
Peachy Parallel Assignments (EduHPC 2021)
Henri Casanova∗, Rafael Ferreira da Silva† Arturo Gonzalez-Escribano‡,

Herman Li∗, Yuri Torres‡, David P. Bunde§

∗ Information and Computer Sciences, University of Hawaii, Honolulu, HI, USA
{henric,herm8888}@hawaii.edu

†National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
silvarf@ornl.gov

‡Dept. Informatica, Universidad de Valladolid, Valladolid, Spain
{arturo,yuri.torres}@infor.uva.es

§Dept. Computer Science, Knox College, Galesburg, IL, USA
dbunde@knox.edu

Abstract—Peachy Parallel Assignments are high-quality assign-
ments that are easy for other instructors to adopt and use in their
own classes. They are selected competitively for presentation at
the Edu* workshops based on ease of adoption and how “cool
and inspirational” they are for students. The goals are to excite
students about PDC, to save faculty the time and risk associated
with creating new assignments, and to recognize faculty who
create awesome assignments for their students.

In this paper, we present two assignments. The first assignment
is a simulation of air flow in a wind tunnel, which students
parallelize using OpenMP, MPI, and CUDA to illustrate the
different techniques needed for these paradigms. The second
assignment is a series of exercises to teach students the principles
of batch scheduling and how to interact with a batch scheduler
to submit parallel jobs. It uses simulation to allow students to
quickly see the results of their decisions and to support revisiting
an earlier decision.

I. INTRODUCTION

Peachy Parallel Assignments are a collection of assignments
for use when teaching Parallel and Distributed Computing
and/or High-Performance Computing. The goal is to dissemi-
nate exceptional assignments that will excite students about
the content while teaching them important principles and
skills. These assignments are designed for easy adoption by
other instructors, who are saved the effort of developing their
own assignments and also the risk of an assignment going
awry due to an unforeseen issue. They are presented at the
Edu* series of workshops on parallel computing education
[1]–[3], [6] and also on the Peachy Assignments webpage
(https://tcpp.cs.gsu.edu/curriculum/?q=peachy).

Peachy Assignments are selected via a competitive process.
All of them must have been successfully used in class. After
this consideration, they are selected based on the following
criteria:

• Adoptable: A Peachy Parallel Assignment should be
easily adopted by a variety of instructors. The assignment
should be well-described, including a discussion of the

context in which it was used and how it might be adapted
to other classes, and provide the needed materials (e.g.
assignment handout for students and given code). This
criteria also includes how broadly applicable the assign-
ment is to others; ideally, the assignment should have stu-
dents practice widely-taught concepts using commonly-
used programming languages and hardware, have few
prerequisites, and (with variations) be appropriate for
different levels of students.

• Cool and inspirational: A Peachy Parallel Assignment
should excite students through the problem being solved
and/or the artifact(s) that students create. This will en-
courage students to spend time on the assignment and
ideally tell others about it.

This paper presents two Peachy Parallel Assignments. In
Section II, we present a series of assignments that ask students
to parallelize a wind tunnel simulation using OpenMP, MPI,
and CUDA. These could be used separately, but repeating the
parallelization in multiple paradigms helps students understand
the similarities and differences between the paradigms. In
Section III, we present activities to teach students the prin-
ciples and practical considerations of batch scheduling. The
activities use Docker for portability and present students with
a simulated environment to learn and practice commands for
the Slurm scheduler. Because the activities use simulation, the
students can quickly see the results of their commands and
also “rewind” time to experiment with other decisions.

II. WIND TUNNEL SIMULATION

Our first assignment was used in a Parallel Computing
course to show how different approaches are needed for
the same problem in different parallel programming mod-
els. It targets concepts of shared-memory programming with
OpenMP, distributed-memory programming with MPI, and/or
GPU programming with CUDA or OpenCL. This assignment
is based on a simulation of air pressure and particle movement



inside a wind tunnel with fixed obstacles. The program is
designed to be simple, easy to understand by students, and to
include specific parallelization and optimization opportunities.
Although there are quite direct parallel solutions in the three
programming models, the program has plenty of opportunities
for further improvements. It maintains the same core concepts
used in three previously presented assignments, introducing a
different parallel structure based on a pipeline approach, and
new relevant optimization challenges with high performance
impact. It also introduces a progressive approach with optional
levels of difficulty. This assignment has been successfully
used in parallel programming contests during an optional
Parallel Programming course in the third year of Computer
Engineering degree. The assignment material can be found at
https://trasgo.infor.uva.es/peachy-assignments/.

