
J Grid Computing
DOI 10.1007/s10723-010-9177-5

Using a Simple Prioritisation Mechanism to Effectively
Interoperate Service and Opportunistic Grids
in the EELA-2 e-Infrastructure

Francisco Brasileiro · Matheus Gaudencio · Rafael Silva · Alexandre Duarte ·
Diego Carvalho · Diego Scardaci · Leandro Ciuffo · Rafael Mayo ·
Herbert Hoeger · Michael Stanton · Raul Ramos · Roberto Barbera ·
Bernard Marechal · Philippe Gavillet

Received: 29 June 2010 / Accepted: 30 November 2010
© Springer Science+Business Media B.V. 2011

Abstract Grids currently in production can be
broadly classified as either service Grids, com-
posed of dedicated resources, or opportunistic

F. Brasileiro (B) · M. Gaudencio · R. Silva ·
A. Duarte
Universidade Federal de Campina Grande,
Av. Aprígio Veloso, s/n, 58.429-900,
Campina Grande, PB, Brazil
e-mail: fubica@dsc.ufcg.edu.br

M. Gaudencio
e-mail: matheusgr@lsd.ufcg.edu.br

R. Silva
e-mail: rafael@lsd.ufcg.edu.br

A. Duarte
e-mail: alex@dsc.ufcg.edu.br

D. Carvalho
Centro Federal de Educação Tecnológica Celso
Suckow da Fonseca, Av. Maracanã 229,
20271-110, Rio de Janeiro, RJ, Brazil
e-mail: d.carvalho@ieee.org

H. Hoeger
Universidad de Los Andes, CeCalCULA,
Av. 4, Edif. General Masini, Piso 3,
Mérida, 5101, Venezuela
e-mail: hhoeger@ula.ve

L. Ciuffo · M. Stanton
Rede Nacional de Ensino e Pesquisa,
R. Lauro Müller 116 / 1103, 22290-906,
Rio de Janeiro, RJ, Brazil
e-mail: leandro.ciuffo@rnp.br

Grids that harvest the computing power of non-
dedicated resources when they are idle. While
a service Grid provides high and well defined

M. Stanton
Universidade Federal Fluminende, R. Lauro Müller
116 / 1103, 22290-906, Rio de Janeiro, RJ, Brazil
e-mail: michael@rnp.br

D. Scardaci
Istituto Nazionale di Fisica Nucleare, Sezione di
Catania, Via S. Sofia, 64, 95123, Catania, Italy
e-mail: diego.scardaci@ct.infn.it

R. Barbera
Dipartimento di Fisica e Astronomia dell’Universitá
di Catania, Via S. Sofia, 64, 95123, Catania, Italy

R. Barbera
INFN, Via S. Sofia, 64, 95123, Catania, Italy
e-mail: roberto.barbera@ct.infn.it

R. Mayo
CIEMAT, Avda. Complutense, 22, 28040 Madrid, Spain
e-mail: rafael.mayo@ciemat.es

R. Ramos · B. Marechal · P. Gavillet
CETA-CIEMAT, C/ Sola, 1, 10200 Trujillo, Spain
e-mail: raul.ramos@ciemat.es

B. Marechal · P. Gavillet
CERN, C/ Sola, 1, 10200 Trujillo, Spain

B. Marechal
e-mail: marechal@if.ufrj.br

P. Gavillet
e-mail: philippe.gavillet@cern.ch

F. Brasileiro et al.

levels of quality of service, an opportunistic Grid
provides only a best-effort service. Nevertheless,
since opportunistic Grids do not require resources
to be fully dedicated to the Grid, they have the
potential to assemble a much larger number of
resources. Moreover, these Grids cater very well
to the execution of the so-called embarrassingly
parallel applications, a type of application that
is frequently found in practice, and that com-
prises the largest portion of the typical work-
load processed in production Grid systems. The
EELA-2 e-infrastructure is comprised of a service
Grid and an opportunistic Grid that federates
computing resources from scientific institutions
in both Europe and Latin America. Due to the
complementary characteristics of these two types
of Grids, a lot of attention has recently been
placed in how to interoperate them. In this paper
we focus on the less studied problem of assessing
the feasibility of such interoperation. We analyse
different prioritisation policies that define when
the resources of one Grid can be used to run
jobs originating from the other. Our results show
that in the absence of a suitable prioritisation
policy, the benefits that the users of one Grid may
have, frequently come with an important negative
impact on the users of the other Grid. We also
show that a simple reciprocation mechanism is
capable of arbitrating the interoperation in such
a way that, whenever possible, users profit from
the interoperation and, in no case, this benefit
leads to a noticeable reduction on the quality of
service that the users would experience were the
Grids not to interoperate. We conclude discussing
how we have implemented, in the context of the
EELA-2 project, this prioritisation mechanism,
allowing the effective interoperation of a service
Grid based on the gLite middleware with an op-
portunistic Grid that uses the OurGrid middle-
ware.

Keywords Grid computing · Service Grids ·
Opportunistic Grids · Prioritisation · EELA-2

1 Introduction

Throughout this decade, Grid computing has es-
tablished itself as a key technology for the support

of an important portion of the scientific activ-
ity developed worldwide, a trend that has been
dubbed e-Science. As the technology matured,
several Grid infrastructures, or e-infrastructures
for short, have been built and are currently in
operation. In particular, the authors have been
deeply involved in initiatives to deploy and oper-
ate an e-infrastructure gathering resources from
research centres in several Latin American and
European countries. These efforts were initiated
in 2006 in the context of the “E-infrastructure
shared between Europe and Latin America”
(EELA) project1 [19]. The EELA project was a
2-year project run by 21 institutions from Europe
and Latin America under the 6th Framework
Programme for Research, Technological Devel-
opment and Demonstration (FP6) of the Eu-
ropean Commission (EC). The objective of the
EELA project was to bring the e-infrastructures
of Latin American countries to the level of those
already available in Europe. For this purpose it
built a service Grid pilot infrastructure for sci-
entific applications—benefiting from the mature
state of the EC funded project “América Latina
Interconectada Con Europa” (ALICE)2 and of
its product, the RedCLARA network—with the
ultimate goal of promoting a sustainable frame-
work for e-Science in Latin America. This e-
infrastructure was supported by the gLite middle-
ware.3

Service Grids normally assemble high perfor-
mance, dedicated computing resources, such as
clusters, supercomputers, and large data storage
systems that are spread over a relatively small
number of administrative domains. For instance,
the largest service Grid currently in operation is
the one created in the context of the EGEE series
of projects4 [14] which, at the time of writing,
encompassed more than 160,000 processing cores
distributed among approximately 270 resource
centres in more than 60 countries.5 Service Grids
provide high and well defined levels of quality of

1http://www.eu-eela.org/first-phase.php.
2http://alice.dante.net/.
3http://cern.ch/glite.
4http://www.eu-egee.org.
5http://gstat-prod.cern.ch/gstat.

http://www.eu-eela.org/first-phase.php
http://alice.dante.net/
http://cern.ch/glite
http://www.eu-egee.org
http://gstat-prod.cern.ch/gstat

Using a Simple Prioritisation Mechanism to Effectively Interoperate Service

service (QoS). To achieve such levels of QoS, a lot
of effort is employed in the monitoring and man-
agement of the infrastructure. Moreover, these in-
frastructures are set up to run complex distributed
applications that, in many cases, require important
core Grid services to be in operation.

