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Abstract
Emerging AI-enhanced and near real-time scientific workloads are
challenging the traditional assumptions of HPC job scheduling sys-
tems. In this work, we present an LLM-enabled, portable workflow
for analyzing a subset of Slurm job trace data from leadership-class
supercomputers, exemplified through over 1.5 million jobs and 18
million job-steps on OLCF’s Frontier system. Our hybrid workflow
integrates a static data analysis pipeline with dynamic, AI-powered
components to generate interactive dashboards and automated,
interpretable insights into scheduling behavior, efficiency, and sys-
tem usage patterns. We demonstrate the workflow’s portability
across HPC systems and show how AI-driven interpretations aug-
ment traditional visualization to uncover inefficiencies, guide policy
evolution, and support more responsive scheduling strategies, en-
abling consistent analytics across HPC system architectures. This
approach enables computer science researchers and HPC sysadmins
to systematically evaluate workload characteristics and adapt HPC
resource management to meet the evolving demands of modern
scientific discovery.
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1 Introduction
High-performance computing (HPC) centers play a central role
in enabling cutting-edge scientific research across a wide range
of domains. These systems have been optimized for large-scale,
compute-intensive simulations that run in a batch mode. However,
the nature of scientific discovery is changing as emerging work-
loads driven by the Department of Energy’s Integrated Research
Infrastructure (IRI) program [11], artificial intelligence (AI) mod-
els [8], and autonomous scientific workflows [4] are increasingly
dynamic, interactive, and data-driven. These workloads often re-
quire rapid job turnaround, seamless coupling with experimental
facilities, and intelligent orchestration across multiple resources
and sites. The shift toward more agile and responsive science is
placing new demands on HPC systems, which must now accom-
modate workloads that cannot be effectively served by existing
scheduling policies.

Many of these new scientific applications involve near real-time
experimental data collection, iterative decision-making, and AI-
driven steering [5]. For example, applications that analyze incoming
data from synchrotrons or beamlines must produce results quickly
enough to influence ongoing experiments. Similarly, AI training
and inference tasks often require launching a large number of small,
short-lived jobs, or maintaining persistent interactive sessions [8].
These use-cases are ill-suited to conventional HPC scheduling poli-
cies, which are primarily designed for maximizing throughput and
fairness among long-running jobs. As a result, users are increas-
ingly encountering limitations in responsiveness, flexibility, and
resource adaptability when deploying these workloads on current
HPC systems.

Several HPC centers have made incremental changes to bet-
ter support diverse workloads, such as introducing debug parti-
tions for short interactive jobs, enabling job arrays for task par-
allelism, or adopting preemptible queues for lower-priority jobs.
For instance, NERSC has taken steps toward supporting near real-
time and experiment-driven workflows through its Superfacility
model [1], which integrates HPC with experimental data streams
and provides dedicated near real-time Quality of Service (QoS) set-
tings. However, such capabilities remain the exception rather than
the norm. Most centers continue to rely on scheduling policies
that assume static, resource-hungry jobs with generous lead times,
which limits their ability to support urgent, event-triggered, or low-
latency computing demands. Furthermore, while job trace archives
exist and have enabled various one-time analysis studies, a widely
adopted and systematic framework for data-driven analysis of job
history to uncover insights into system behavior and scheduling
efficiency is still lacking.
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Existing research on HPC scheduling has generally focused on
static optimization strategies or simulated workloads, without thor-
oughly addressing the performance implications of emerging near
real-time and AI-enhanced use cases. There is a lack of systematic
studies that examine how current scheduling policies accommo-
date (or hinder) the requirements of modern workflows, particularly
those involving adaptive feedback loops, autonomous agents, and
cross-facility coordination. Moreover, there are few practical tools
available for HPC sysadmins to explore historical scheduler data in
a way that directly informs policy evolution. This gap makes it dif-
ficult to anticipate how changes in workload patterns might affect
resource allocation, queue latency, and overall system performance.

