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a b s t r a c t

This paper introduces an end-to-end framework for efficient computing and merging of Monte Carlo
simulations on heterogeneous distributed systems. Simulations are parallelized using a dynamic load-
balancing approach and multiple parallel mergers. Checkpointing is used to improve reliability and to
enable incremental results merging from partial results. A model is proposed to analyze the behavior
of the proposed framework and help tune its parameters. Experimental results obtained on a production
grid infrastructure show that themodel fits the real makespanwith a relative error of maximum10%, that
using multiple parallel mergers reduces the makespan by 40% on average, that checkpointing enables the
completion of very long simulations and that it can be used without penalizing the makespan.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Monte Carlo simulations are employed in several scientific
domains due to their capacity to produce realistic results
from repeated sampling of events generated by pseudo-random
algorithms. Accurate results require a large number of statistically
independent events, which has a strong impact on the computing
time of the simulation. Nevertheless, Monte Carlo simulations are
easily parallelized using a split and merge pattern. They can thus
exploit important amounts of resources available in world-wide
computing grids, such as the European Grid Infrastructure (EGI)1
and Open-Science Grid.2

Various strategies have been proposed to efficiently execute
Monte Carlo simulations on distributed platforms [1–3], but they
mostly focus on the computing part of the simulation while the
merging of partial simulation results is also a critical step. Merging
partial results is a data-intensive operation which is very sensitive
to the number and production date of partial results, to the
availability of storage resources, and to the network throughput
and latency. On world-wide computing infrastructures, partial
results are usually geographically distributed close to their
production site, which exacerbates the cost of data transfers. In
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some cases, the merging time can even become comparable to the
simulation makespan.

Software heterogeneity observed in large computing infras-
tructures is also a show-stopper due to the amount of errors it
generates. Job failure rates of more than 10% are commonly ob-
served in EGI [4], with strong consequences on the performance of
applications. Checkpointing is often used to improve application
reliability, but it has to be properly tuned to limit overheads.
Checkpointing is alsoworth studying to address resultmerging be-
cause it enables incremental production of partial results during
the computing phase.

Performance analysis and modeling are important to under-
stand the behavior of distributed applications and to help tune
parameters such as the checkpointing delay. But they remain a
challenge for applications running in production conditions be-
cause most parameter values are unknown before the completion
of the experiment, for instance the background load of the infras-
tructure or the characteristics of the resources involved in the exe-
cution.Models used in productionhave to be able to copewith such
a lack of information, focusing on parameters that are measurable
by the applications.

In this paper,wepropose an end-to-endMonte Carlo simulation
framework combining dynamic simulation load-balancing with
parallel, incremental merge of checkpointed results. The frame-
work is designed for heterogeneous, non-reliable distributed sys-
tems deployed in production. It does not make any assumption on
the nature or characteristics of computing resources. We assume
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that it is deployed in the application space, i.e., we focus on im-
proved usage of existing infrastructures rather than on the design
or tuning of their services. In particular, job scheduling and data
placement are assumed to be controlled by infrastructure services.
We also propose a model to analyze the behavior of the proposed
framework and help tune its parameters.

Related work on parallel Monte Carlo simulation, on merging,
andon checkpointing techniques is presented in Section 2. Thenwe
describe the proposed framework integrating parallel, incremental
mergewith simulation checkpointing and dynamic load-balancing
in Section 3. In Section 4, experiments evaluate the impact of
merging strategies and checkpointing in production conditions.
The paper closes on a discussion and conclusions.

2. Related work

This section presents related work on Monte Carlo paralleliza-
tion methods and their limitations concerning partial result merg-
ing when used on distributed environments. It also explains the
MapReduce paradigm which is a common way of implementing
split-and-merge patterns. An outline on checkpointing is finally
presented.

2.1. Parallel Monte Carlo

The parallelization of Monte Carlo algorithms is widely
studied [5,6,1,2,7], but their proper load-balancing remains a
challenge on heterogeneous unreliable platforms, where assigning
the same number of events to each computing job is clearly
sub-optimal. To deal with this issue, Rosenthal [5] proposes a
simple but effective technique in which a master assigns a fixed
computing time T to each job involved in the simulation. Jobs
simulate until time T , merge their partial results and report them
to the master. The master then merges the results produced by all
the computing jobs. Themerging phase consists here in computing
a weighted average based on the number of events simulated by
each job. In all cases, the total computing time and the number of
available parallel nodes have to be known in advance so that T can
be computed accordingly.

