TACC [35],
TaskFarmer at NERSC [36], and now HyperShell at Purdue
University [37].

B. Features

We recently presented our work on the development and
release of HyperShell v2 at PEARC22 [38]. There we outlined
the overall goal of the project, feature comparisons with some
of the alternatives listed here, and made the essential value
proposition. See Table III.

HyperShell is easy to understand in simple cases yet feature
rich in more complex scenarios. We see users go from serial
and/or manual execution to robust and distributed in only a few
minutes. The ergonomics are such that even novice researchers
can use the tool effectively with little training.

When using the top-level cluster mode the interface is very
close to that of GNU Parallel with robust template expan-
sions but better scaling because of it’s two-tiered client-server

architecture and task bundling. So far, we have measured
the responsiveness and throughput of HyperShell up to 1,000
nodes on Purdue’s new Anvil system, an XSEDE/ACCESS
resource [39].

While the common scenario is to target a simple input
task file from the command line, HyperShell can actually
run as a persistent server with a database in-the-loop (e.g.,
PostgreSQL) and act as a stand-alone scheduling system with
individual task submissions. For millions of tasks it offers a
rich query tool to search task history. HyperShell can also be
embedded within a Python application as a library and used
to drive such distributed task execution using asynchronous
threads.

Possibly the most novel aspect of HyperShell is not just that
it can run anywhere Python can run, but that its cross-platform
nature transparently supports heterogeneous execution modes
with the server and clients being on different platforms or
operating systems. Indeed, one of the founding use-cases for
the project was to allow for tens of thousands of 15-second
tasks running within a Windows environment; such that we
couldn’t afford to throw away the virtual machine on every
task, but needed to persist within a single cluster of long-lived
Windows virtual machine instances. In this case, HyperShell
server was running under Linux on an HPC cluster front-
end, and many clients were coming up asynchronously under
Windows.

Resources – HyperShell documentation including information
for getting started, API reference, and tutorials (work-in-
progress) can be found online1. The software is now out of
beta and the project is available on GitHub2.

VI. RECUP:A (META)DATA FRAMEWORK FOR
REPRODUCING HYBRID WORKFLOWS WITH FAIR

By: Line C. Pouchard, Tanzima Z. Islam, Bogdan Nicolae, and
Robert Ross

Successfully reproducing results in computational cam-
paigns that include data-intensive applications and machine
learning (ML) is challenging even when the same data input
and initial scripts are reused [40], [41]. Large-scale ensem-
ble campaigns where workflow management systems execute
tightly coupled task and data processes—so-called hybrid
workflows [42] present additional reproducibility challenges
due to workflow complexity, scale, distributed execution of
tasks, and heterogeneous architectures. The inability to repro-
duce predictions obtained from ML applications and hence
results from hybrid workflows presents a significant obstacle,
impairing scientists’ ability to validate and trust results; addi-
tionally, the lack of reproducibility can inhibit the adoption
of research outcomes by others [40]. Findable, Accessible,
Interoperable, and Reusable (FAIR) data and workflows can be
key enablers in many aspects of scientific discovery [43]. En-
suring the FAIRness of (meta)data (i.e., data and metadata) can

1https://hyper-shell.readthedocs.io
2https://github.com/glentner/hyper-shell

https://hyper-shell.readthedocs.io
https://github.com/glentner/hyper-shell


reduce barriers to reproducibility by making this information
easier to find and programmatically access and reuse in new
contexts. However, datasets and workflows rarely meet FAIR
criteria in the high-performance computing (HPC-ML) context
in spite of potential benefits [44]. Identifying the (meta)data
required to reproduce results in hybrid workflows has seldom
been explored. As a result, significant institutional knowledge
is necessary to interpret scientific datasets correctly; complex
information must be assembled manually to reproduce work-
flows; and disparate, platform-specific, heterogeneous sources
of performance data must be fused to fully understand run-
time performance impeding the rapid progress of scientific
discovery. Here, we use the term “reproducibility” in two
contexts: 1) the statistical reproducibility of results and 2) the
reproducibility of computational performance in the execution
of workflows, including overhead metrics. Performance repro-
ducibility, defined as achieving the average execution time
across multiple runs of the same application using a consistent
set of configurations, of such workflows faces additional
challenges [45]. Achieving reproducibility requires the ability
to collect a history of performance metrics and intermediate
results during the runtime of a workflow. This approach allows
comparisons of runs from multiple perspectives to identify
if they are similar and, if not, when they are diverging and
the root cause. In this context, it is essential to capture the
evolution of such performance metrics and intermediate results
over time and the provenance information that explains how
they are derived from each other.