The EELA project was very successful, and al-
lowed small and medium research groups in Latin
America, that use to work mostly isolated, to take
part in important global research projects [15, 20].
Also, the initiative was important to foster the de-
velopment of new collaborations among the re-
search groups involved, in the best spirit of the
e-Science trend. Despite its many success stories,
the development of the EELA project has also
highlighted problems that called for a redesign of
the architecture of the e-infrastructure built. From
the resource provision viewpoint, many institu-
tions, notedly in Latin America, found it difficult
to commit dedicated resources to the service Grid.
The overwhelming majority of research groups
in Latin America, as in many other parts of the
world, are small, counting on a dozen of peo-
ple or so. Even in the case when they have the
appropriate computing resources to be incorpo-
rated in the service Grid, they lack the skilled
computing support team to install their resource
centres and, most importantly, to maintain them
operating with the required QoS level. Neverthe-
less, it was possible to identify many partners that
could provide a relatively large amount of non-
dedicated resources to the infrastructure in a best-
effort basis, which lead us to consider the option
of deploying an alternative Grid system that could
use these resources opportunistically.

Opportunistic Grids are somewhat more “light-
weight” Grid infrastructures that scavenge idle
computing cycles from non-dedicated resources.
Several types of opportunistic Grids have been
proposed, implemented and deployed. Among the
most important representatives of this class of
Grids one can list: desktop Grids, first proposed
by the Condor project [9, 18]; voluntary computing
platforms such as the pioneer SETI@home sys-
tem [1] and its successor BOINC [2] and, more
recently, peer-to-peer (P2P) Grids such as those
supported by the OurGrid middleware [4, 6]. In
all cases, the functioning of an opportunistic Grid
is very similar and simple. The owners of the

computing resources install a Grid agent that is
in charge of monitoring the utilisation of the re-
source and detect when it is idle. Upon detecting
that the resource is idle, the agent passes this
information to a scheduler that is in charge of
dispatching tasks to be executed on the idle re-
source. Whenever a resource is required to run
applications spawned by its owner, immediately,
any Grid-related task that may be running is either
suspended or interrupted.

Since the availability of the resources in oppor-
tunistic Grids depends on the behavioural pattern
of the resource owners, it is normally not possible
to ensure any QoS guarantees in this type of
Grid. Thus, they work basically on a best-effort
basis. Nevertheless, this relatively unsophisticated
strategy has proved to be very effective in assem-
bling enormous amounts of computing cycles for
the execution of scientific applications [10]. More-
over, embarrassingly parallel—also known as bag-
of-tasks (BoT)—applications, i.e. those parallel
applications that can be divided in a large num-
ber of independent sequential tasks that do not
communicate with each other, can be very easily
scheduled and efficiently executed in this kind of
infrastructure [7].

Given the simplicity of most opportunistic
Grid middleware—compared to their service Grid
counterparts—setting up an opportunistic Grid
seemed to be a better option for many of the
EELA partners. Also, from the resource con-
sumption viewpoint, although a service Grid is
very flexible in the types of applications that
it can support, the learning curve required to
successfully port the application in these com-
plex infrastructures may turn out to be an insur-
mountable hurdle for many small research groups.
Again, opportunistic Grids seemed to be a better
fit for these users.

In summary, service Grids and opportunis-
tic Grids are very different systems, catering to
different needs, and providing diverse facilities to
their users and different challenges to their admin-
istrators. On one side, service Grids gather dedi-
cated clusters and supercomputers, in a relatively
small number of sites, to offer high levels of QoS
to all sorts of distributed and parallel applications,
at the expenses of a high administrative cost. On
the other side, opportunistic Grids scavenges the

F. Brasileiro et al.

idle cycles of desktop machines, spread over many
sites, providing a best-effort service to embarrass-
ingly parallel applications, at a reasonably low
cost.

In April 2008, shortly after the conclusion of the
EELA project, most of the partners involved in
this project started another 2-year project, called
“E-science Grid facility for Europe and Latin
America” (EELA-2).6 The EELA-2 project was
also an initiative co-funded by the EC within
its 7th Framework Programme for Research,
Technological Development and Demonstration
(FP7), and involving 78 institutions from 11 coun-
tries in Latin America and 5 in Europe. The
EELA-2 project aimed at transforming the pi-
lot infrastructure put in place by its predecessor
project into a high capacity, production-quality,
scalable e-infrastructure, providing round-the-
clock worldwide access to distributed computing,
storage and network resources for a wide spec-
trum of applications from European and Latin
American scientific communities. In addition to
the service Grid, the approach followed also in-
cluded the deployment of an opportunistic Grid
infrastructure supported by the OurGrid middle-
ware [6]. Moreover, the existence of two different
infrastructures under the same governance, mo-
tivated us to seek alternatives for allowing the
interoperation between the service Grid and
the opportunistic Grid that together comprised
the EELA-2 e-infrastructure.

Despite their differences, a great deal of at-
tention has recently been placed in devising ways
to allow service and opportunistic Grids to inter-
operate. This trend has been triggered by many
catalysers, from which the most common is the
desire to increase the capacity of each individual
Grid with the resources of the other Grid. Other
motivations include the need to better cater to a
more diverse set of user requirements and to make
the operation of the federated Grids more cost-
effective. All three motivations were present in
the EELA-2 context.

Most of the research in this area has been de-
voted to understand which are the best ways to
accomplish interoperation [11, 13, 21, 22, 24]. The

6http://www.eu-eela.eu/.

gateway approach is one of the most well-known
alternatives to achieve this end [11, 24, 27]. In this
approach, a gateway element is deployed to bridge
the two systems. It routes jobs submitted in one
infrastructure to the other, possibly translating
the job written in the language accepted by one
middleware into a job that is accepted by the other
middleware.

Although significant progress has been made
in the development of such gateways, there has
been little work on how to define policies to gov-
ern the interoperation of two independent Grid
infrastructures bridged by them. Note that the in-
terests of the providers and users of the two parts
of the infrastructure are not necessarily aligned.
Taking the most common reason for interoperat-
ing two Grid systems into account, at first sight,
one may argue that if both Grids are either under-
provisioned or over-provisioned, then there is lit-
tle incentive to interoperate, since in the first case
neither of the Grids have excess resources to pro-
vide to the other, while in the second case, extra
resources are not needed. Similarly, when one
system is under-provisioned and the other is over-
provisioned, then the benefits of interoperation
will only be seen by one of the systems. Again,
at least for the over-provisioned Grid, there is no
interest for interoperation. However, Grid work-
loads are usually highly variable in time, with pe-
riods of very high load when all resources are busy
and some jobs may need to be queued waiting
for available resources, and periods of lower load
when some of the resources sit idle. Thus, if we
consider the workload of the independent Grid
systems, it is possible that, over time, there will be
periods when it is interesting for both of them to
interoperate, periods when only one of them can
profit from the interoperation with the other, and
periods when interoperation is not beneficial to
either of them.

From the above, it is clear that, unless a suit-
able arbitration mechanisms is in place, it is not
possible to guarantee that the QoS experienced
by two Grid systems that interoperate is never
worse than the QoS that each of them would expe-
rience were they operated independently. In this
paper we investigate this issue. Our methodology
is based on the use of simulations fed with data
from workloads of a production Grid. We show

http://www.eu-eela.eu/

Using a Simple Prioritisation Mechanism to Effectively Interoperate Service

that in the absence of a prioritisation mechanism
it is possible that one Grid exploits the other in
an unfair way. Then, we show how the use of
the simple reciprocation mechanism proposed by
Andrade et al. [3] can be used to arbitrate the
interoperation of a service Grid and an oppor-
tunistic Grid in a very effective way. Finally, we
discuss how we have implemented this approach
in the EELA-2 e-infrastructure to allow the ar-
bitrated interoperation of its service Grid and its
opportunistic Grid.