On grid architectures, the above technique can suffer signif-
icantly from the variable queuing times of the jobs. Moreover,
if the total computing time is not easily known, then T cannot
be estimated properly. New strategies are needed in these cases.
Mascagni and Li [1] uses the N out of M strategy, i.e. it increases
the number of submitted jobs from N to M . As soon as N results
are ready, the final result can be produced. This is an example of
task replication classically employed on distributed systems [8].

Camarasu-Pop et al. [9] proposes a dynamic load-balancing
approach for distributed and heterogeneous infrastructures. To
better exploit available resources, simulation jobs are kept running
until the desired number of events is reached. Periodically, they
send their number of simulated events to a master job that sums
up the events and stops the computing jobswhen the total number
is reached. Thus each computing resource contributes to thewhole
simulation until the end. Only light communications are performed
between the computing jobs and the master.

Such dynamic load-balancing approaches are possible since
Monte Carlo algorithms are moldable, i.e. the workload Γ is freely
divisible. In this case, the scheduler can dispatch arbitrarily small
quantities of work to n parallel computing jobs, so that the n
parallel jobs finish quasi-simultaneously. This behavior has been
modeled in [10], where the simulation makespan is expressed as
the average waiting time EL plus the average running time of the n
parallel jobs:M =

Γ

n + EL.
Most of the existing literature on parallelMonte Carlo strategies

concentrates on the computation itself and says little about the
merging of partial results. This problem is indeed of limited
importance on local clusters. Nevertheless, when results are
geographically distributed over the sites of a world-wide system,
transferring and merging them may be as long as the parallelized
Monte Carlo computation. Themerging phase can thus represent a
key element in improving the performance of parallel Monte Carlo
algorithms.

2.2. MapReduce

MapReduce has become a common way of implementing split-
and-merge patterns. MapReduce is a programming model and
an associated implementation for processing large datasets on
distributed platforms like clusters or grids [11–13]. In the Map
step, the master node partitions the inputs and distributes them to
Mappers for processing. During the Reduce step, the partial results
are combined into the final output. Several Reducers may co-exist,
each of them producing one independent result.

One of the first and most well-known implementations is the
Google MapReduce library [11]. The input data is partitioned
into M splits, so that each Mapper takes an input key/value
pair and produces a set of intermediate key/value pairs. These
intermediate results are partitioned into R pieces that are
distributed to Reducers. Thus, each Reducer takes as inputs an
intermediate key and a set of values for that key, and produces
one output corresponding to a collection of values. After successful
completion, the final output of the MapReduce execution is
available in the R output files. A combiner can be used to perform
local aggregation of the intermediate outputs, which helps to cut
down the amount of data transferred from the Mapper to the
Reducer.

In [14], where MapReduce is used for High Energy Physics and
KMeans clustering, another combine strategy is used to provide
a single final result. Ekanayake and Pallickara [14] use Hadoop,3
Apache’s MapReduce implementation, which relies on its own
distributed filesystem to schedule the MapReduce computation
tasks depending on the data locality and hence to improve the
overall I/O bandwidth. Ekanayake and Pallickara [14] evaluate the
total execution time and speed-upwith respect to data size, but no
information is given on theperformance of the reduce and combine
steps individually.

Map and reduce progresses are monitored separately in [15],
showing that the reduce step can take much more time than the
map step. In this paper the authors propose amodifiedMapReduce
architecture allowing data to be pipelined between operators. To
support pipelining, the authorsmodified themap task to push data
to Reducers as it is produced. Because the number of Mappers
far exceeds the number of Reducers, pushing data too early to
Reducers may create a bottleneck. Therefore, data is buffered by
the Mappers and sent to Reducers only when it reaches a certain
threshold. Condie et al. [15] also propose a modified version of the
Hadoop MapReduce framework that supports online aggregation.
In this scheme, the system gives the user an estimate of the
final query result at all times during processing. This estimate is
obtained from partial results checkpointed periodically.