To address these challenges, we propose a reusable and exten-
sible workflow for analyzing the historical job scheduling data,
with an initial focus on Slurm-based HPC systems due to their
widespread adoption. Although the workflow is designed around
Slurm, its structure allows adaptation to other job schedulers across
HPC centers. This workflow provides a practical mechanism for
systematically exploring how HPC resources are utilized, where
bottlenecks arise, and how workloads of different types behave
under current scheduling policies. It supports filtering, formatting,
and transforming job records, generating visualizations that reveal
trends in queue wait times, resource usage, job states, and back-
filling efficiency. Additionally, the workflow includes an AI-based
component that performs interpretive analyses of the data and
augments human-driven exploration with automated insights.

By applying this workflow to historical job data from the Oak
Ridge Leadership Computing Facility (OLCF), we demonstrate how
sysadmins and researchers can extract actionable information that
informs the design of more adaptive, flexible, and workload-aware
scheduling strategies. Our goal is not only to characterize past usage
but to enable proactive planning and policy development for the
future. This includes guiding decisions around queue configurations,
preemptive scheduling, node sharing, near real-time prioritization,
and workflow-aware resource allocation. The workflow’s design
ensures portability across HPC systems, enabling consistent data
analysis regardless of system architecture or workload profile. Last,
this work supports the broader transformation of HPC systems
from static batch processors into responsive, intelligent platforms
capable of supporting the next generation of scientific discovery.

The remainder of this paper is organized as follows. Section 2
describes the Slurm job trace dataset used in our study. Section 3
details the structure of the hybrid workflow, including both static
analysis and AI-based components. Section 4 presents the results
of applying the workflow to data from OLCF systems, highlighting
insights and demonstrating its portability. Section 5 reviews related
work in HPC scheduling and job trace analytics. Finally, Section 6
concludes the paper and outlines future directions for extending
the workflow’s capabilities.

2 Slurm Job Trace Dataset
The analyses presented in this paper leverage historical job records
from the Slurm scheduler at OLCF, specifically from the Frontier
supercomputer. The dataset spans from April 2023 (when Frontier
went into production) through 2024 and includes over 0.5 million
jobs submitted by more than 1,000 users (Figure 1). These jobs

generated over 7 million job steps, where each step generally rep-
resents a distinct execution unit within a job, often corresponding
to a specific task or parallel program launched during the job’s
runtime. The job records were collected using the sacct command,
which provides access to a wide range of Slurm accounting fields.
This comprehensive dataset captures the operational behavior of
the system across multiple years and offers a detailed view into
usage patterns, job structures, and resource allocation behaviors.

Figure 1: Total number of jobs and job-steps executed on
the Frontier supercomputer from 2021 to 2024. The figure
highlights the high volume of activity and the prevalence
of multi-step jobs, reflecting diverse workload patterns and
extensive use of task parallelism through srun.

From the 118 fields available in the Slurm accounting database, a
subset of 50+ fields was selected based on their relevance and utility
for characterizing scheduling behavior and enabling downstream
analytics. Redundant, sensitive, or less informative fields, such as
those offering duplicative time representations (e.g., Elapsed vs.
ElapsedRaw), were excluded. This curated dataset includes key in-
formation on job timing, resource requests and usage, job state,
account associations, and scheduling flags such as backfill indica-
tors, allowing for deep exploration of queue dynamics and system
load patterns.

A light preprocessing step was performed to normalize and clean
the extracted data. For instance, certain fields required unit con-
versions (e.g., node counts expressed as ‘K’ for thousands) or for-
matting adjustments (e.g., converting raw seconds to minutes for
readability). Additionally, malformed records, mostly associated
with hardware errors and accounting for less than 0.002% of the
total, were discarded. The resulting dataset enabled robust visu-
alization and AI-based interpretation of scheduling phenomena.
Table 1 summarizes the key fields selected for this study, grouped
by category.