The rest of this paper is organised as follows.
In Section 2 we present the system under study,
which includes the simulation model for the ser-
vice and the opportunistic Grids, the workload
that was used in the simulation experiments that
are discussed throughout the paper, as well as
the Grid resources considered. For the sake of
reproducibility of our results, all data used in
the simulations performed, as well as the source
code and executables of the simulators used are
available online at http://redmine.lsd.ufcg.edu.br/
wiki/ourgridg3/Grid_Simulator. The assessment
of the effectiveness of interoperating the Grids
without arbitration is presented in Section 3, while
Section 4 is devoted to discuss the impact of arbi-
tration. Our implementation of the reciprocation
mechanism evaluated is presented in Section 5.
We survey works that are related to ours in Sec-
tion 6. Finally, our concluding remarks and direc-
tions for future work are presented in Section 7.

2 System Description

2.1 Simulation Model

The simulation model represents two Grid sys-
tems that can operate both separately and in co-
operation. One of the Grids is a service Grid,
while the other is an opportunistic one. The ser-
vice Grid is composed of resource centres, each
of which possessing a single cluster with a number
of nodes. The opportunistic Grid, on the other
hand, is composed of independent sites, each of
which providing a number of desktops to the Grid.
Each resource centre (resp. site) of the service
Grid (resp. opportunistic Grid) is an independent
administrative domain.

When the two Grids interoperate, then jobs are
submitted from one Grid to the other through one
or more gateways. There are different ways to
implement these gateways. In this section we will
only describe how the Grids behave when they are
working independently. We leave the description
of how they can interoperate to next two sec-
tions.

Each Grid has its own workload. There are
two types of jobs that may be part of the Grid
workload, namely: sequential and parallel jobs.
Sequential jobs are run on a single cluster node
or desktop, while parallel jobs are run on two or
more nodes in the same cluster. A service Grid
usually federates clusters, thus, its workload is
formed by both types of jobs. On the other hand,
an opportunistic Grid usually federates desktops
that are not suitable to execute most parallel jobs.
Thus, its workload is formed only by sequential
jobs. Sequential jobs that are submitted by the
same user at the same time are grouped in a single
BoT job. We refer to each sequential job in such a
group as a task of the BoT job. For simplicity, all
sequential jobs are treated as BoT jobs, some of
them with just a single task.

The Grid schedulers are in charge of allocating
a suitable cluster or desktop to run each job of
the workload that is submitted to them. We as-
sume that their objective is to minimise the mean
makespan of the jobs they handle, where the job
makespan is defined as the time comprised be-
tween the job submission and the job completion.
Note that for BoT jobs, the time of completion of
the job is given by the completion time of the task
that finishes last.

The scheduling algorithm of the service Grid
works as follows. Jobs submitted are handled by
a central Workload Management System (WMS).
We assume that the central WMS is fed with per-
fect information and is able to accurately identify
which is the cluster that will be able to provide
the smallest makespan for each job submitted.
(Note that we are not interested in the absolute
performance of the system, but rather on how its
performance is affected by the fact that it inter-
operates with another Grid. Thus, this assumption
tries to reduce the sources of non-determinism in
the outcome of the scheduling.) The job is then
sent to this cluster. We assume that the scheduler

http://redmine.lsd.ufcg.edu.br/wiki/ourgridg3/Grid_Simulator
http://redmine.lsd.ufcg.edu.br/wiki/ourgridg3/Grid_Simulator

F. Brasileiro et al.

of the cluster follows a simple f irst-come-f irst-
served (FCFS) policy. Thus, jobs sent to a partic-
ular cluster are always placed in the end of the
cluster’s queue. The job that is in the first position
of the queue starts its execution as soon as the
number of idle nodes in the cluster is larger than
the number of nodes required by this job.

Each site of the opportunistic Grid runs its
own scheduler that is in charge of scheduling the
jobs originating from its associated site. From the
perspective of the site scheduler, jobs originating
from its site are called local jobs, while jobs that
come from the other sites are referred to as remote
jobs. Similarly, desktops from its site are called
local resources, while desktops from the other
sites are called remote resources.

The scheduling algorithm is very simple. When-
ever a BoT job is submitted, the scheduler tries
to schedule each of its tasks in an idle resource.
Firstly, the scheduler finds out if there is a local
resource available. If not, the scheduler checks if
there are local resources executing tasks of remote
jobs. In this case, one of the tasks of remote jobs is
pre-empted and the local resource in which it ex-
ecuted is allocated to one of the tasks of the local
job. If no local resources are available, then the
scheduler tries to find out remote resources that
could run the tasks of its job. Remote resources
are searched by randomly querying the other sites
one after the other. If no available resources are
found, the scheduler waits until any of the tasks
running in the Grid finishes and starts the process
again. In a real system one should not expect
that task completion notifications are sent to all
sites whenever a task is finished; thus, scheduling
retries should be time-driven instead of event-
driven. Again we took this simplifying assumption
to reduce the sources of non-determinism.

In this paper we consider that the provision of
local desktops to run tasks of remote jobs can be
done in two ways. In the first model we use a
history-less equitable sharing policy, i.e. in case
the schedulers of two remote sites contend for
the same desktop, then the desktop is allocated to
run the task coming from the site that is currently
using less desktops from the local site. When nec-
essary, a random selection is performed to break
ties.

We have also modelled a more sophisticated
sharing policy that is based on a reciprocation
mechanism named the “Network of Favours” (or
NoF, for short) [3]. The NoF policy is suitable
to be used in P2P systems because it promotes
contributions and marginalises sites that do not
contribute with their idle resources to the Grid
(the latter are referred in the literature as free-
riders). In a NoF-based system, each site is rep-
resented by a peer agent (or a peer, for short) that
is in charge of maintaining a balance of the pair-
wise past interactions that it has had with other
peers in the system. Let Bp(q) be the balance that
peer p maintains for peer q. Bp(q) is computed in
such a way that it is never smaller than zero, and is
an indication of the amount of computing power
that p owns to q. Whenever two or more peers
contend to get resources from p, then p donates
its resources to whoever peer it owns most. Again,
if necessary, a random selection is used as a tie-
breaker. Not allowing the balance to go negative
is required to avoid whitewash attacks [3]. The
correct calculation of the balance is also a chal-
lenging issue; the interested reader should refer to
the work by Santos et al. [23] for details.

In the opportunistic Grid, tasks can be pre-
empted. This can happen both when the resource
is reclaimed by its owner (for instance, when the
user of a desktop starts a non-Grid application),
as well as when a task of a local job requires the
local resource that is executing a task of a remote
job, and also when the sharing policy decides that
the resource that is running a task of remote job
should be allocated to run the task of another
remote job. For the sake of simplicity, we assume
that the tasks that are executed in the oppor-
tunistic Grid are able to perform checkpoints, so
that when they are pre-empted, they can later
resume their execution, in the same or in another
resource, from the point where they have been
pre-empted. This simplification should not impact
too much the conclusions that we can draw from
our experiments, since, as stated before, we are
not concerned with absolute performance.

2.2 Workload Description

In this work, the simulations were performed
using workloads from real systems available at

Using a Simple Prioritisation Mechanism to Effectively Interoperate Service

the Grid Workloads Archive maintained by the
University of Delft in the Netherlands [16]. From
the several workloads available, we selected the
NorduGrid7 one, since it had the largest number
of sites (75) and users (387), as well as a substantial
number of jobs (781,370).

As it is described in the GWA site, “NorduGrid
is a production Grid for academic researchers in
Denmark, Estonia, Finland, Norway, Sweden, etc.
Since 2002, NorduGrid has been in continuous op-
eration and development, and since 2003 industrial,
scientif ic or private organisations with interest in
Grid computing have been invited to contribute
their compute power to the NorduGrid as collabo-
rators. In NorduGrid, non-dedicated resources are
connected using the Advanced Resource Connec-
tor (ARC) as Grid middleware.”