2.3. Checkpointing

Checkpointing consists in saving the state of a running program
so that it can be reconstructed later in time [16]. It has various
purposes, among which providing fault-tolerance and accessing
partial results. These are valuable for parallel Monte Carlo

3 http://hadoop.apache.org/mapreduce
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Fig. 1. Workflow without checkpointing. Simulation jobs are represented in blue, merging jobs in green and the master in orange. Multiple simulation and merge jobs run
in parallel but, for readability reasons, only one simulation and one merge jobs are represented. Simulation jobs upload their results once at the end of their lifetime. The
SimulationStop condition given by the master triggers: (i) results upload from simulation jobs and (ii) the launch of merging jobs. The StopMerge signal is sent by the first
merging job having merged the required number of events. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
applications running on heterogeneous platforms that are prone
to failures.

Some grid/cluster computing systems like Condor [3] provide
integrated checkpointingmechanisms. Condor can take a snapshot
of the current state of the process, including code, stack and
data segments, all CPU registers, open files and signal handlers.
Such process-level checkpointing mechanisms are transparent to
end users, but they are platform-dependent and may not be
suited for large applications requiring significant disk and network
resources.

Application-level checkpointing [1] is oftenmore efficient since
the application can choose to save the minimal information
required to resume computation. As described in [1], Monte Carlo
applications generally need to save only a relatively small amount
of information. For instance, the GATE [17] Monte Carlo simulator
has a mechanism allowing the application to periodically pause
and checkpoint on disk the state of its actors. The user can specify
if saved results should be complete (all events simulated since the
beginning of the execution) or incremental (only the difference
between two successive checkpoints). After each checkpoint, the
simulator automatically resumes its execution. In case a failure
occurs, results can be retrieved from the last checkpoint and the
simulator is re-started with a new independent random seed.

The next section describes the complete framework proposed
for robust execution ofMonte Carlo simulations on distributed and
heterogeneous systems. A model of the makespan of the complete
simulation is also introduced.
3. Proposed framework

3.1. Framework description

Our framework extends thework proposed in [9] by integrating
the merging phase with the dynamic load-balancing used in
the parallelization of Monte Carlo simulations. To improve
performance, the merging phase is also parallelized in multiple
jobs providing a single final result. Our framework also includes
checkpointing to improve the robustness of long simulations.

Algorithm 1 Master algorithm for dynamic load-balancing (ex-
tracted from [9])

N=total number of events to simulate
n=0
while n< N do

n = number of events simulated by running and successfully
completed jobs

end while
Send stop signal to all jobs
Cancel scheduled jobs

The workflow without checkpointing is described in Fig. 1.
The master generates multiple parallel jobs containing the total
number N of events to simulate. Each job periodically transmits
its current number of simulated events to themaster. At this point,
these events reside on the local disk and will not be available for
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Fig. 2. Workflow with checkpointing. Simulation jobs are represented in blue, merging jobs in green and the master in orange. Multiple simulation and merge jobs are
launched in parallel at the beginning of the workflow. For readability reasons, only one simulation and one merge jobs are represented. Simulation jobs upload their results
regularly, at the same frequency as they checkpoint their partial results. The SimulationStop condition given by the master triggers the end of simulation jobs. From this
moment on, only merging jobs continue to run during the ‘‘extra merging time’’. The StopMerge signal is sent by the first merging job having merged the required number
of events. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Algorithm 2 Simulation jobs algorithm for dynamic load-
balancing (extracted from [9])
N=total number of events to simulate
n=0, lastUpdate=0, updateDelay=5min
while stop signal not received AND n< N do

Simulate next event
n++
if (getTime() - lastUpdate) >updateDelay then

Send n to master
lastUpdate = getTime()

end if
end while
Upload results to output storage

merging in case the simulation job fails. Simulation jobs then check
the stopping condition given by themaster when the total number
of simulated events from all simulation jobs is reached. This
part of the workflow corresponds to the dynamic load balancing
algorithm presented in Algorithms 1 and 2. When the stopping
condition is reached, the master launches multiple merging jobs
and the simulation jobs upload their partial results into a shared
logical folder. Note that the content of this foldermay be physically
stored onmultiple, distributed storage elements. While there is no
StopMerge signal, the merging jobs select, download and merge
batches of partial results. Their result is then uploaded back to the
shared folder for subsequent merging. If a merge job produces a
result containing the total number of events, then it also sends the
StopMerge signal.
The workflow with checkpointing is described in Fig. 2. Note
the following important differences with the version without
checkpointing:

• Simulation jobs checkpoint and upload their partial results at
the checkpoint frequency.