A. Idea and context

Different programming models use different approaches for
the parallelization of application structures. Understanding
these differences is key for students to get into more ad-
vanced techniques, and to face parallel programming in current
heterogeneous platforms. For several years, we have been
teaching an optional course of Parallel Programming in the
Computer Engineering degree at Universidad de Valladolid.
The course introduces the basics of OpenMP, MPI, and CUDA
or OpenCL. Three previous Peachy Parallel Assignments
have been presented in this series [1]–[3]. All of them are
designed to be parallelized by the students during three one-
week programming contests, where they work to obtain the
best performance with a mixed competitive and collaborative
strategy [5]. Although this kind of assignment can be used to
teach a single programming model, here we also use it to show
which concepts and techniques can be reused across different
models, and which cannot, exposing the approach differences
and the conceptual shift between them. For example, the stu-
dents learn the differences between controlling race-conditions
in shared-memory vs. using distributed data structures with
explicit communications, or dealing with tiling and memory
hierarchies in GPU coprocessors.

This new assignment keeps the main core concepts used
in the previous assignments, but it is built around a different
synchronization structure based on a macro-pipeline with wave
fronts. It introduces different possibilities to deal with the
workload balance and interesting structural optimizations. It
can be optimized in many different ways depending on the
parallelization and detail level, with a high potential impact on
performance. It maintains a clear focus on simple but effec-
tive code parallelizations and optimizations, while introducing
more opportunities for the advanced students and new and
different choices in the three programming models considered.

The assignment is based on a simulation of the propagation
of air pressure through a wind tunnel, in which obstacles
modify the air flow, and moving particles are pushed. A lattice
represents a 2-dimensional cut of the tunnel space along the
flow axis. In the upper row of the lattice there is a fan inlet. The
air pressure is propagated in downward wave fronts at each

Fig. 1. Graphical representation of the wind tunnel at a given step, provided
as output by the simulation program. Square brackets represents obstacles and
particles. Numbers and symbols represent the air pressure level. Arrows in
the left margin indicate the current position of the wave fronts.

simulation step using a directional stencil operator, leading
to a pipeline computation. Fixed and flying particles can be
added randomly at the start of the computation, or in chosen
positions to form complex obstacles. Each particle has a given
mass and air flow resistance. Different scenarios, with different
obstacles and particle densities can be easily created with the
program parameters. During the simulation, we can observe
how the air flow is spread across the lattice and how the
obstacles modify the air pressure. We can also observe how
the flying particles are pushed by the air flow with simplified
turbulence effects around the obstacles. The simulation results
are determined by the initialization arguments that include
random seeds. Thus, they are reproducible. The arguments can
be chosen to generate specific situations with different load
distributions, different ratios of concurrency problems when
particles collide in a lattice position, etc.

The program has been organized to be modular. Thus,
parallelization and tests can be done in three stages, helping
the students to follow a progressive approach. The first stage
requires the parallelization of only the air pressure propa-
gation. In the second stage, we add the computation of air
flow modifications due to fixed particles. In the third stage,
the students should also deal with the code that controls
the flying particles. This also allows the introduction of a
mixed classification criteria of the solutions, using both scores
(related to the number of tests passed) and performance.

B. Using the assignment

As in the previous assignments of this series, the provided
material includes a sequential code, a test-bed of input argu-
ments, and a handout explaining the assignment. The students
can use common compilers and PC platforms to develop and
test their codes. An automatic judge tool with an on-line public
ranking is used to provide a fair arena, and to keep the students
engaged during the contests with competitive and collaborative
rewards [4], [5]. The judge configuration is done by simply



providing tuples of input arguments (representing the scenarios
chosen by the teacher), and the expected output results. The
tool executes the programs on a real parallel system. In order to
rank the students, it measures the total number of tests passed
and the program performance. The sections of the sequential
code that should be parallelized and optimized by the students
are clearly marked to help them skip argument processing,
scenario initialization, OpenMP/MPI/CUDA setup, time mea-
surement commands, and results output. Thus, the original
code can be directly compiled and run by the students, or
submitted to the judge tool even before starting to parallelize
it.