The trace comprises data about jobs submitted
from March 2003 until May 2006. It contains all
types of jobs previously mentioned, with a major-
ity of them (91.45%) falling in the BoT class. It
is important to point out that the trace only ex-
plicitly differentiates parallel and sequential jobs,
as it stores the number of processors that have
been used to run each job. BoT jobs were in-
ferred by inspecting the submission times of the
jobs. We considered that two jobs submitted by
the same user were part of the same BoT job
if it was unlikely that the outcome of the first
job submitted had triggered the execution of the
other job. Given the mean duration time of the
jobs available in the workload, we considered that
two jobs from the same user that were submitted
within less than 120 s apart belonged to the same
BoT job.

To restrict the time required to run the sim-
ulations we have divided the whole workload in
chunks of 4,000 “jobs” each, as per the definition
of jobs in GWA. Note that, as mentioned be-
fore, since the trace does not differentiates tasks
of a BoT job from sequential or parallel jobs, a
chunk usually has less than 4,000 jobs, as per the
definition we use in this paper. We then selected
some of these chunks to use as input data to
our simulations. We divided the chunks in those
that contained all types of jobs and those that

7http://www.nordugrid.org/.

contained only BoT jobs. The former were used
as input to the service Grid, while the latter were
used as the input to the opportunistic Grid. In
addition to the type of jobs that they contained,
chunks were also selected based on their load
characteristics and the number of different sites
that they contained. We selected 66 chunks for
the service Grid, each with 32 resource centres,
and 36 chunks for the opportunistic Grid, each
with 24 sites. For each type of Grid, half of the
chunks represented periods of high contention for
Grid resources, while the other half represented
low contention scenarios.

We used the following information from the
trace:

– Job Id: represents the job identification num-
ber;

– SubmitTime: specifies the time at which the
job was submitted; since we have used chunks
of the trace, for each chunk, the submis-
sion time of a particular job is given by the
difference between its absolute submission
time and the absolute submission time of the
first job in the chunk;

– RunTime: specifies the wall clock time (in
seconds) that the execution of the job took,
i.e., the difference between the end time and
start time;

– N Proc: represents the number of processors
required by the job; we assume that parallel
jobs are those with N Proc > 1;

– OriginSiteI D: identifies the Grid site from
which the job originates.

When jobs are submitted to clusters, they need
to specify both the number of processors required,
as well as for how long these nodes should be al-
located for the job. This information is missing in
many on the workload entries we used. Therefore,
we took again a simplifying approach to assume
that users’ prediction of the running time of their
jobs was perfect and made the requested cluster
time to be exactly the time elapsed to process the
job.

2.3 Grid Resources

In our simulations, the service Grid comprises 480
nodes in total. To allow for the execution of all

http://www.nordugrid.org/

F. Brasileiro et al.

parallel jobs found in the trace, one of the re-
source centres has the number of nodes required
by the job that requires more processors to run
(27) and the remaining nodes are evenly spread
over the other 31 resource centres.

The opportunistic Grid has two different
configurations that are used to control the con-
tention level in the Grid. The high contention
workload is executed in a Grid composed of 24
sites, each with 10 desktops available, while the
low contention workload is executed in a Grid
with the same 24 sites, but with each site having
20 desktops available.

Since we are assuming that the jobs that run in
the opportunistic Grid are able to checkpoint their
execution, the fact that the resources of the op-
portunistic Grid are shared and may be reclaimed
at any time by the resource owner has an impact
only on the aggregated computing power that the
Grid can provide over some period of time. There-
fore, we do not model resource availability in the
opportunistic Grid and assume that pre-emption
comes only from the prioritisation mechanism im-
plemented by the opportunistic Grid scheduler
that runs at each site.

Moreover, we do not model any additional
overhead that may be imposed due to job migra-
tion in case of pre-emption. Analysing the logs
of our simulations we identified that even in the
most challenging scenarios (with high contention
in both Grids), around 3/4 of the jobs executed
without any pre-emption and only 3.3% of the
jobs were pre-empted more than 5 times.

Finally, to speed up the execution of the sim-
ulator, we assume that the nodes of the service
Grid clusters and the desktops of the opportunis-
tic Grid have all the same processing power.

3 Interoperation Without Arbitration

In this section we start to assess the impact that
interoperation may have in the QoS perceived by
the users of two Grids that work independently.
Our first step is to establish a baseline for compar-
ison. Then, we evaluate the impact of having just
one Grid exploiting the other. Finally, we measure

the impact of having interoperation in both direc-
tions. In all interoperation cases, we assume that
there is no extra prioritisation mechanisms, except
those already present in the independent Grids.

Throughout this paper we will present results
that are mean values of the makespan metric over
the several jobs that comprise a given workload
chunk and over the various workload chunks used
in different simulation instances. In all cases, we
have run enough simulations to have a confidence
level of 95% and an error that is always smaller
than 5%.

3.1 Baseline

Our baseline values are derived from the simu-
lations that considered each Grid independently.
We have simulated 66 workload chunks for the
service Grid and 36 for the opportunistic Grid and
have measured the makespan of each of the jobs
submitted. The mean makespan of the jobs in all
chunks considered is presented in Table 1.

As it can be seen, when we consider the same
level of contention, the service Grid has a more
demanding workload than the opportunistic Grid
for the workload we have used. Moreover, in both
Grids, the difference between the mean makespan
for the low and the high contention cases are
substantially different.

Also, from the point of view of the mean
makespan of the Grid, there is no difference be-
tween the two sharing policies used in the op-
portunistic Grid. Therefore, from now on we will
only consider the NoF policy when simulating the
opportunistic Grid.

Table 1 Mean makespan for baseline scenario: Grids
working independently

Grid type Contention Mean
makespan (s)

Service Low 67,882
Service High 154,719
Opportunistic with equitable Low 36,175
Opportunistic with equitable High 66,073
Opportunistic with NoF Low 35,197
Opportunistic with NoF High 66,559

Using a Simple Prioritisation Mechanism to Effectively Interoperate Service

3.2 Exploiting the Opportunistic Grid

We now evaluate the effect of having interopera-
tion only in the direction of the service Grid to the
opportunistic Grid, i.e. resources from the oppor-
tunistic Grid can be used to run jobs originating
on the service Grid but jobs originating on the
opportunistic Grid cannot run in the resources of
the service Grid.

In this case, the simulation model of the op-
portunistic Grid remains the same and we slightly
change the simulation model of the service Grid.
First of all, there is a peer agent that is associated
to the WMS and that it uses whenever it decides
to submit service Grid jobs to the opportunistic
Grid. Of course, only BoT service Grid jobs can
be submitted to the opportunistic Grid. The way
this is accomplished is the following. If there are
no clusters where the tasks of such a job could be
scheduled without having to be placed in a non-
empty queue, then the WMS peer tries to obtain
a resource at any of the sites of the opportunistic
Grid. If there is such a resource available, then the
task is scheduled to run there. Notice that the exe-
cution of this task follows the policies established
by the opportunistic Grid. In particular, it can be
pre-empted. In this case, the WMS may schedule
the remaining processing to be executed in the ser-
vice Grid, if there are resources readily available,
or at another resource that it manages to obtain
from the opportunistic Grid. Table 2 presents the
mean makespan for the simulations considering
the one-way interoperation just described.

The relative benefit column shows the ratio
between the mean makespan obtained in the base-
line simulation and the mean makespan obtained
for each corresponding setting. Thus, relative

benefits greater than one indicate that the mean
makespan has been reduced, while values smaller
than one indicate increased mean makespan. As
expected, the mean makespan of the service Grid
workload has experienced a considerable reduc-
tion. Also, this improvement comes with a sub-
stantial reduction on the QoS of the opportunistic
Grid in all but one scenario (the one in which both
Grids are under low contention).