A. A (meta)data framework for reproducing hybrid workflows

Approach – Figure 3 presents a conceptual framework of
our approach for identifying, capturing, fusing and storing
(meta)data across multiple layers of the computational stack
with minimal overhead. We make them FAIR by providing
access, publishing metadata in open protocols and repositories,
enabling interoperability with existing HPC data and workflow
management software, thus facilitating re-use. This innova-
tive conceptual framework introduces multi-modal data fusion
(combining data from workflow systems, storage interactions,
and task performance along with application information) and
provenance services (metadata and associated relationships)
for complex and hybrid scientific simulations.

(Meta)data sources – We leverage several composable
technologies and services that execute workflows (Radical
Cybertools-RCT [46]), extract the provenance of performance
at trace level (Chimbuko [47]), and provide data services (Dar-
shan [48], MOCHI [49]). RCT, a standards-based, abstraction-
driven toolset for workflow management systems, provides
an infrastructure for computational resource provisioning, task
scheduling, and scalable execution across HPC systems. Chim-
buko is a tool for capturing, analyzing, and presenting in situ
performance outliers for extreme-scale workflows. Chimbuko
provides detailed, reduced performance measures at a trace
level. Darshan is a scalable HPC I/O characterization tool
used at LCFs that is the source of filenames and I/O behavior.

The Mochi framework provides a methodology and tools for
rapidly developing distributed data services.

Result reproducibility using intermediate data states – We
extract fine-grain (meta)data from the above sources at key
moments during runtime, which enables a comparison of
different execution runs and highlighting where the task exe-
cution paths diverge, both in terms of performance and result
accuracy. Input data from external sources and their metadata
annotations (e.g., generated by sensors or reused from a
repository) are also considered in the comparison. To this end,
we require tools capable of capturing a history of (meta)data
snapshots. We leverage two such tools. DataStates [50] is a
declarative data access model and middleware that maintains
a lineage of snapshots of annotated datasets captured during
runtime, making it an ideal candidate to capture rich metadata
about performance and intermediate results. VeloC [51] is
a multilevel checkpointing runtime for large-scale HPC data
centers. While initially designed to enable checkpoint-restart
resilience for long-running HPC applications, its versioned,
heterogeneous storage-aware capabilities make it an ideal
candidate to store intermediate (and potentially large) results
as checkpoints.

Performance reproducibility using counter data – For assess-
ing performance reproducibility, we need indicators beyond
high-level metrics such as execution time to characterize an
application’s interactions with the underlying system. For
example, analyzing hardware performance counters can expose
bottlenecks of various components of a large workflow appli-
cation. With metadata such as hardware performance counters,
directed acyclic graph (DAG), and runtime system metrics,
we can address two performance-related research questions–
(1) what are the “important” indicators that can explain the
difference between run-to-run variation; how important? and
(2) how do the performance characteristics differ between two
diverging runs of the same application?

B. Future Work

This framework will allow us to envision three types of
Fair Digital Objects (FDOs) [52] in the context of hybrid
workflows: results FDOs, performance FDOs, intermediate
FDOs. These present new challenges to the selection of
(meta)data for FAIR re-use and testing with FAIR metrics.

ACKNOWLEDGMENTS

This work is partly funded by NSF award OAC-1839900.
This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under contract
number DE-AC02-06CH11357. libEnsemble was developed
as part of the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration.
This research used resources of the OLCF at ORNL, which
is supported by the Office of Science of the U.S. DOE under
Contract No. DE-AC05-00OR22725.



Fig. 3. Multi-modal sources provide data related to I/O behavior, execution of task graph, and task performance.