Figure 1 provides a high-level overview of job and job-step vol-
ume on the Frontier system across the analyzed period from 2021
to 2024. Note that the jobs run in 2021 until April 2023 pertains
to acceptance tests and early hero runs. We exclude those jobs
from the study presented here for consistency. The visualization
illustrates the scale and consistency of workload submitted to the
system, showing sustained high-throughput usage patterns typical
of a leadership-class supercomputer. The plot shows that, while
job submissions remained relatively stable each year, the number
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Category Selected Fields

Job Identification JobID, Partition, Reservation, ReservationID
Timing Information SubmitTime, StartTime, EndTime, Elapsed, Timelimit
Resource Requests NNodes, NCPUs, NTasks, ReqMem, ReqGRES, Layout
Resource Usage VMSize, AveCPU, MaxRSS, TotalCPU, NodeList, ConsumedEnergy
IO Related WorkDir, AveDiskRead, AveDiskWrite, MaxDiskRead, MaxDiskWrite
Job State State, ExitCode, Reason, Suspended, Restarts, Constraints
Scheduling Metadata Priority, Eligible, QOS & QOSReq, Flags, TRESUsageInAve, TRESReq
Special Indicators Backfill (from Flags), Dependency, ArrayJobID
Misc Comment, SystemComment, AdminComment

Table 1: Selected fields from Slurm accounting data used in this study.

of job-steps was significantly higher than the job count. This re-
flects the frequent use of srun to launch multiple tasks within a
single job. The distinction between jobs and job-steps is important
because many scientific workflows depend on fine-grained task ex-
ecution that occurs at the job-step level rather than through single,
monolithic jobs.

3 Workflow Structure and Analysis Pipeline
This workflow is designed to analyze historical job scheduling data
from HPC scheduling systems, with the objective of uncovering
patterns, diagnosing inefficiencies, and guiding policy refinement.
The workflow is organized into two main components: a data
analysis subworkflow, which is static and applies to any dataset
of interest, anduser-defined subworkflow, which allows dynamic
integration of domain-specific AI/LLM analyses. Figure 2 visually
represents the structure and flow between these components.

3.1 Data Analysis Subworkflow
The following steps, highlighted in blue in Figure 2, compose the
core of the workflow. These are executed in a fixed sequence and
structure, driven by the scope and granularity of the dataset:

Obtain data queries the Slurm database for a curated set of 60
accounting fields and writes the output in text format to a
designated directory. This stage is highly flexible and fully
parameterized: users can define the desired date range (e.g.,
spanning multiple years), choose the data granularity (yearly
or monthly), and indicate whether previously cached data
should be used. If cached data is unavailable, the system
automatically fetches fresh records and stores them in the
specified output location. For large-scale retrievals across
many months or years, GNU Parallel is employed to execute
multiple database queries concurrently, improving perfor-
mance and scalability.

Curate Data cleans the raw output by removing malformed en-
tries and reformats the dataset from pipe-separated text to
CSV for compatibility with Python-based analysis libraries.

Field-Specific Plotting encompasses several analytical stages that
each generate visualizations for a selected set of Slurm fields,
providing insights into system behavior and job characteris-
tics. For instance, these may include stacked bar plots of job
end states per user (Job States), scatter plots of queue wait

times color-coded by final job status (Wait Times), and com-
parative scatter plots that highlight the difference between
requested and actual runtimes to analyze scheduler back-
filling behavior (Backfill). Each stage uses Plotly to produce
interactive HTML charts that support zooming and filtering
for exploratory analysis.

Dashboard consolidates all generated plots into an interactive
dashboard using Plotly Dash, enabling users to explore and
filter results from a single unified interface.