3.3 Exploiting the Service Grid

We now investigate the interoperation in the op-
posite direction, i.e. the opportunistic Grid uses
resources of the service Grid, but the service Grid
does not use resources of the opportunistic Grid.
In this case, the change in the simulation model
is as follows. If a site scheduler tries to allocate
a desktop to a local job but there are no local or
remote resources available, it tries to schedule it
to run in the service Grid. However, this is only
achieved it there is a cluster with idle nodes and
an empty queue. Note that in this case, the job
coming from the opportunistic Grid is never pre-
empted, since the service Grid does not pre-empt
jobs. The mean makespan values are presented in
Table 3 .

Again, the benefits of the exploitation of re-
sources from the other Grid can be clearly iden-
tified. The mean makespan for the opportunistic
Grid remains approximately the same for its low
contention workload, while it is reduced by a
factor of 2/3 in the case of the high contention
workload. Likewise, the negative impact on the
service Grid is only noticed when the opportunis-
tic Grid is under high contention, being larger for
the case in which the service Grid is also under
high contention.

Table 2 Mean makespan
for one-way
interoperability: service
Grid exploiting the
opportunistic Grid

Contention Grid type

Service Opportunistic Service Opportunistic

Mean Relative Mean Relative
makespan (s) benefit makespan (s) benefit

Low Low 43,231 1.57 36,466 0.97
Low High 43,853 1.55 148,624 0.45
High Low 50,537 3.06 69,906 0.50
High High 93,903 1.65 148,149 0.45

F. Brasileiro et al.

Table 3 Mean makespan
for one-way
interoperability:
opportunistic Grid
exploiting the service
Grid

Contention Grid type

Service Opportunistic Service Opportunistic

Mean Relative Mean Relative
makespan (s) benefit makespan (s) benefit

Low Low 67,843 1.00 35,979 0.98
Low High 72,073 0.94 43,014 1.55
High Low 158,643 0.98 35,067 1.00
High High 214,820 0.72 43,038 1.55

3.4 Simultaneous Exploitation

The two sets of simulations described above have
shown that, indeed, for the traces we have studied,
both Grids can benefit from the interoperation
with the other. However, they also point out that
this benefit may come with a negative impact on
the other Grid. To complete our analysis, we have
executed simulations that mix the two scenarios
previously studied. In this setting, we assess the
system behaviour with full interoperability be-
tween the two Grids under all combinations of
workload contention. The mean makespan for
these experiments are shown in Table 4.

The results show that, for the workload studied,
the service Grid is able to retain all the benefits
that we have measured in the previous exper-
iment, while the opportunistic Grid could only
retain part of the benefits, and for the case in
which it is in low contention and the service Grid
is under high contention, its QoS is degraded.

We point out that these results are valid only
for the workload we have used. It is possible that
for a different workload, other situations would
arise, with cases in which only the opportunis-
tic Grid would benefit, both Grid would benefit
and neither Grid would benefit from the inter-
operation. What our results highlight is that, un-
less some arbitration mechanism is put in place

to define which jobs originating from one Grid
should be allowed to be executed on the other
Grid, it is very difficult to predict beforehand what
is the benefit that the interoperation will bring.
This in turn is a big disincentive for interoperation
to happen.

In the next section we propose a very simple ar-
bitration mechanism that could be used to ensure
that the QoS experienced by the users of one Grid
is never reduced by the fact that their Grid is able
to interoperate with other Grids.

4 A Simple Arbitration Mechanism

The arbitration mechanism described in this sec-
tion is based on the NoF mechanism proposed for
P2P Grids [3]. Under this arbitration mechanism,
each resource centre in the service Grid runs a
peer agent. Any node in the cluster that is not
running a job that came from the cluster’s queue is
given to the local peer. These idle nodes are then
made available to the opportunistic Grid to run
BoT jobs originating from both the service Grid
and the opportunistic Grid. A cluster node that is
being opportunistically used to run one of these
jobs is pre-empted whenever there is a job in the
cluster’s queue that requires it.

Table 4 Mean makespan
for full interoperability

Contention Grid type

Service Opportunistic Service Opportunistic

Mean Relative Mean Relative
makespan (s) benefit makespan (s) benefit

Low Low 43,231 1.57 34,944 1.01
Low High 44,413 1.53 44,066 1.51
High Low 52,120 2.97 41,716 0.84
High High 91,968 1.68 51,585 1.29

Using a Simple Prioritisation Mechanism to Effectively Interoperate Service

Table 5 Mean makespan
for full interoperability
with arbitration

Contention Grid type

Service Opportunistic Service Opportunistic

Mean Relative Mean Relative
makespan (s) benefit makespan (s) benefit

Low Low 43,234 1.57 36,332 0.97
Low High 43,254 1.57 43,241 1.54
High Low 44,268 3.50 36,955 0.95
High High 44,595 3.47 45,145 1.47

Now, the submission of jobs from the oppor-
tunistic Grid to the service Grid follows the orig-
inal algorithm presented in Section 2. Note that
in this setting, the opportunistic Grid has more
resources, since it is able to exploit the dedicated
resources of the service Grid in an opportunistic
way, whenever they are idle. On the other hand,
the submission of service Grid jobs works pretty
much in the same way described in Section 3.2,
with the only difference that instead of using a
central peer associated to the WMS, the WMS
uses the peer associated to the resource centre
from which the job originates.

We have run simulations for the same workload
used in the previous scenarios. Table 5 presents
the mean makespan for these simulations.

As it can be seen, this simple mechanism guar-
antees that the QoS of the opportunistic Grid is
impacted only marginally and in the cases where it
improves, it does so by a factor that corresponds to
the same improvement measured for the scenario
in which it unilaterally exploited the service Grid.

On the other hand, the QoS improvement of
the service Grid is maintained for the cases when
its workload is in low contention and is, surpris-
ingly, further increased for the high contention
workloads. There are two reasons for this result.
Firstly, since the jobs of the opportunistic Grid are
no longer submitted through the cluster’s sched-
uler, they are now pre-empted by service Grid
jobs that are submitted to the clusters. Secondly,
under high contention it is likely that all queues of
the service Grid cluster will be non-empty. In this
situation, BoT jobs from the service Grid work-
load will be able to use idle nodes of the service
Grid (through the opportunistic Grid “interface”)
and will have their queueing time substantially
reduced.

5 Interoperation of gLite and OurGrid
Middleware

In this section we present our approach for sup-
porting the interoperation of a service Grid and
an opportunistic Grid. We have leveraged on the
fact that the NoF is already a part of the Our-
Grid middleware to implement the simple arbi-
tration mechanism evaluated in Section 4. The
main objectives are to allow the usage of the
non-dedicated resources provided by an OurGrid-
based opportunistic Grid to execute jobs submit-
ted to the gLite-based service Grid and to al-
low the usage of idle computing cycles from the
gLite-based service Grid to execute jobs submit-
ted to the OurGrid-based opportunistic Grid. To
achieve these objectives we integrate OurGrid
peers into the service Grid and expose the gLite
idle resources to the opportunistic Grid. To make
the paper self-contained, before we explain the
details of our implementation, we give a brief
description of the two middleware used.

5.1 Middleware Background

5.1.1 A gLite-Based Service Grid

The gLite middleware was born from the col-
laborative efforts of more than 80 people in 12
different academic and industrial research centres
as part of the EGEE Project [14].

A gLite-based service Grid is composed by a
set of resource centres running services to provide
remote access to local dedicated computational
resources and central services that form the back-
bone of the service Grid. The gLite Grid services
can be thematically grouped into 4 groups: Access
and Security Services, Information and Monitoring

F. Brasileiro et al.

Services, Job Management Services and Data Ser-
vices.