• The master monitors the number of checkpointed events
instead of simulated events. Checkpointed events are the ones
which were uploaded to the shared logical folder and are
therefore available for merging.

• Merging jobs are launched from the beginning of the workflow
because partial results are available since the first checkpoint.
Apart from that, merging jobs are the same as without
checkpointing.

In both workflows, each parallel merging job contributes to
the final result by merging a fraction of the partial results. The
merging process consists in (i) selecting any maximum nf files to
merge, each file i containing ni events, (ii) removing the selected
files from the shared logical folder, (iii) downloading and merging
the selected files, and (iv) uploading the result containing n =

ni events into the shared logical folder. nf is a parameter of
the workflow and it is the same for all merging jobs. For a good
load-balancing of the merging activity, it should be smaller than
the total number of files to merge divided by the total number of
mergers. The merging process is commutative and associative as
an addition. As a consequence, the merged output is of the same
type as the merge inputs and it is merged as any other partial
result. Thus, the outputs of the merging jobs and the partial results
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produced by computing jobs can be merged in any order. The only
constraint is that the same file must not bemergedmultiple times.
A lock mechanism ensures that this condition is respected.

In the approach presented in this paper, the parallel computing
jobs correspond to the Mappers of the classical MapReduce
approach. While these Mappers receive an input subset, here
they receive the complete input data (like the neuro-imaging
application in [18]) plus a unique random seed which allows us
to produce statistically independent partial results. Since partial
results are not identified with a key as in the standard MapReduce
approach, they can be all merged together in any order. Mergers
can be thus independent and pick any element from the pool of
available partial results. Similarly to MapReduce, several mergers
can co-exist, but in our case a single final result is needed. Although
here there is no central entity to manage the distribution of
intermediate results to Reducers, the coordination of the mergers
is ensured by the lock mechanism. Together with the StopMerge
condition, it also ensures the production of one single final result.

3.2. Model

A model of the makespan of Monte Carlo executions with
and without checkpointing is presented here. It mainly aims at
explaining measures made in production.

3.2.1. Model without checkpointing
Monte Carlo simulations may be arbitrarily partitioned and

executed as a set of independent jobs on computing resources.
Since the workload Γ is freely divisible, the dynamic load-
balancing algorithm behaves as if 1-event jobs were continuously
distributed to n parallel simulation jobs without overhead. In this
case, the simulation jobs finish quasi-simultaneously, as it can be
seen on the job flow in Fig. 4. In these conditions, if runtime errors,
grid submission failures, and latency variability are ignored, the
makespanM is given by the average waiting time plus the average
running time of the nparallel jobs:M =

Γ

n +EL as explained in [10].
If we take into account that with a failure rate ρ, only n(1 − ρ)

jobs contribute to the simulation, the model becomes: Γ = n(1 −

ρ)(M − EL), i.e.M =
Γ

n(1−ρ)
+ EL

And if we consider the merging time m in addition to the
computing time, the makespan becomes:

M =
Γ

n(1 − ρ)
+ EL + m (1)

3.2.2. Model with checkpointing
If checkpointing is activated, then failed jobs may still

contribute to the final result with the checkpoints realized before
failing. In this case the makespan depends on F , the cumulative
distribution of the time to failure (TTF) of the jobs on the target
infrastructure. F(t) is the probability that a job does not face any
failure for a duration t . Only failures occurring during job execution
are considered; system errors happening during scheduling or
queuing are ignored.

Let c be the time between two consecutive checkpoints of a
simulation job. We assume that c is fixed and cannot be changed
during the simulation. Since simulation jobs are not synchronized
due to their individual queuing time, their checkpoints are not
synchronized either. The end of the simulation is given by the
last checkpoint of the job which contributes enough to reach
the simulation stop condition, while the other jobs are still in a
computing phase.