3.2 User-Defined Subworkflows
The stages shown in orange in Figure 2 represent user-defined, dy-
namic subworkflows that can be customized based on analysis goals.
These subworkflows are modular and can evolve to incorporate
additional tools or insights tailored to the user’s needs. For example,
scientists running workloads on Frontier might define workflows
to analyze job efficiency, identify bottlenecks, or correlate perfor-
mance with input parameters. In contrast, system administrators
may use the framework to detect scheduling anomalies, monitor
system utilization trends, or evaluate the effectiveness of recent
configuration changes.

In this paper, their primary purpose is to enable richer interpre-
tation of the static analysis outputs via AI-assisted techniques:
HTML2PNG Converts HTML-based plots into PNG images using

browser automation with the Firefox screenshot utility in
headless CLI mode. This step enables compatibility with
LLM tools, which are not well-suited to process large raw
datasets directly. Instead, the plots serve as compact visual
summaries of the data, allowing the LLMs to extract insights
more efficiently from these visual representations.

LLM Compare Sends paired PNG images to an LLM API for com-
parative analysis between visualizations. Here, the model is
provided with two related images and the following prompt:
Act as a data scientist to compare and contrast the two
provided charts. Provide a quantitative and qualitative
analysis of the key trends, relationships, and statistics,
highlighting similarities and differences. Be specific and
mention any notable patterns or outliers. Calculate mean-
ingful statistics from the plots.

LLM Insight Sends individual PNG plots to the LLM for summa-
rization and insight generation. Here, the prompt is tailored
to summarize a single chart:
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Obtain Data

Curate Data

Obtain Data

Curate Data

…
based on 
granularity 
and dataset 
size(years, 
months, days)

Job States Wait Times Backfill…
based on the 
selected 
fields for 
analysis

Job States Wait Times Backfill…

Dashboard

DATA ANALYSIS 
SUBWORKFLOW
Static Structure

USER-DEFINED 
SUBWORKFLOW
Dynamic Structure

HTML2PNG

LLM Compare LLM Insight

Figure 2: Overview of the hybrid workflow combining a static data analysis pipeline with dynamic, user-defined AI components.
Blue elements represent fixed analytical stages applied to Slurm job data, while orange elements indicate customizable
extensions for automated chart interpretation and insight generation. Tasks in the same horizontal row may be executed
concurrently by the workflow.

Act as a data scientist to summarize the chart and provide
a quantitative analysis of the key trends, relationships,
and statistics of the provided chart. Be specific and men-
tion any notable patterns or outliers. Calculatemeaningful
statistics from the plot.

These dynamic steps are optional and extensible, allowing the work-
flow to adapt to future needs or incorporate alternative AI models
and APIs.

To choose the most suitable LLM for this task, we conducted
a brief survey of available options (Table 2). Key factors included
accessibility (API availability), support for image input, cost, and
performance. While models like OpenAI GPT-4, Anthropic Claude,
and DeepSeek offer advanced capabilities, they are either paywalled,
geo-restricted, or come with usage limitations. Others like Meta
Llama and Apple’s on-device LLMs either lack public API support
or are designed for local-only inference.

We chose Google’s Gemma 3 as the LLM backend for this work-
flow for its advantages: (1) Free API access with no usage restric-
tions; (2) Strong support for multimodal input, including image-
based prompts; (3) Low latency and lightweight footprint, making
it suitable for integration in real-time or automated workflows.

Although this LLM integration currently serves as a proof of
concept, and we do not claim scientific rigor for all generated in-
sights, it demonstrates the feasibility of using AI-driven analysis to
complement traditional HPC data exploration and visualization.

3.3 Workflow Composition and Concurrency
The workflow was implemented using the Swift/T parallel script-
ing language [17], enabling scalable execution of both the static
and AI-driven components. Its source code is publicly available
at [10], encouraging community reuse and extension. The modular
architecture and use of Swift/T scripting facilitate deployment on
various HPC platforms, ensuring portability and scalability without
requiring system-specific customizations.