REFERENCES

[1] R. Ferreira da Silva, H. Casanova, K. Chard, I. Altintas, R. M. Ba-
dia, B. Balis, T. a. Coleman, F. Coppens, F. Di Natale, B. Enders,
T. Fahringer, R. Filgueira, G. Fursin, D. Garijo, C. Goble, D. Howell,
S. Jha, D. S. Katz, D. Laney, U. Leser, M. Malawski, K. Mehta,
L. Pottier, J. Ozik, J. L. Peterson, L. Ramakrishnan, S. Soiland-Reyes,
D. Thain, and M. Wolf, “A community roadmap for scientific workflows
research and development,” in 2021 IEEE Workshop on Workflows in
Support of Large-Scale Science (WORKS), 2021.

[2] S. Peisert, “Security in high-performance computing
environments,” https : / / cacm . acm . org / magazines / 2017 / 9 /
220422-security-in-high-performance-computing-environments /
fulltext, 2017.

[3] M. Rynge, K. Vahi, E. Deelman, A. Mandal, I. Baldin, O. Bhide,
R. Heiland, V. Welch, R. Hill, W. L. Poehlman, and F. A. Feltus,
“Integrity protection for scientific workflow data: Motivation and initial
experiences,” in Practice and Experience in Advanced Research Com-
puting on Rise of the Machines (Learning), 2019.

[4] “Open Science Cyber Risk Profile,” https://trustedci.github.io/OSCRP,
2022.

[5] “MITRE ATT&CK knowledge base,” https://attack.mitre.org, 2022.
[6] I. Abhinit and V. Welch, “Data Integrity Threat Model using Open

Science Cyber Risk Profile,” https://hdl.handle.net/2022/27980, 2022.
[7] E. K. Adams, “Data Integrity Threat Model using MITRE ATT&CK®,”

https://hdl.handle.net/2022/28045, 2022.
[8] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,

R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus: a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, 2015.

[9] L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou,
“Recommender systems,” Physics reports, vol. 519, no. 1, 2012.

[10] P. Melville and V. Sindhwani, “Recommender systems.” Encyclopedia
of machine learning, vol. 1, 2010.

[11] “Galaxy main repo,” https:/ /usegalaxy.org/workflows/list published,
2022.

[12] “Galaxy EU repo,” https://usegalaxy.eu/workflows/list published, 2022.
[13] “Galaxy AU repo,” https://usegalaxy.org.au/workflows/list published,

2022.
[14] “myexperiment,” https://www.myexperiment.org/workflows, 2022.
[15] “Workflowhub,” https://workflowhub.eu/workflows, 2022.
[16] “Dockstore,” https://dockstore.org/organizations, 2022.
[17] A. Kumar, H. Rasche, B. Grüning, and R. Backofen, “Tool recommender

system in galaxy using deep learning,” GigaScience, vol. 10, no. 1, 2021.
[18] D. Koop, C. E. Scheidegger, S. P. Callahan, J. Freire, and C. T. Silva,

“Viscomplete: Automating suggestions for visualization pipelines,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14,
no. 6, 2008.

[19] M. M. Junaid, M. Berger, T. Vitvar, K. Plankensteiner, and T. Fahringer,
“Workflow composition through design suggestions using design-time
provenance information,” in 2009 5th IEEE International Conference
on E-Science Workshops, 2009.

[20] “Galaxy main published histories,” https://usegalaxy.org/histories/list
published, 2022.

[21] “Galaxy EU published histories,” https://usegalaxy.eu/histories/list
published, 2022.

[22] “Galaxy AU published histories,” https://usegalaxy.org.au/histories/list
published, 2022.

[23] M. Palmblad, A.-L. Lamprecht, J. Ison, and V. Schwämmle, “Automated
workflow composition in mass spectrometry-based proteomics,” Bioin-
formatics, vol. 35, no. 4, 2019.

[24] M. DiBernardo, R. Pottinger, and M. Wilkinson, “Semi-automatic web
service composition for the life sciences using the biomoby semantic
web framework,” Journal of biomedical informatics, vol. 41, no. 5, 2008.