The students in the course where we tested this assignment
have already studied concepts of operating systems and con-
currency, and they have used the C programming language in
a couple of previous courses. There were 68 students enrolled.
The degree of participation was high, with more than 11,900
requests of program execution in our parallel cluster, including
both tests and judgment requests. A survey conducted at the
end of the course shows that the students have a good degree
of satisfaction with the learning experience. The evaluation
of the assignments is 90% of the final grade in the course.
For each programming model, the students present an essay
along with their final code, do a short video presentation, and
answer live questions from the teachers for 15 minutes. The
position in the leaderboard is also taken into account for the
assignment grade. To the question: “Are you satisfied with
the overall experience of the course, activity types, evaluation
method, etc.?”, using a Likert scale from 1 to 5, the average
is 4.08. The assignment illustrates the main concepts of the
course and provides opportunities to deepen in the subject.
For example, some students optimized their OpenMP codes
run 6.8 times faster while obtaining the same results as
other students who did the minimum amount of work. The
modular organization, with three progressive steps, helps the
students to have a functional parallel program in any of the
programming models in a reasonable time, without facing all
the complications tackled in the more advanced steps. The
results show a smoother grading of the students than with
previous assignments in the series, improving the grades in
the programming model that the students find more demanding
(MPI).

C. Concepts covered

The stages on the simulation steps of the program are: (1)
Generating the new input inlet value with added random noise;
(2) Computing the air pressure alterations caused by obstacles;
(3) Computing the movements of the flying particles; (4)
Propagating air pressure at the advancing wave fronts; (5)
A reduction to check minimum stability. Stages 1 to 3 only
happen each 8 iterations, and the distance between waves
is 8 rows. This simplifies the load balancing when creating
scenarios, and opens different approaches to parallelize the
pipeline. The output of the program includes the number of
iterations executed, the result of the reduction and a sample of
chosen array positions. If desired, the program can also write

a text-mode graphical representation each simulation step that
can be used to visualize the evolution of the simulation (see
Fig. 1).

The basic concepts covered in OpenMP are parallelization
of loops, reductions, atomic operations, and schedulings. In
MPI, the students work with array partitions, variable size
communications, reductions, asynchronous operations, com-
municators, and load balance. For GPU programming, the
main ideas are embarrassingly parallel kernels, thread-block
geometries and sizes, non-trivial atomic operations, simple re-
ductions, minimizing communication operations, overlapping
of kernels, and host computing. The program also shows how
to use fixed-point arithmetic to avoid precision and concur-
rency problems in all models. Several advanced optimizations
can be discovered and applied. For example, aggressive code
reorderings can allow easier parallelization or better operation
overlapping, clever load-balancing techniques adapted to the
the scenario features, memoization techniques and pipeline
stage reorganization to expose more parallelism in OpenMP,
taking decisions about replicated vs. distributed computing in
MPI, fusing kernels, new uses for the shared memory or non-
trivial reductions on GPUs, etc.

D. Variants

This assignment covers an important class of parallel pro-
grams based on non-basic stencil operations and interactions
of particles or agents with an environment represented with a
grid. Many different scenarios can be chosen by the teacher by
selecting the proper input arguments. The assignment already
presents three levels of difficulty, introducing new code and
challenges at each level. Most of the code is modular. The
pipeline structure can be easily modified to introduce new
stages. The particles’ movement or stencil functions can be
changed to produce different communication structures, etc.
Finally, better graphical and online interfaces can be devised
to enrich the learning experience.

III. BATCH SCHEDULING CONCEPTS AND PRACTICES

Our second assignment targets the basic concepts and prac-
tices that are necessary for using a batch-scheduled platform
effectively. Active learning is achieved via interactive peda-
gogic activities. Specifically, these activities provide students
with an in-the-browser, command-line shell running on the
head node of a cluster managed by Slurm, all in simula-
tion. Each activity guides students toward specific learning
objectives via a series of questions, each of which requires
hands-on experimentation in the shell. Because the execution
is simulated, it is possible for students to reset time or to
advance time at will, which makes it possible for them to
explore and compare alternative job submission strategies
quickly and conveniently. This assignment has few prereq-
uisites, does not require any particular hardware resources,
and only requires that Docker be installed on the computer.
To date, this assignment has been used successfully in one
offering of a graduate-level HPC course, with overwhelmingly
positive student feedback.



A. Context and Objectives

This assignment provides undergraduate or graduate stu-
dents with a gentle introduction to the concepts and practices
that are relevant to the use of batch-scheduled compute plat-
forms. The various concepts (batch queue, job submission, job
cancellation, job queue wait time, job turnaround time, etc.)
are explained in a pedagogic narrative. These concepts are put
in practice by presenting students with a simulated, in-the-
browser, command-line terminal in which they can use (sim-
plified versions of) the most fundamental Slurm commands.