The workflow script generalizes across diverse workloads and
HPC systems, but also supports extension through user-defined AI
functional subcomponents. These include shell scripts and Python
scripts that invoke the LLM operations described in Section 3.2. The
main workflow, defined in workflow.swift, implements a parallel
pipelines model, in which each dataset retrieved from the Slurm
database is processed concurrently in a “subworkflow.” The various
tasks making up the subworkflow are coded as an apparently linear
list of the functional subcomponents with input and output file
references; however, Swift/T automatically determines the data de-
pendencies and produces/executes the dataflow diagram illustrated
in Figure 2, producing additional available concurrency.

The workflow is invoked with:
$ swift-t -m local|slurm -n N workflow.swift \

date_spec date1 date2 cache data

for local or Slurm execution, respectively. N is the number of Swift/T
processes to start (the physical concurrency). The workflow argu-
ments date_spec and dates specify the query to the Slurm database,
cache is a location on a fast filesystem to use as a cache, and data
is a permanent filesystem location for data reuse.

4 Advancing HPC Scheduling Analysis with
Visualization and AI

This section presents an analysis of job scheduling data from the
Frontier supercomputer using the developed workflow. Through a
combination of interactive visualizations and AI-generated insights,
we demonstrate how this workflow uncovers inefficiencies and
patterns that can inform more responsive scheduling strategies.

4.1 Visual and Analytical Insights into HPC
Scheduling Behavior

The developed workflow provides an in-depth, interactive lens
into the operational patterns of HPC systems, transforming static
Slurm logs into dynamic visual narratives. Figure 3, which plots
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LLM / AI Version API Access Remarks

OpenAI All Models Yes Paid 03, 04, best for vision
Google Gemini 2.5 Flash Yes Free No limit on usage
Google Gemma 3 Yes Free AI for "developers"
Anthropic All Models Yes Paid Interoperable with other models
Apple All Models No Free All LLMs must run locally on iOS devices
DeepSeek All Models Yes Paid Geo-restricted
Mistral All Models Yes Paid Restricted and limited free trial
Meta Llama Yes Unclear Waitlist for API, cost unclear
Microsoft Copilot Yes Paid Integrated into MS tools eg. Office suite
Github Copilot No Free Built into IDE, limited req/month

Table 2: Brief comparison of selected LLM offerings based on API availability, cost, and support for image input.

allocated nodes versus job durations from 2021 through 2024, re-
veals the diverse scale and intensity of compute jobs. It illustrates
the system’s ability to accommodate both small, short-lived jobs
and massively parallel, long-duration tasks. This diversity reflects
the growing complexity of modern workloads and highlights the
necessity for scheduling strategies that can flexibly accommodate
a broad spectrum of resource needs.

Figure 3: Allocated compute nodes versus job elapsed time
for all jobs executed on Frontier between April 2023 and
December 2024.

Figure 4 provides a granular view of job queue wait times in 2024,
color-coded by job completion state. This visualization captures
important temporal and operational characteristics, such as spikes
in wait times that could be linked to specific usage patterns or
policy inefficiencies. The end-state differentiation offers valuable
insights into how resource contention, prioritization, or backfilling
mechanismsmight impact overall system reliability and throughput.
While outliers are omitted for clarity, the underlying distribution
shows distinct stratifications that warrant further analysis and
tuning of scheduling parameters.

Figure 5 builds on this by presenting job end states per user,
enabling a multifaceted view of user behavior, job completion suc-
cess, and potential system friction points. The inclusion of state
color-coding within user-level breakdowns makes it easier to iden-
tify users with disproportionately high failure or cancellation rates.
These trends can guide training, user support, or system configu-
ration changes. This figure demonstrates how the workflow can

Figure 4: Visualization of job wait times in seconds for April
2023 till December 2024, color-coded by final job state (e.g.,
completed, failed, cancelled).

surface high-level usage metrics while maintaining the granularity
necessary for targeted interventions.

Figure 5: Distribution of job completion states per user for a
selected April 2023 till December 2024 data subset.