[25] S. Hudson, J. Larson, J.-L. Navarro, and S. Wild, “libEnsemble: A
library to coordinate the concurrent evaluation of dynamic ensembles of
calculations,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 4, 2022.

[26] S. Hudson, J. Larson, S. M. Wild, D. Bindel, and J.-L. Navarro,
“libEnsemble user manual, version 0.9.2,” Argonne National Laboratory,
Tech report, 2022. [Online]. Available: https://libensemble.readthedocs.
io

[27] A. Ferran Pousa, S. Jalas, M. Kirchen, A. Martinez de la Ossa,
M. Thévenet, S. Hudson, J. Larson, A. Huebl, J.-L. Vay, and R. Lehe,
“Multitask optimization of laser-plasma accelerators using simulation
codes with different fidelities,” Proceedings of the 13th International
Particle Accelerator Conference, no. 13, 2022.

[28] SchedMD, “Slurm workload manager,” https: / /slurm.schedmd.com,
2022.

[29] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, 2011.

[30] G. S. Foundation, “GNU Make,” https://www.gnu.org/software/make/,
2022.

[31] F. Mölder, K. P. Jablonski, B. Letcher, M. B. Hall, C. H. Tomkins-Tinch,
V. Sochat, J. Forster, S. Lee, S. O. Twardziok, A. Kanitz, A. Wilm,
M. Holtgrewe, S. Rahmann, S. Nahnsen, and J. Köster, “Sustainable
data analysis with Snakemake,” F1000Research, vol. 10, no. 9, 2021.

[32] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and K. Chard,
“Parsl: Pervasive parallel programming in Python,” in 28th ACM In-
ternational Symposium on High-Performance Parallel and Distributed
Computing (HPDC), 2019.

[33] O. Tange, “GNU Parallel,” https://doi.org/10.5281/zenodo.6377950,
2021.

[34] M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson,
I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen,
E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B. W. Birren,
C. Nusbaum, K. Lindblad-Toh, N. Friedman, and A. Regev, “Full-
length transcriptome assembly from RNA-Seq data without a reference
genome,” Nature Biotechnology, vol. 29, no. 7, 2011.

[35] L. Wilson, J. Fonner, O. Esteban, J. Allison, M. Lerner, and H. Kenya,
“Launcher: A simple tool for executing high throughput computing
workloads,” Journal of Open Source Software, 2017.

[36] NERSC, “TaskFarmer,” https : / / docs . nersc . gov / jobs / workflow /
taskfarmer/, 2022.

[37] G. Lentner and L. Gorenstein, “HyperShell v2: Distributed task exe-
cution for HPC,” in Practice and Experience in Advanced Research
Computing, 2022.

https://cacm.acm.org/magazines/2017/9/220422-security-in-high-performance-computing-environments/fulltext
https://cacm.acm.org/magazines/2017/9/220422-security-in-high-performance-computing-environments/fulltext
https://cacm.acm.org/magazines/2017/9/220422-security-in-high-performance-computing-environments/fulltext
https://trustedci.github.io/OSCRP
https://attack.mitre.org
https://hdl.handle.net/2022/27980
https://hdl.handle.net/2022/28045
https://usegalaxy.org/workflows/list_published
https://usegalaxy.eu/workflows/list_published
https://usegalaxy.org.au/workflows/list_published
https://www.myexperiment.org/workflows
https://workflowhub.eu/workflows
https://dockstore.org/organizations
https://usegalaxy.org/histories/list_published
https://usegalaxy.org/histories/list_published
https://usegalaxy.eu/histories/list_published
https://usegalaxy.eu/histories/list_published
https://usegalaxy.org.au/histories/list_published
https://usegalaxy.org.au/histories/list_published
https://libensemble.readthedocs.io
https://libensemble.readthedocs.io
https://slurm.schedmd.com
https://www.gnu.org/software/make/
https://doi.org/10.5281/zenodo.6377950
https://docs.nersc.gov/jobs/workflow/taskfarmer/
https://docs.nersc.gov/jobs/workflow/taskfarmer/


[38] PEARC ’22: Practice and Experience in Advanced Research Computing.
Association for Computing Machinery, 2022.