The prime aim of the Access and Security Ser-
vices is to identify users, allowing or denying ac-
cess to services, on the basis of agreed policies. It
provides credentials having a universal value that
works for many purposes across several infrastruc-
tures, communities, Virtual Organisations (VOs),
and projects. To carry out this task, gLite uses the
Public Key Infrastructure (PKI) X.509 technology
with Certification Authorities as trusted third par-
ties.

The Information and Monitoring Services pro-
vide information about the gLite resources and
their status. The published information is used to
locate resources and for monitoring and account-
ing purposes. Much of the data published in the
Information Service conforms to a schema that
defines a common conceptual data model to be
used for resource monitoring and discovery.

The Job Management Services are responsible
for dealing with all aspects of the execution of a
job on the Grid. The Computing Element (CE)
service represents a set of computing resources
localised at a resource centre (i.e., a cluster, a com-
puting farm, a SMP machine, etc.) and is respon-
sible for the local job management: (submission,
control, etc.). A CE provides a generic interface to
the cluster where the cluster itself is represented
by a collection of Worker Nodes (WN). Another
important service in this group is the Workload
Management System (WMS). The WMS is a Re-
source Broker responsible for the distribution and
management of jobs across different resource cen-
tres. The purpose of the WMS is to accept user
jobs, to schedule them to the most appropriate
CE matching user’s requirements and Grid nodes
availability, to record their status, and to retrieve
their output. There are other services in this group
used to collect information about the resource
usage done by users or groups of users (VOs).

The Data Services manage all aspects related
to the location and movement of data among the
resource centres of the Grid. A service called
Storage Element (SE) is a gLite component that
provides a common interface to the storage back-
end available at the resource centre. It is not
uncommon to use an SE to provide remote access
to large robots controlling hundreds of terabytes

of tape storage. Another data service is the Large
File Catalogue (LFC) that keeps meta-data infor-
mation, mapping a common namespace into the
location of each file in the SEs present in the Grid.
Last but not least, there is a File Transfer Service
(FTS) that is used to establish optimised transfer
channels among two SEs in the Grid.

All the gLite Services can be accessed and used
through the User Interface (UI) service. The UI
provides a set of command-line tools that allow
users to authenticate themselves in the Grid, sub-
mit jobs and retrieve their output and transfer files
to remote Grid resource centres.

The Grid services described above can also
be grouped by their scope. Services like Com-
puting Elements and Storage Elements are ser-
vices with local scope. They must be deployed by
each resource centre to provide remote access to
their local resources. Service like the Workload
Management System, Large File Catalogue and
File Transfer Service are global services that are
deployed at some core resource centres of the
Grid and shared by all users. There are also ser-
vices like the Access and Security Services and
the Information and Monitoring Services that are
both local and global services. They need to be
deployed at each resource centre and need some
global instances to co-ordinate the interaction and
propagation of information among local instances.

The gLite job life cycle is tracked by a Job
Provenance Service and is described as a sequence
of state changes. The Submitted state is attributed
to a new job that has just been submitted by the
user and is ready to be transferred from the User
Interface to the WMS. When the job reaches the
WMS its state is changed from Submitted to Wait-
ing, as the job waits to be processed by the WMS.
The status is then changed to Ready, indicating
that the WMS has chosen a CE to execute the
job. The next state is Scheduled, meaning that
the job was transferred from the WMS to the CE
and is now in the local CE queue, waiting to be
scheduled by the Local Resource Management
Service (LRMS) within the CE. The job state
is changed to Running when it starts to run on
the CE resources. Once running the job state
can either change to Done or to Aborted. The
Done state indicates that the job execution was
either concluded, or cancelled by the user. The

Using a Simple Prioritisation Mechanism to Effectively Interoperate Service

Aborted state indicates that the execution was not
concluded. Cleared is the final job state, indicating
that its output has been collected by the user who
submitted the job.

5.1.2 An OurGrid-Based Peer-to-Peer
Opportunistic Grid

An opportunistic P2P Grid supported by the Our-
Grid middleware has three main components,
namely the OurGrid Worker, the OurGrid Re-
source Manager Peer (or simply the OurGrid
Peer) and the OurGrid Broker. Figure 1 depicts
the OurGrid architecture.

The OurGrid Worker is an agent that executes
on the Grid resources (referred as Grid machines)
and is responsible for implementing a secure en-
vironment for the execution of the tasks of Grid
applications. A policy defined by the resource
owner drives the opportunistic behaviour of the
OurGrid Worker. It runs an idleness detection
algorithm that triggers the availability of the Grid
machine when the resource is idle (as defined by
the local policy), and interrupts any Grid task that
is executing when, according to the local policy,
the resource is deemed not to be idle.

The OurGrid Peer is the component that man-
ages, at each administrative domain (or site), the
set of Grid machines that are made available to

the Grid by the corresponding site. In general,
one peer per site is installed. A peer joins the
Grid by notifying a peer discovery service about
its existence and it is immediately informed about
the presence of other peers on the Grid.

The OurGrid Broker is responsible for provid-
ing users with an interface to submit their ap-
plications. It is also responsible for performing
the scheduling of the applications on the Grid
machines and manages the execution of the sched-
uled applications. A user wishing to run an appli-
cation must use the OurGrid Broker to connect to
a known peer (usually her own site’s peer, called
the local peer), becoming a local user of that peer.

Parallel applications that run on OurGrid are
structured as a set of independent tasks (a BoT).
There are several ways to interact with the Our-
Grid Broker to submit applications. However, no
matter how the user interacts with the broker,
when an application is submitted for execution,
the broker contacts its local peer asking for the
number of Grid machines required to run the ap-
plication (this request may carry specific attributes
for the machines, such as a particular operating
system, or a minimal amount of memory, etc.).
When the peer receives such a request it tries to
find enough machines that are suitable to execute
the application’s tasks. If the peer cannot satisfy
the request with its own local machines, it tries to

Fig. 1 OurGrid’s
architecture

F. Brasileiro et al.

obtain machines from other community peers, by
forwarding the request to remote peers that may
have suitable machines. It then waits for these
peers to deliver remote machines. Whenever new
machines (local or remote) are made available,
the local peer delivers these machines to the re-
questing broker. As soon as one or more machines
are delivered to the broker, it schedules tasks and
starts the management of the their execution.

OurGrid has been built to be fast, simple, scal-
able and secure. It is fast as it allows users to
improve the turn-around time of their applica-
tions. This capability is provided by features of
the OurGrid Broker, such as scheduling with task
replication and file transfer optimisations. The
system’s simplicity is mainly due to its capacity
of hiding the Grid heterogeneity behind the Our-
Grid middleware. In order to achieve scalability, a
peer-to-peer approach has been adopted and the
Network of Favours, a technology that promotes
co-operation among peers, has been designed and
implemented. On OurGrid, security is delivered
to users by means of the sand-boxing mechanism
implemented by the OurGrid Worker. It isolates
a potentially malicious application inside a virtual
machine, thus protecting the machine and the net-
work from attacks. A more detailed discussion on
the OurGrid approach to each one of these issues
can be found in [6].

5.2 Exposing Dedicated Resources to the
Opportunistic Grid

Exposing the service Grid dedicated resources
managed by a particular gLite CE to the oppor-
tunistic Grid simply requires the installation of
an OurGrid Peer and OurGrid Workers in every
node managed by the CE, as shown in Fig. 2. In
this way the same set of resources would be visible
both by the gLite-based service Grid and by the
OurGrid-based opportunistic Grid.