Figure 6 dives deeper into scheduling efficiency by visualizing
the discrepancy between requested walltimes and actual job du-
rations. Here, regular jobs and backfilled jobs are distinguished
by dot and plus symbols, respectively. The chart shows that many
jobs, particularly backfilled ones, complete in less time than re-
quested, revealing underutilization and missed opportunities for
finer-grained resource scheduling. This insight is particularly rele-
vant for designing adaptive scheduling policies that reclaim unused
time to reduce queue delays and improve system throughput.
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Figure 6: Scatter plot comparing requested walltimes and
actual job durations for April 2023 till December 2024, with
backfilled jobs marked by plus symbols and standard jobs by
dots.

Together, these visualizations showcase the flexibility and po-
tential impact of our workflow. They not only present historical
trends in an interpretable format but also identify areas for policy
refinement. The interactivity of the dashboard—zooming, filtering,
and overlaying dimensions—makes this tool suitable for both ex-
ploratory analysis and strategic planning. The workflow’s ability to
adapt to different query types and visualizations means it can serve
administrators, performance engineers, and researchers alike.

4.2 Augmenting Analysis with LLM-Derived
Interpretations

To extend the analytical capabilities of the workflow, we integrated
an AI-based subworkflow that applies LLMs to interpret individual
and comparative visualizations. These enhancements augment hu-
man reasoning by transforming complex visual information into
accessible summaries. The LLM component enhances situational
awareness by surfacing patterns, anomalies, and inefficiencies that
may not be immediately visible in complex charts. It effectively
acts as a digital analyst, distilling key messages and pointing users
toward impactful observations. This integration serves as a bridge
between data science and decision-making, helping both novice and
expert users to understand the implications of scheduler behavior.

For example, when comparing two scatter plots showing queue
wait times across months, the LLM offered the following observa-
tion1:

The majority of jobs that completed successfully have
shorter wait times in June compared to March, sug-
gesting either a decrease in queue load or more effi-
cient scheduling policies being implemented. Notably,
March has a higher density of jobs with extended wait
times exceeding 100,000 seconds, which could indicate
batch congestion or policy thresholds being hit more
frequently.

This kind of temporal comparison provides actionable insights
for system administrators and policy designers. It can trigger further
investigation into scheduling rule changes, maintenance windows,
or emerging workload profiles.
1Double-file LLM comparison results available at: https://github.com/Andy-Borch/
ORNL-Work/blob/main/llm_analysis/llm_double_file_analysis.md

Another LLM interpretation, focused on differences between
requested and actual walltimes, highlighted inefficiencies in user-
specified estimates2:

There is a consistent trend of users significantly overesti-
mating their walltime requests. This creates a systemic
gap that reduces scheduling efficiency. The presence
of tightly clustered short-actual, long-requested jobs
suggests a potential for implementing automated time
prediction or adaptive rescheduling mechanisms.

Such commentary encourages proactive improvements in user
guidance, automated tuning, or system-level enforcement of predic-
tive runtime estimates. The AI-generated insights also help justify
the development of smarter scheduling models that can learn from
past trends.

In summary, the LLM module adds a new interpretive layer to
traditional visual analytics. Its ability to quantify, compare, and
narrate differences between visualizations makes the workflow
more accessible and decision-supportive. By summarizing complex
visual data into human-readable guidance, the workflow becomes a
powerful tool for improving scheduler transparency, user behavior,
and system adaptability.

4.3 Workflow Portability
To demonstrate the workflow’s portability and generalizability, we
deployed it on Andes, a general-purpose system at OLCF that also
uses the Slurm scheduler. Unlike Frontier, which supports large-
scale GPU-intensive workloads, Andes has a CPU-centric architec-
ture and serves a wider range of job sizes and scientific domains.
In addition to hardware differences, the systems also differ in con-
figuration details such as partition structures and job scheduling
policies. We collected data from Andes for the full year of 2024
and applied the same workflow without modification, highlight-
ing its adaptability across both system configurations and work-
load profiles. These results also suggest opportunities for future
workload-aware tuning of the workflow components.