This assignment can be used stand-alone or as a complement
to assignments that require the use of a batch-scheduled
platform, in which case it provides “in-simulation training”
so as to better prepare students for using and understanding
the behavior of the real platform. It is available at: https:
//eduwrench.org/pedagogic modules/batch scheduling/.

B. Prerequisites, Hardware, and Software

This assignment only requires minimal knowledge of the
Linux command-line and basic knowledge of the concept of
parallelism. Students in a course that involves batch scheduling
most likely already have the required knowledge. But if this is
not the case, this assignment is hosted on the EduWRENCH
Web site (https://eduwrench.org/), which provides introductory
on-line pedagogic modules for all this background.

No hardware besides the student’s own computer is needed
since the assignment is done in simulation in the browser.
The only required software is Docker. The assignment runs on
the student’s computer in a Docker container that exposes a
local Web server to which the student connects using any Web
browser. This ensures that all students can run the assignment
regardless of their operating systems.

C. Overview

The assignment is presented as a Web page with six tabs,
each with a set of learning objectives listed at the top. The
first tab presents an overview of batch scheduling and of the
role of a batch scheduler. Each of the next five tabs explains a
concept, and then presents students with a pedagogic activity.
Specifically, in the browser, students interact with a Linux
shell that is running on the (simulated) head node of a (simu-
lated) Slurm-managed cluster. In this shell, students can type
standard UNIX commands as well as the squeue, sbatch,
and scancel Slurm commands. They can also edit “batch
scripts” in which they specify batch jobs they want to execute,
passing these scripts to the sbatch command. Each tab then
asks a series of questions, which require students to interact
with the shell, observe what happens, draw conclusions, and,
in later tabs, come up with strategies to reduce job turn-around
time. Fig. 2 shows a screenshot of the simulated shell, and
Fig. 3 shows a screenshot of the simulated text editor.

The use of simulation makes it possible to manipulate time.
As seen in the top-right corner of Fig. 2, there is a “Reset
Time” button, which students can click to rewind time to the
origin. This makes it possible to try something, say “never-
mind”, and try something else in the exact same conditions.

Also, the simulated shell provides a sleep command, which
instantaneously advances time. Say a student types a sleep
3600 command. This command returns immediately (in real
time), but the simulated time advances by one hour. This is
crucial for students to observe what happens in the future
without having to actually wait for that future to happen.
For instance in the “Job Size” tab, students are exposed to
the concept of picking appropriate job sizes based on the
state of the queue so as to reduce turn-around time. They
submit jobs that request different numbers of compute nodes
for the same parallel program, each option corresponding to
a different trade-off between wait time and execution time.
By resetting time and moving forward in time, students can
quickly compare these options, draw conclusions based on
observation, and actively learn important lessons regarding
job turn-around time optimizations. This same kind of active
learning would be difficult and time-consuming to achieve if
using a real-world platform.

D. Assignment Description

Beyond the initial “Basics” tabs, which does not include an
in-simulation activity, the next 5 tabs do. They are as follows:

• “Job Submission”: the sbatch Slurm command;
• “Batch Queue”: the squeue Slurm command;
• “Job Cancellation”: the scancel Slurm command;
• “Job Duration”: the impact of a job’s requested time;
• “Job Size”: the impact of a job’s requested number of

nodes.
Due to lack of space, we cannot describe all the above,

but instead focus on the “Job Cancellation” tab. In this tab,
students are introduced to the scancel Slurm command
and presented with a scenario in which a few jobs by other
users are running on the cluster and many other jobs are in
the queue. The assumption is that the batch scheduler uses
conservative backfilling (which is explained in the “Basics”
and the “Batch Queue” tabs).

Students are told that they need to submit a job for a parallel
program whose execution time when executed on n compute
nodes is 2 + 20/n hours. They are instructed to submit a
job asking for 16 compute nodes, and then to right away use
squeue to determine whether their job is running. The batch
queue is crafted so that their job is not running. Students are
then asked to advance time and determine their job’s turn-
around time, which is over 40 hours.

Students are then instructed to reset the time to zero and to
inspect the state of the batch queue to determine how many
competing jobs are running and how many compute nodes are
idle. They are then told that their goal is to submit the largest
job that can begin execution right away. The relevant excerpt
from the tab is: “Your goal is to submit a job asking for as
many nodes as possible but so that your job can run right
away! Note because n nodes are idle right now it does not
mean that any job that asks for n nodes will start immediately.
If the job requests too much time, then starting it right now
may postpone previously submitted jobs, which is disallowed



Fig. 2. In-the-browser simulated shell that supports UNIX and Slurm commands.