However, it is important to define how to pri-
oritise the execution of jobs coming from the
service Grid. The OurGrid Workers should be
allowed to run in the cluster only in the nodes
that are not being used to execute jobs from the
service Grid (grey circles in Fig. 2). In gLite-based

Fig. 2 Scavenging idle cycles from the service Grid

service Grids the CE is the service responsible for
exposing local clusters in the Grid. However, the
CE has no power to control how the resources in
the cluster are actually used. Instead, the CE dele-
gates this power to the Local Resource Manager
System (LRMS) and forwards the remote jobs
received trough the Grid to the LRMS queues. So,
in order to implement this prioritisation policy we
need to modify the way the LRMS manages the
cluster resources.

The solution is based on the exploitation of the
hooks provided by most LRMSs to execute some
commands before and after the execution of the
actual job. Prior to the execution of a job in the
cluster the LRMS executes a command to stop
the OurGrid Worker running in the selected node,
then it executes the job on the node and after the
execution is concluded and the node is idle again
the LRMS starts an OurGrid Worker again in the
node. So, the execution of OurGrid Workers does
not tag the cluster nodes as busy and whenever a
job is scheduled to run in a given node the Our-
Grid Worker running there is interrupted to be
restarted only after the cluster jobs are finished.

With this scheme, whenever a node in the clus-
ter is idle it will be running an OurGrid Worker
and will be ready to run jobs coming from the
opportunistic Grid. On the other hand, whenever
a node in the cluster is needed to execute a job
coming from the service Grid it will be readily
available as well.

Using a Simple Prioritisation Mechanism to Effectively Interoperate Service

6 Related Work

With the proliferation of Grid middleware distri-
butions, interoperability between different Grid
infrastructures has become a major concern. To
create mechanisms to allow a seamless interop-
eration between those infrastructures is the next
step needed to provide the ubiquitous access to
computational resources and services pledged by
the Grid computing model.

Several interoperability efforts are actually in
course to allow specific Grid infrastructures to
interoperate using different strategies. The first
one is to try to find the least common denomi-
nators between the Grid services provided by the
targeted infrastructures and develop new services
to connect them at different levels. This is the
case of the work carried out by the Grid Inter-
operability Now (GIN) working group. The GIN
group has being working to provide interoperabil-
ity between 9 service Grid infrastructures spread
all over the globe [13]. At the time of writing GIN
has achieved interoperability of the Grid infor-
mation systems using the gLite BDII service as a
common information provider. The current work
involves the connection of the infrastructures al-
lowing common job submission, data movement
and authorisation and identity management.

Another example of this approach is presented
by Riedel et al. [22]. Their work describes the
interoperability between the gLite-based EGEE
infrastructure and the UNICORE-based Distrib-
uted European Infrastructure for Supercomput-
ing Applications (DEISA). DEISA is a comput-
ing infrastructure formed by the assembling of
large dedicated computing centres, clusters and
super-computers mainly focused on the execu-
tion of tightly-coupled jobs. This activity is being
conducted with the objective of combining the
power of the two infrastructures to run biology
experiments for developing new drugs to combat
Malaria. Marzolla et al. [21] provides more details
on how the interoperability between gLite and
UNICORE is being conducted.

The Open Middleware Infrastructure Institute
for Europe (OMII-Europe)8 was a project dedi-

8http://omii-europe.com/.

cated to the development of components to en-
able the interoperability between three Grid mid-
dleware (gLite, Globus and UNICORE) used by
several Grid infrastructures in Europe [12].

The second approach found in the literature de-
scribes the development of meta-schedulers able
to submit jobs to different Grid infrastructure at
the same time, connecting them at the level of
the user interface. GridWay [26], GrADS [25],
P-GRADE [17], and GANGA [5] are just some
examples of meta-schedulers for Grid infrastruc-
tures.

All the related works presented so far were
targeted to combine the resources provided by
different service-Grid infrastructure. The work
conducted in the context of the EDGeS Project9

goes in another direction, closer to our ap-
proach, as it also targets the combination of
non-dedicated resources and service Grids. The
main difference between EDGeS and our ap-
proach is that EDGeS targets the utilisation of
resources donated through voluntary computing,
where users have no incentive to donate their
resources except for helping in the execution of
a specific, usually big and well known, applica-
tion [11, 24]. Our approach targets users who
donated their idle resources with the aim to gain
access to the idle resources donated by others
when they need to run their applications using the
Grid. Nevertheless, the approach promoted by the
EDGeS project can also be used to integrate P2P
Grids and service Grids [8].

Finally, unlike all previous works on interop-
erability of Grid systems that study how Grids
should interoperate, the focus of our work is
mainly on how to enable this interoperation in a
fair way.

7 Concluding Remarks

In this paper we presented an approach for sup-
porting the interoperation of a service Grid and
an opportunistic Grid. We propose a simple ar-
bitration mechanism that has several advantages.
Firstly, it allows idle resources belonging to the

9http://www.edges-grid.eu/.

http://omii-europe.com/
http://www.edges-grid.eu/

F. Brasileiro et al.

service Grid to be used in an opportunistic way;
secondly, the provision of an opportunistic Grid
allows shared resources to be added to the in-
frastructure, a feature that turns out to be very
important for consortia in which many of the
member institutions can not afford the provision
of dedicated resources. Finally, as our simulation
results indicate, it is possible to use the oppor-
tunistic Grid to drain BoT jobs out of the service
Grid queues, greatly reducing the execution time
of this jobs.

The proposed approach has been imple-
mented in the context of the EELA-2 project
(http://www.eu-eela.eu/), an initiative co-funded
by the European Commission within its Seventh
Framework Programme and involving 78 institu-
tions from 11 countries in Latin America and 5 in
Europe.

Acknowledgements Authors would like to thank the Eu-
ropean Commission for the co-funding of both the EELA
and the EELA-2 projects. Special thanks to the NorduGrid
team that made available the traces of their system in the
Grid Workloads Archive. Francisco Brasileiro would like
to thank the financial support from CNPq/Brazil (grant
300.646/96).

References

1. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M.,
Werthimer, D.: SETI@home: an experiment in public-
resource computing. Commun. ACM, 45(11), 56–61
(2002)

2. Anderson, D.P.: BOINC: a system for public-resource
computing and storage. In: Proceedings of the 5th
IEEE/ACM International Workshop on Grid Com-
puting, GRID ’04, pp. 4–10. IEEE Computer Society,
Washington, DC, USA (2004)

3. Andrade, N., Brasileiro, F., Cirne, W., Mowbray, M.:
Automatic Grid assembly by promoting collaboration
in peer-to-peer Grids. J. Parallel Distrib. Comput.
67(8), 957–966 (2007)

4. Anglano, C., Canonico, M., Guazzone, M.: The
ShareGrid peer-to-peer desktop Grid: infrastructure,
applications, and performance evaluation. J. Grid
Computing 8(4), 543–570 (2010). doi:10.1007/s10723-
010-9162-z

5. Brochu, F., Egede, U., Elmsheuser, J., Harrison, K.,
Jones, R.W.L., Lee, H.C., Liko, D., Maier, A., Mosci-
cki, J.T., Muraru, A., Patrick, G.N., Pajchel, K., Reece,
W., Samset, B.H., Slater, M.W., Soroko, A., Tan, C.L.,
Vanderster, D.C.: Ganga: a tool for computational-task

management and easy access to Grid resources. CoRR.
abs/0902.2685 (2009)

6. Cirne, W., Brasileiro, F., Andrade, N., Costa, L.,
Andrade, A., Novaes, R., Mowbray, M.: Labs of the
world, unite!!! J. Grid Computing 4(3), 225–246 (2006)

7. da Silva, D.P, Cirne, W, Brasileiro, F.: Trading
cycles for information: using replication to sched-
ule bag-of-tasks applications on computational Grids.
In: Proceedings of the Euro-Par 2003: International
Conference on Parallel and Distributed Computing,
pp. 169–180. Klagenfurt, Austria (2003)