Figure 7 presents the allocated compute nodes versus job dura-
tions for Andes, enabling a direct comparison to Frontier’s data in
Figure 3. While both systems support a wide range of job scales
and runtimes, Andes exhibits a denser concentration of short-
duration jobs with fewer nodes, reflecting its suitability for smaller,
throughput-oriented workloads. In contrast, Frontier’s distribution
includes a larger fraction of high-node, long-duration jobs, con-
sistent with its exascale mission. This difference underscores the
value of flexible scheduling strategies that are tuned to system
profiles: Frontier benefits from policies that manage parallelism at
scale, while Andes requires optimizations for high job turnover and
interactive usage.

Figure 8 shows the distribution of job completion states per user
on Andes in 2024, comparable to the Frontier view in Figure 5. In-
terestingly, Andes users tend to have fewer failed or canceled jobs
overall, possibly due to more interactive or exploratory work that
allows faster feedback cycles and user adaptation. Additionally, the
lower variance in failure rates across users suggests a more uniform

2Single-file LLM analysis results available at: https://github.com/Andy-Borch/ORNL-
Work/blob/main/llm_analysis/llm_single_file_analysis.md
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Figure 7: Allocated compute nodes versus job durations on
Andes in 2024, showing a concentration of smaller, shorter
jobs compared to Frontier.

usage pattern on Andes compared to the more heterogeneous work-
load seen on Frontier, where some users dominate failure counts.
These trends highlight the importance of tailoring user support,
training, and system defaults to the dominant workload types and
user behaviors on each system.

Figure 8: Distribution of job completion states per user on
Andes in 2024, revealing lower failure rates and more consis-
tent user behavior.

Figure 9 compares requested versus actual walltimes on An-
des, paralleling the backfilling efficiency plot on Frontier shown in
Figure 4. Similar inefficiencies are observed: a significant number
of jobs request far more time than they use, especially for non-
backfilled jobs. However, Andes demonstrates a tighter clustering
of job durations and a more constrained range of walltime overesti-
mation. This may reflect more conservative queue policies or a user
base accustomed to fine-tuning resource estimates. Despite this,
opportunities remain to improve scheduling efficiency by reclaim-
ing unused time, perhaps through runtime prediction or adaptive
rescheduling.

Overall, these comparative results affirm the workflow’s porta-
bility across diverse HPC environments, and reveal how system-
specific workload characteristics can drive different scheduling
needs. The workflow not only generalizes across platforms with
minimal configuration but also uncovers insights that can inform
site-specific scheduler tuning. By supporting consistent analysis

Figure 9: Comparison of requested versus actual walltimes
for jobs on Andes in 2024, highlighting overestimation pat-
terns and backfilling opportunities.

across systems like Frontier and Andes, it enables data-driven re-
finement of scheduling policies that reflect the operational realities
of diverse HPC environments.

5 Related Work
The problem of HPC job scheduling has a long-standing history,
with foundational strategies focused on maximizing throughput,
fairness, and overall system utilization. Job schedulers such as
Slurm, PBS, and LSF employ batch queuing models with priority-
based algorithms and backfilling to optimize performance, espe-
cially for large-scale simulations. As scientific computing has evolved,
however, these assumptions no longer hold for many emerging
applications. Recent studies have highlighted growing workload
heterogeneity in HPC systems, including increased use of short,
data-intensive, and AI-driven jobs that require more agile and inter-
active scheduling mechanisms [3, 7, 15]. These modern workloads
expose the limitations of current policies, such as poor support
for responsiveness and inefficient handling of job granularity, and
motivate the need for more flexible and intelligent schedulers [18].