Fig. 3. In-the-browser simulated text editor (currently editing a Slurm batch file).

TABLE I
SURVEY OF SELF-ASSESSMENT OF LEARNING RESULTS.

To what extent did the assignment help you learn new things? • 80%: to a great extent
• 20%: to some extent

How confident do you feel about your understanding of the main concepts behind batch
scheduling?

• 40%: very confident
• 40%: condfident
• 20%: somewhat condfident

To which extent would you say that simulation is a valuable addition to the overall process
of learning about batch scheduling?

• 75%: to a large extent
• 20%: to some extent
• 5%: don’t know

in our cluster. So answering this question is not as simple
as it seems.” This is essentially re-explaining conservative

backfilling to students.

Students are then suggested to use an exploration algorithm



in which they submit a job asking for n = 1 node and just
enough time to run the program successfully (22 hours), and
see if it starts right away. Then they immediately cancel that
job, and repeat with n = 2 (and 12 hours), and so on. In
this way, they can find the largest n that works via series of
submissions and cancellations. They can of course use a binary
research instead of a linear search, or whatever approach they
choose. Once they have determined the largest number of
nodes that can be used to that job start immediately (which
is 4 nodes), they perform that submission. They then advance
time to determine the job’s turn-around time, which is 7 hours,
which they then contrast with the much longer turn-around
time when asking for 16 nodes.

Finally, students are asked whether it would have been
possible to determine the best number of nodes purely via
reasoning based on the initial state of the batch queue. It turns
out the answer to that is “yes”. Note that this tab states explic-
itly that all other user jobs are assumed to ask for exactly the
amount time they need (i.e., no job completes prematurely).
Subsequent tabs in the assignment mention this is not the
case for most jobs and that premature job completions are
commonplace, thus making the schedule less predictable.

E. Strengths and Weaknesses

The key strength of this assignment is that the use of
simulation affords many pedagogic advantages for hands-
on learning. First, it is possible to present students with
interesting, relevant, and perfectly analyzable and reproducible
scenarios, which cannot be done on a real-world platform.
Second, running actual jobs on a real batch-scheduled platform
can take a very long time, which would negatively impact
learning. Third, as described earlier, simulation makes it
possible for students to manipulate time at will (resetting time
and jumping ahead in time), which is key for active learning.

The main weakness of this assignment is that it is only
in simulation. As a result, students do not run anything real,
which some may find disconcerting. Given the aforementioned
strengths afforded by simulation, and given collected student
feedback, we contend that the pedagogic benefits brought
about by simulation far outweigh this one drawback.

F. Previous Uses

This assignment was used in a 600-level graduate HPC
course (ICS 632) at the University of Hawai‘i at Mānoa in Fall
2021. Twenty students completed the assignment, filled out a
self-assessment questionnaire, and provided feedback on the
pedagogic material. Sixteen of these students are Computer
Science graduate students, 2 are Computer Science under-
graduate students, and 2 are non-Computer Science graduate
students.

Table I shows answers to key self-assessment questions.
Open-ended comments from students were overwhelmingly
positive and included: “Simulations are a great way to prac-
tice”, “This approach provides the freedom to learn and spend
as much time as needed to get comfortable with the process”,

“I really liked this simulation! It was a great way to get hands-
on practice without having to actually be on a live cluster”,
“I had access to a cluster in the past, but I had no idea
how everything worked since it all looked so complicated.
But this simulation helped to clear a lot of things up.”, “It
made me feel like I was actually submitting jobs”, “A sense
of open-endedness caused me to try and reverse engineer the
system, by submitting different inputs and seeing the responses
of the system”, “I would love to see more of this type of
content/simulations!”

Finally, students provided constructive feedback on the soft-
ware (bug reports, suggestions for interface improvements) and
the pedagogic narrative (typos, suggestions for clarification),
which has been used to update the assignment’s Web site and
Docker container.

Acknowledgments. The wind tunnel assignment was par-
tially funded by Universidad de Valladolid (Spain), Proyecto
Innovación docente PID 20-21 63, Spanish Ministerio de
Economı́a, Industria y Competitividad with the ERDF pro-
gram of the European Union, project PCAS (TIN2017-88614-
R); and Nos Impulsa Junta de Castilla y León - FEDER
Grants, projects PROPHET and PROPHET-2 (VA082P17,
VA226P20). The batch scheduling assignment is funded
by NSF contracts #1923539, #1923621, #2103489, and
#2103508.