Let k be the integer such that kc ≤ M − m − EL < (k + 1)c. k
is the number of checkpoints made by jobs which do not fail. The
total CPU time Γ consumed by the simulation is the sum of the
expected CPU times checkpointed by simulation jobs:

Γ = n ×


k−1
i=0

ic

F((i + 1)c) − F(ic)


+ kc (1 − F(kc))


,

where the first term of the sum represents the contribution of
a job that checkpoints exactly i times with a probability F((i +

1)c) − F(ic), and the last term represents the contribution of a job
that checkpoints a maximum number of k times with a probability
1 − F(kc). Thus:

Γ = nc ×


k −


i≤k

F(ic)


. (2)

Note that the time between the last checkpoint (t = kc) and the
end of the simulation does not contribute to Γ .

According to the experimental data that will be presented in
Section 4.3 (see Fig. 8), it is reasonable to assume that F is linear
from t = c to M − m − EL:

F(ic) = F(c) + (i − 1)
F(kc) − F(c)

k − 1
.

Thus:
i≤k

F(ic) = kF(c) +
F(kc) − F(c)

k − 1

k
i=2

(i − 1)

= k
F(kc) + F(c)

2
.

And from Eq. (2):

k =
Γ

nc

1 −

F(kc)+F(c)
2

 .

Note that this expression is easily extended to the case where F
is linear only from t = pc (p < k). The makespan can then be
expressed using the following approximation:

k ≈
M − m − EL

c
−

1
2

so that:

M =
Γ

n

1 −

F(kc)+F(c)
2

 +
c
2

+ m + EL (3)

Experiments conducted both with multiple mergers and
different checkpointing frequencies are presented in the next
section.

4. Experiments and results

4.1. Implementation

Both scenarios, with and without checkpointing, have been
implemented using the MOTEUR workflow engine [19]. Both
workflows are integrated into the VIP/GATE-Lab web portal
described in [20] and openly available.4 The portal gives access to
some 10 simulators and counts more than 200 registered users.
Jobs are executed using DIRAC [21] pilot jobs on the resources
available to the biomed virtual organization (VO) within the EGI
grid.

4 https://vip.creatis.insa-lyon.fr
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(a) Patient CT, axial view. (b) Patient CT, coronal view.

Fig. 3. Example of simulation made with GATE. The figure depicts axial and coronal slices of a CT pelvis image. The dose distribution obtained by a proton pencil beam and
computed by the simulation is overlayed in red. The bladder is contrast enhanced for display purposes. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Fig. 4. Job flow for a GATE simulation without checkpointing and with one merging job. Computing jobs finish almost simultaneously, approximately at the same moment
the merging job starts its execution. Empty bars correspond to jobs for which we lack information on the running and completion times (it may happen for some error,
stalled or canceled jobs).
The biomed VO has access to more than 150 clusters (CE) and
some 3.5 PB of storage distributed on Storage Elements (SE). Data
is thus physically world-wide distributed, but a centralized logical
view is provided by the Logical File Catalog (LFC). Worker Nodes
(WN) executing grid jobs download input data from SEs, then
compute and produce results locally. Results have to be uploaded
on a SE and registered into the LFC to be available from otherWNs.

Concurrent access to partial results stored in the logical shared
folder is partially handled at the LFC level since listing, moving
and deleting files are transactional operations. To cope with
concurrency issues, the mergers lock the common results folder
before selecting the files to merge, then release the lock after
moving these files into their own folder. The lock is implemented
with the creation of a directory in the shared logical folder, which
is also a transactional operation. The lock has a limited lifetime.
Therefore, if a process fails after it has acquired the lock, no
deadlock is created.

4.2. Experiments

Experiments were conducted using the GATE [17] Monte Carlo
simulator, which has an embedded checkpointing mechanism.
GATE is a Geant4-based open-source software developed by the
international OpenGATE collaboration5 and able to perform nu-

5 http://www.opengatecollaboration.org
clear medicine simulations, especially for TEP and SPECT imaging,
as well as for radiation therapy. It is used by approximately 1200
users world-wide. The simulation used here consists in the succes-
sive stochastic tracking through matter of a large set of individual
events, each event having an initial set of properties (type, loca-
tion, direction, energy, etc.). For these experiments, we chose to
run a proton therapy simulation. Fig. 3 shows the result produced
by a 50M events simulation. It represents the dose distribution ob-
tained by a proton pencil beam as described in [22].