In response, several efforts have explored enhancements to tradi-
tional job scheduling systems to better serve diverse and evolving
workload requirements. For example, preemptive and opportunis-
tic scheduling have been introduced to allow urgent or short jobs
to interrupt low-priority or flexible workloads, as demonstrated
by systems like TACC’s “flex” queue and NERSC’s “realtime” QoS.
Node-sharing policies and job arrays have been employed to in-
crease support for many-task workloads, such as hyperparameter
tuning or ensemble simulations. For instance, Flux offers a mod-
ular, fully hierarchical job management architecture that enables
fine-grained resource control, dynamic scheduling, and integra-
tion of heterogeneous workloads within a unified framework [6].
Flux’s design allows it to co-schedule jobs at multiple levels (user,
system, and workflow), making it well-suited for streaming and
workflow-aware computing. Meanwhile, the NERSC Superfacility
model integrates APIs and federated authentication to orchestrate
real-time workflows between experimental facilities and HPC re-
sources, showing early progress in bridging interactive science and
scheduled computing [1]. Despite these developments, most HPC
centers still operate under rigid policies that only partially support

7



emerging needs, and ad hoc configurations often lack generalizable
evaluation frameworks.

Reconstructing processes from existing data and logs is a well-
researched and practiced area in both computer systems [9, 14]
and other domain sciences such as biomedicine [12]. Complemen-
tary to scheduling system enhancements, the analysis of historical
job traces has become a valuable tool for understanding work-
load patterns and identifying inefficiencies in resource utilization.
Several HPC centers, including NERSC, ALCF, OLCF, and BSC,
have conducted workload characterizations using Slurm account-
ing databases and custom analytics pipelines to evaluate job sub-
mission behaviors, queue wait times, backfilling effectiveness, and
CPU/GPU utilization [13, 15, 16]. Tools like Slurmmon [2] and job
trace simulators provide administrators with insights into tem-
poral trends and scheduling bottlenecks. However, few of these
tools are extensible or designed to systematically support policy
development tailored to modern workload types. There is a gap
in frameworks that combine job trace analytics with AI-enhanced
interpretation and integration into scheduling feedback loops.More-
over, very few studies have explicitly investigated howHPC systems
must adapt to support IRI workflows, autonomous decision-making
pipelines, or near real-time experiment analysis. This paper ad-
dresses that gap by proposing a flexible, AI-enabled workflow for
analyzing historical Slurm job data and extracting actionable in-
sights to guide future scheduling strategies.

6 Conclusions and Future Work
This work introduces a reusable, extensible workflow for analyzing
Slurm job scheduling data that blends traditional visual analyt-
ics with AI-generated insights to better understand and evolve
HPC scheduling practices. By applying our approach to data from
OLCF’s Frontier system, we revealed key trends in job structure,
wait times, backfilling inefficiencies, and underutilized walltime
estimates. The workflow’s interactive dashboard facilitates user ex-
ploration, while the LLM component enhances decision-making by
surfacing patterns that are not immediately visible. Together, these
capabilities support data-driven policy adjustments and greater
scheduler responsiveness, essential for accommodating dynamic,
heterogeneous workloads. The workflow has been validated on two
OLCF systems, demonstrating its portability, and is positioned as a
valuable tool for both HPC administrators and researchers.

Future extensions of this workflow will focus on deeper integra-
tion with scheduling systems to support near real-time feedback
and policy adaptation. This includes embedding AI-predicted wall-
time estimation into job submission workflows, enabling dynamic
rescheduling and time reclamation. Additional work will explore
multi-cluster and federated analytics, providing cross-facility visi-
bility into scheduling behaviors and workload migration. We also
plan to incorporate domain-specific insights by coupling the work-
flow with experiment-aware metadata (e.g., from beamline instru-
ments or sensor networks), thereby enhancing situational context
for autonomous scientific workflows. Finally, we aim to evaluate
alternative LLM models and interactive agents that can guide users
through visual narratives and recommend scheduling strategies in
a more conversational and adaptive manner.
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