[39] C. Song, P. Smith, X. Zhu, and R. Kalyanam, “NSF award 2005632
- category I: Anvil - a national composable advanced computational
resource for the future of science and engineering,” https://www.nsf.
gov/awardsearch/showAward?AWD ID=2005632, 2020.

[40] O. E. Gundersen, “The fundamental principles of reproducibility,” Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 379, no. 2197, 2021.

[41] L. Pouchard, Y. Lin, and H. Van Dam, “Replicating machine learning
experiments in materials science,” in Parallel Computing: Technology
Trends, 2020.

[42] R. Filgueira, R. F. Da Silva, A. Krause, E. Deelman, and M. Atkinson,
“Asterism: Pegasus and dispel4py hybrid workflows for data-intensive
science,” in 2016 Seventh International Workshop on Data-Intensive
Computing in the Clouds (DataCloud), 2016.

[43] K. Fagnan, Y. Nashed, G. Perdue, D. Ratner, A. Shankar, and S. Yoo,
“Data and models: a framework for advancing ai in science,” USDOE
Office of Science (SC)(United States), Tech. Rep., 2019.

[44] C. Goble, S. Cohen-Boulakia, S. Soiland-Reyes, D. Garijo, Y. Gil, M. R.
Crusoe, K. Peters, and D. Schober, “FAIR Computational Workflows,”
Data Intelligence, vol. 2, no. 1-2, 2020.

[45] T. Patki, J. J. Thiagarajan, A. Ayala, and T. Z. Islam, “Performance
optimality or reproducibility: That is the question,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2019.

[46] M. Turilli, V. Balasubramanian, A. Merzky, I. Paraskevakos, and S. Jha,
“Middleware building blocks for workflow systems,” Computing in
Science & Engineering, vol. 21, no. 4, pp. 62–75, 2019.

[47] C. Kelly, S. Ha, K. Huck, H. Van Dam, L. Pouchard, G. Matyasfalvi,
L. Tang, N. D’Imperio, W. Xu, S. Yoo et al., “Chimbuko: A workflow-
level scalable performance trace analysis tool,” in ISAV’20 In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization,
2020.

[48] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham,
and R. Ross, “Understanding and improving computational science
storage access through continuous characterization,” ACM Transactions
on Storage (TOS), vol. 7, no. 3, 2011.

[49] R. B. Ross, G. Amvrosiadis, P. Carns, C. D. Cranor, M. Dorier,
K. Harms, G. Ganger, G. Gibson, S. K. Gutierrez, R. Latham et al.,
“Mochi: Composing data services for high-performance computing
environments,” Journal of Computer Science and Technology, vol. 35,
no. 1, 2020.

[50] B. Nicolae, “Datastates: Towards lightweight data models for deep
learning,” in Smoky Mountains Computational Sciences and Engineering
Conference, 2020.

[51] B. Nicolae, A. Moody, G. Kosinovsky, K. Mohror, and F. Cappello,
“Veloc: Very low overhead checkpointing in the age of exascale,” arXiv
preprint arXiv:2103.02131, 2021.

[52] K. De Smedt, D. Koureas, and P. Wittenburg, “Fair digital objects for
science: From data pieces to actionable knowledge units,” Publications,
vol. 8, no. 2, 2020.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2005632
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2005632

	Introduction
	Modeling Data Integrity Threats for Scientific Workflows Using OSCRP and MITRE ATT&CK®
	Non-malicious Data Integrity Threat Model Using OSCRP
	Categorizing Scientific Workflow Assets using OSCRP
	Findings from Non-Malicious Data Integrity Threat Model

	Application & Future Work

	Recommending Tools and Sub-workflows for Scientific Workflow Management Systems
	Proposed Recommendation System
	Related Work
	Conclusion and Future Work

	libEnsemble: Flexible Workflows through Dynamic Assignment of Workers and Resources
	HyperShell v2: A Better Workflow Automation Tool for Many-Task Computing
	Solution Category
	Features

	RECUP:A (meta)data framework for reproducing hybrid workflows with FAIR
	A (meta)data framework for reproducing hybrid workflows
	Future Work

	References