Three experiments were conducted:

• The first experiment (Exp 1) aims at demonstrating the
importance of using checkpointing for long simulations. For this
experiment, we executed a GATE simulation of 440M events
representing roughly one year of CPU time. We measured the
number of simulated and merged events with and without
checkpointing. Merged events are the ones that were merged
at least once.

• The second experiment (Exp 2) aims at determining the
impact of using multiple parallel mergers. For this experiment,
we executed a GATE simulation of 50M events representing
roughly 41 days of CPU. The workflow without checkpointing
was used. Four different runs were performed, with 1, 5, 10 and
15 mergers.

• The third experiment (Exp 3) studies the influence of check-
pointing. As for the second experiment, we executed a GATE
simulation of 50M events representing roughly 41 days of CPU.
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Table 1
Experiment results—without checkpointing (Exp 2).

Run ρ EL (s) m (s) M real (s) M model (s) Model error (%)

1 merger #1 0.148 5298 19980 41916 38653 7.8
1 merger #2 0.317 1404 26760 42460 46166 −8.7
1 merger #3 0.180 1554 5220 21528 21490 0.2

1 merger mean – – 17320 35301 35436 –

5 mergers #1 0.187 1361 3060 18384 20159 −9.7
5 mergers #2 0.191 2295 6480 23742 24718 −4.1
5 mergers #3 0.140 950 9120 25613 23092 9.8

5 mergers mean – – 6220 22579 22656 –

10 mergers #1 0.102 1346 1920 17601 16588 5.8
10 mergers #2 0.171 2143 2580 21927 19749 9.9
10 mergers #3 0.213 3240 2940 23055 22176 3.8

10 mergers mean – – 2480 20861 19504 –

15 mergers #1 0.128 2369 4080 21637 21061 2.7
15 mergers #2 0.123 2483 3060 20343 19659 3.4
15 mergers #3 0.150 1580 2460 18326 18406 −0.4

15 mergers mean – – 3200 20102 19709 –
For this experiment, the workflow with checkpointing was
used. Three different runs were considered, with a checkpoint-
ing frequency of 30, 60 and 120 min. In each case, 10 parallel
mergers were launched from the beginning of the simulation.

For the last two experiments, we measured the total CPU time
of the simulation (Γ ), the mean job waiting time (EL), the merging
time (m), the failure rate of simulation jobs (ρ) and the fraction
of simulation jobs that failed before the first checkpoint (F(c)) for
the simulationswith checkpointing. For the three experiments, the
GATE simulation was split into 300 jobs and each merger selected
maximum 10 files to merge at each merging step.

Experiments were conducted on the production platform de-
scribed above. Using a production infrastructure was a deliberate
choice to ensure that the realism of our assumptions could not
be questioned. As a counterpart, reproducibility is limited because
performance depends on the grid conditions at the time of the ex-
ecution, in particular the system load. Experiments were repeated
three times to capture some of the grid variability.

4.3. Results

4.3.1. Added value of checkpointing (Exp 1)
Fig. 5 shows the number of merged and simulated events along

time. Merged events are events that have been processed at least
once by a merger, while simulated events still reside on the local
disk of a simulation job and are not available for merging in case
the simulation job fails. For the workflow without checkpointing
(Fig. 5(a)) the number of simulated results increases steadily
during the first 24 h. Afterwards, some of the jobs are killed by sites
imposing a maximal execution walltime. Indeed, approximately
30% of the job slots in the biomed VO aremanaged by batch queues
imposing a maximal walltime of less than one day and 65% of less
than 2 days. If the simulated events are not checkpointed, they are
lost when the jobs are killed. Killed jobs are resubmitted, which
explains why the number of events still increases even after the
first 24 h. In this experiment, the workflowwithout checkpointing
is simply not able to complete the simulation of 440M events.

Conversely, the workflow with checkpointing (Fig. 5(b)) is able
to complete the simulation. Since checkpointed events are not lost
when jobs are killed, their number increases steadily until the end
of the simulation.

4.3.2. Impact of multiple mergers (Exp 2)
Table 1 details all measures obtained from Exp 2, and Fig. 6

compares the measured makespan with the makespan computed
from the model in Eq. (1). The model correctly explains the
experiments, with a relative error of less than 10%, and less than
5% for half of the simulations. Note the importance of taking into
account the merging time, without which simpler models could
not fit the experiments.