8. de Barros, A.G., Furtado, A.A., Brasileiro, F.: Bridging
OurGrid-based and gLite-based Grid infrastructures.
In: Proceedings of the Second EELA-2 Conference
(2009)

9. Epema, D.H.J., Livny, M., van Dantzig, R., Evers, X.,
Pruyne, J.: A worldwide flock of condors: load sharing
among workstation clusters. Future Gener. Comput.
Syst. 12(1), 53–65 (1996)

10. Estrada, T., Taufer, M., Anderson, D.: Performance
prediction and analysis of BOINC projects: an empiri-
cal study with EmBOINC. J. Grid Computing 7, 537–
554 (2009). doi:10.1007/s10723-009-9126-3

11. Farkas, Z., Kacsuk, P., Balaton, Z., Gombás, G.: In-
teroperability of BOINC and EGEE. Future Gener.
Comput. Syst. 26(8), 1092–1103 (2010)

12. Field, L., Laure, E., Schulz, M.: Grid deployment ex-
periences: Grid interoperation. J. Grid Computing 7,
287–296 (2009). doi:10.1007/s10723-009-9128-1

13. Flechl, M., Field, L.: Grid interoperability: joining Grid
information systems. J. Phys. Conf. Ser. 119(6), 062030
(2008)

14. Gagliardi, F., Jones, B., Grey, F., Bégin, M.-E.,
Heikkurinen, M.: Building an infrastructure for sci-
entific Grid computing: status and goals of the egee
project. Philos. Trans. R. Soc. Lond. A: Math. Phys.
Eng. Sci. 363(1833), 1729–1742 (2005)

15. Hernández, V., Blanquer, I., Aparicio, G., Isea, R.,
Chaves, J.L., Hernández, Á., Mora, H.R., Fernández,
M., Acero, A., Montes, E., Mayo, R.: Advances in the
biomedical applications of the EELA project. Stud.
Health Technol. Inform. 126, 31–36 (2007)

16. Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu,
C., Wolters, L., Epema, D.H.J.: The Grid workloads
archive. Future Gener. Comput. Syst. 24(7), 672–686
(2008)

17. Kacsuk, P., Kiss, T., Sipos, G.: Solving the Grid inter-
operability problem by P-GRADE portal at workflow
level. Future Gener. Comput. Syst. 24(7), 744–751
(2008)

18. Litzkow, M., Livny, M., Mutka, M.: Condor—a hunter
of idle workstations. In: Proceedings of the 8th Interna-
tional Conference of Distributed Computing Systems,
pp. 104–111. IEEE Computer Society, San Jose, CA,
USA (1988)

19. Marechal, B., Bello, P.H.R., Carvalho, D.: Build-
ing a Grid in latin america: the EELA project e-
infrastructure. In: CCGRID ’07: Proceedings of the
Seventh IEEE International Symposium on Cluster
Computing and the Grid, pp. 835–839. IEEE Computer
Society, Washington, DC, USA (2007)

http://www.eu-eela.eu/
http://dx.doi.org/10.1007/s10723-010-9162-z
http://dx.doi.org/10.1007/s10723-010-9162-z
http://arXiv.org/abs/0902.2685
http://dx.doi.org/10.1007/s10723-009-9126-3
http://dx.doi.org/10.1007/s10723-009-9128-1

Using a Simple Prioritisation Mechanism to Effectively Interoperate Service

20. Marechal, B., Bello, P.R., Carvalho, D., Mayo, R.:
Applications ported to the EELA e-infrastructure.
In: Proceedings of the Seventh IEEE International
Symposium on Cluster Computing and the Grid
(CCGrid’07), pp. 852–857. IEEE Computer Society,
Washington, DC, USA (2007)

21. Marzolla, M., Andreetto, P., Venturi, V., Ferraro,
A., Memon, A.S., Memon, M.S., Twedell, B., Riedel,
M., Mallmann, D., Streit, A., van de Berghe, S., Li,
V., Snelling, D., Stamou, K., Shah, Z.A., Hedman,
F.: Open standards-based interoperability of job sub-
mission and management interfaces across the Grid
middleware platforms gLite and UNICORE. In:
Proceedings of International Interoperability and
Interoperation Workshop (IGIIW) 2007 at 3rd IEEE
International Conference on e-Science and Grid
Computing, pp. 592–599. IEEE Computer Society,
Bangalore, India (2007)

22. Riedel, M., Memon, A.S., Memon, M.S., Mallmann,
D., Streit, A., Wolf, F., Lippert, Th., Venturi, V., An-
dreetto, P., Marzolla, M., Ferraro, A., Ghiselli, A.,
Hedman, F., Shah, Z.A., Salzemann, J., Da Costa, A.,
Breton, V., Kasam, V., Hofmann-Apitius, M., Snelling,
D., van de Berghe, S., Li, V., Brewer, S., Dunlop, A.,
De Silva, N.: Improving e-science with interoperability
of the e-infrastructures EGEE and DEISA. In: Pro-
ceedings of the 31st International Convention MIPRO,
Conference on Grid and Visualization Systems (GVS),
pp. 225–231. Opatija, Croatia, Croatian Society for

Information and Communication Technology, Elec-
tronics and Microelectronics (2008)

23. Santos, R., Andrade, A., Cirne, W., Brasileiro, F.,
Andrade, N.: Relative autonomous accounting for
peer-to-peer Grids: research articles. Concurr. Com-
put.: Pract. Exp. 19, 1937–1954 (2007)

24. Urbah, E., Kacsuk, P., Farkas, Z., Fedak, G.,
Kecskemeti, G., Lodygensky, O., Marosi, A., Balaton,
Z., Caillat, G., Gombas, G., Kornafeld, A., Kovacs, J.,
He, H., Lovas, R.: EDGeS: bridging EGEE to BOINC
and XtremWeb. J. Grid Computing 7, 335–354 (2009).
doi:10.1007/s10723-009-9137-0

25. Vadhiyar, S.S., Dongarra, J.J.: A metascheduler for the
Grid. In: HPDC ’02: Proceedings of the 11th IEEE
International Symposium on High Performance Dis-
tributed Computing, p. 343. IEEE Computer Society,
Washington, DC, USA (2002)

26. Vázquez-Poletti, J.L., Huedo, E., Montero, R.S.,
Llorente, I.M.: Coordinated harnessing of the IRISgrid
and EGEE testbeds with gridway. J. Parallel Distrib.
Comput. 66(5), 763–771 (2006)

27. Wang, Y., Scardaci, D., Yan, B., Huang, Y.: Intercon-
nect EGEE and CNGRID e-infrastructures through
interoperability between gLite and GOS middle-
wares. In: Proceedings of the 3rd IEEE International
Conference on e-Science and Grid Computing (e-
Science’07)—International Grid Interoperability and
Interoperation Workshop. IEEE Computer Society,
Los Alamitos, CA, USA (2007)

http://dx.doi.org/10.1007/s10723-009-9137-0

	Using a Simple Prioritisation Mechanism to Effectively Interoperate Service and Opportunistic Grids in the EELA-2 e-Infrastructure
	Abstract
	Introduction
	System Description
	Simulation Model
	Workload Description
	Grid Resources

	Interoperation Without Arbitration
	Baseline
	Exploiting the Opportunistic Grid
	Exploiting the Service Grid
	Simultaneous Exploitation

	A Simple Arbitration Mechanism
	Interoperation of gLite and OurGrid Middleware
	Middleware Background
	A gLite-Based Service Grid
	An OurGrid-Based Peer-to-Peer Opportunistic Grid

	Exposing Dedicated Resources to the Opportunistic Grid

	Related Work
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