The results show that using a unique merger is clearly sub-
optimal. From Table 1 we can see that the average makespan with
onemerger can be reduced by 40%when using 10 parallel mergers
(from 35301 to 20861 s). This is due to an important decrease
of the merging time, which can represent more than 50% of the
total makespan of the simulations with only one merger, while
it represents less than 15% for the simulations with 10 parallel
mergers.

We also notice that there is a threshold above which increasing
the number of parallel mergers is not useful. In our case,
experiments with 10 mergers perform on average as well as those
with 15 mergers.

4.3.3. Influence of the checkpointing frequency (Exp 3)
Table 2 showsmeasures obtained from Exp 3, andmodel values

computed using Eq. (3), assuming F(kc) = ρ. Fig. 7 compares
themeasured andmodeledmakespan. Overall the model correctly
explains the experiments, with a relative error lower than 10%.

From Table 2 we notice that the merging time m decreases as
the checkpointing period increases. This can be explained by the
fact that the parallel mergers can be saturated with partial results
if the checkpoints are too frequent. At the same time, according
to the model and to Eq. (3), the makespan increases with the
checkpointing period. A trade-off is thus needed. Among the three
runs, we notice that the checkpointing period of 60 min provides
the best average makespan.

Note that the merging time with checkpointing periods of
60 min is significantly smaller than without checkpointing and 10
mergers (in average, 1260 s versus 2480 s). Indeed, as illustrated on
Fig. 2, with checkpointing, the merging jobs run concurrently with
the simulation jobs,which reduces themerging time.Nevertheless,
despite the decrease of the merging time, the makespan of the
two runs remains comparable. This is due to the checkpointing
overhead introduced by the checkpointing frequency as modeled
by Eq. (3) and observed on Fig. 7. This overhead could be reduced if
the checkpointing frequency were not fixed and if we could force
the application to checkpoint as soon as the number of simulated
events is reached. In this experiment, checkpointing does neither
improve nor penalize the makespan.
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(a) Workflow without checkpointing.

(b) Workflow with checkpointing.

Fig. 5. Results for the experiment with a very long simulation (Exp 1), representing roughly one year of CPU time. The workflow without checkpointing (a) is not able to
complete the simulation because events from killed jobs are entirely lost. For the workflow with checkpointing (b), the number of checkpointed events increases steadily
till the end of the simulation.
Fig. 6. Results for the experiment without checkpointing (Exp 2). For each of the twelve GATE simulations (three repetitions for each of the four runs) two bars are printed:
the blue bar on the right represents the real (measured) makespan in seconds, while the stacked bar on the left represents the makespan computed using the proposed
model for GATE without checkpointing. The three stacked elements correspond to the three terms in Eq. (1). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 7. Results for the experiment with checkpointing (Exp 3). For each of the nine GATE simulations (three repetitions for each of the three runs) two bars are printed: the
blue bar on the right represents the real (measured) makespan in seconds, while the stacked bar on the left represents the makespan computed using the proposed model
for GATEwith checkpointing. The four stacked elements correspond to the four terms in Eq. (3). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
Table 2
Experiment results—with checkpointing (Exp 3).

Run ρ F(c) EL (s) m (s) M real (s) M model (s) Model error (%)

30 min #1 0.261 0.239 1988 3060 21803 23968 −9.7
30 min #2 0.239 0.211 1026 7680 25214 27372 −9.1
30 min #3 0.202 0.184 3643 2640 23470 23794 −0.7

30 min mean – – – 4460 23495 25024 –

60 min #1 0.183 0.177 1343 1080 20056 20744 −3.5
60 min #2 0.196 0.164 2501 840 24163 21724 10.6
60 min #3 0.206 0.193 1453 1860 22060 23584 −6.2

60 min mean – – – 1260 22093 21972 –

120 min #1 0.120 0.100 4319 720 26071 27872 −6.4
120 min #2 0.263 0.241 4879 900 26368 25813 1.6
120 min #3 0.279 0.250 5336 900 28378 27241 3.9

120 min mean – – – 840 26939 26990 –
The checkpointing influence is closely related to the failure
distribution. Fig. 8 plots the time-to-failure distribution F(t) for the
9 repetitions in this experiment. F is estimated as follows:

F(t) =
failed jobs of duration < t

failed jobs of duration < t + jobs of duration > t
. (4)

Note that jobs that successfully completed before time t are
not taken into account as they bring no information about the
probability to run longer than time t . When t increases, F(t) is
therefore overestimated due to the ignored completed jobs. To
correct for that, we use F̃ :

F̃(t) = min (F(t), ρ) .

This estimation is only valid for t < M , and it cannot be extrapo-
lated to longer runs.

These curves all exhibit a similar pattern: most failures occur
at the very beginning of the simulation, i.e. before the first
checkpoint. This explains why checkpointing has a limited impact
in this experiment. Conversely, as shown in Exp 1, the contribution
of checkpointing is much more important for longer simulations.

We also noticed that experiments with checkpointing have a
rather high failure rate among themerging jobs. Indeed, sites often
kill jobs consuming little CPU,which is the case ofmerge jobswhen
they are waiting for new results checkpointed by simulation jobs.

The data footprint should also be taken into account. The
workflow without checkpointing generates only a few extra files
(corresponding to the partial results produced by the multiple
mergers), the total number of files being close to 300. Theworkflow
with checkpointing generates an important number of partial
results, varying from a minimum of 897 files (with a checkpoint
frequency of two hours) to a maximum of 3359 files (with a
checkpoint frequency of 30 min).

5. Conclusion

This paper presented an end-to-end framework for executing
Monte Carlo simulations on heterogeneous distributed systems.
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Fig. 8. Measured TTF cumulative distribution on the 9 executions with
checkpointing.

Monte Carlo simulations are known to be easily parallelized,
but difficulties such as load-balancing on heterogeneous and
unreliable resources, as well as merging partial results are not
completely overcome. In particular, themerging step can represent
a significant amount of additional time in production conditions.

To address these problems, we proposed an approach using a
dynamic load-balancing algorithmwith multiple parallel mergers.
Checkpointing was also proposed to improve reliability, and to
enable incremental results merging from partial results.

Three experiments have been conducted on a production
infrastructure. The first experiment highlights the necessity of
using checkpointing for long simulations. The second one, with
different numbers of parallel mergers, shows that using a unique
merger is clearly sub-optimal and that the merging time can be
reduced from 50% to less than 15% of the total makespan when
using multiple parallel mergers. This corresponds to an average
makespan decrease of approximately 40% when using 10 parallel
mergers. The third experiment, with different checkpointing
periods, shows that the checkpointing can be used without
penalizing the makespan. Consequently, from an application point
of view and with a proper checkpointing frequency, checkpointing
could be activated for all simulations: long simulations as
presented in Exp1would greatly benefit from it,while shorter ones
as presented in Exp 2 and 3 would not be penalized.

A model was proposed to explain the measures made in
production. It extends previous models by integrating the job
failure rate, the merging time and the checkpointing frequency for
the workflow with checkpointing. The model is not yet predictive,
but it gives a good interpretation of the parameters influencing the
makespan. Experimental results fit the model with a relative error
of less than 10%. As future work on this topic, we plan to design
a model for the merging time and to enrich the global model by
taking into account job resubmissions.

All the results were obtained in production conditions, on the
European Grid Infrastructure. While experimenting in production
ensures that all the assumptions are realistic, it also limits
reproducibility and statistical significance. To cope with this issue,
we plan to use the experimental data presented in this study
to simulate our framework based on toolboxes such as [23,24].
This requires (i) implementing our workflows in the simulation
environment, (ii) parameterizing the simulation using traces
captured from our real experiments (e.g. job waiting times, fault
distributions), and (iii) validating performance results obtained in
simulation against real ones. Such a simulator would also allow us
to evaluate the model in a wider range of execution conditions.
Our framework can apply to a whole range of Monte Carlo
simulators. For the experiments presented here we chose a GATE
proton therapy simulation, but GATE is used for a variety of nuclear
medicine simulations, such as radiotherapy, emission tomography
(positron emission tomography—PET and single photon emission
computed tomography—SPECT) and computed tomography (CT).
Other Monte Carlo simulators could also use our framework. For
instance, experiments were already conducted with a Diffusion
Weighted Imaging (DWI) simulator [25].

Based on the conclusions presented in this paper, checkpointing
for the GATE application will soon be deployed on the VIP/GATE-
Lab portal. The GATEworkflowwithmultiple mergers is already in
production and executed by several users daily.
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