REFERENCES

[1] Mulya Agung, Muhammad Alfian Amrizal, Steven Bogaerts, Ryusuke
Egawa, Daniel A. Ellsworth, Jorge Fernandez-Fabeiro, Arturo Gonzalez-
Escribano, Sukhamay Kundu, Alina Lazar, Allen Malony, Hiroyuki Tak-
izawa, and David P. Bunde. Peachy parallel assignments (EduHPC 2019).
In IEEE/ACM Workshop on Education for High-Performance Computing
(EduHPC 2019), Denver (CO), USA, 2019. IEEE.

[2] E. Ayguadé, L. Alvarez, F. Banchelli, M. Burtscher, A. Gonzalez-
Escribano, J. Gutierrez, D.A. Joiner, D. Kaeli, F. Previlon, E. Rodriguez-
Gutiez, and D.P. Bunde. Peachy parallel assignments (EduHPC 2018).
In IEEE/ACM Workshop on Education for High-Performance Computing
(EduHPC 2018), Dallas (TX), USA, 2018. IEEE.

[3] Henri Casanova, Rafael Ferreira da Silva, Arturo Gonzalez-Escribano,
William Koch, Yuri Torres, and David P. Bunde. Peachy parallel
assignments (EduHPC 2020). In IEEE/ACM Workshop on Education
for High-Performance Computing (EduHPC 2020), Atlanta (GE), USA,
2020. IEEE.

[4] J. Fresno, A. Ortega-Arranz, H. Ortega-Arranz, A. Gonzalez-Escribano,
and D.R. Llanos. Gamification-Based E-Learning Strategies for Computer
Programming Education, chapter 6. Applying Gamification in a Parallel
Programming Course. IGI Global, 2017.

[5] Arturo Gonzalez-Escribano, Victor Lara-Mongil, Eduardo Rodriguez-
Gutiez, and Yuri Torres. Toward improving collaborative behaviour
during competitive programming assignments. In IEEE/ACM Workshop
on Education for High-Performance Computing (EduHPC 2019), Denver
(CO), USA, 2019. IEEE.

[6] O. Ozturk, B. Glick, J. Mache, and D.P. Bunde. Peachy parallel
assignments (EduPar 2019). In Proc. 9th NSF/TCPP workshop on parallel
and distributed computing education (EduPar), 2019.

APPENDIX: REPRODUCIBILITY

The wind tunnel assignment has been used in the context
of a Parallel Computing course, in the third year of the
Computing Engineering grade at the University of Valladolid
(Spain).

The material of the assignment, including a handout, the
starting sequential code, and some input data sets to be used



as examples will be made publicly available through the CDER
courseware repository.

The on-line judge program used in the programming con-
tests is named Tablon, and it was developed by the Trasgo
research group at the University of Valladolid (https://trasgo.
infor.uva.es/tablon/). The contest software uses the Slurm
queue management software to interact with the machines in
the cluster of our research group. During the course we used
the Slurm 18.08.3 release.

The machine of the cluster used for the OpenMP contest is
named heracles. It is a server with four AMD Opteron 6376
@ 2.3Ghz CPUs, with a total of 64 cores, and 128 GB of
RAM.

The machine used in the CUDA/OpenCL contests is named
hydra. It is a server with two Intel Xeon E5-2609v3 @1.9
GHz CPUs, with 12 physical cores, and 64 GB of RAM. It

is equipped with 4 NVIDIA’s GPUs (CUDA 3.5), GTX
Titan Black, 2880 cores @980 MHz, and 6 GB of RAM.

During the MPI contest, we use heracles and hydra in
combination with two other servers to create a heterogeneous
cluster. The other two machines are: thunderbird, with an Intel
i5-3330 @2.4 GHz CPU and 8 GB of RAM; and phoenix, with
and Intel QCore @2.4 Ghz CPU with 6 GB of RAM.

All machines are managed by a CentOS 7 operating system.
The compilers and system software used are GCC v7.2, and
CUDA v10.2.

The assignment provides the sequential code, program ar-
guments to be used as test-beds for the students, and other
test-beds used by the on-line judge during the contest.

The results of the contests for the four Peachy assignments
in this series are publicly available at http://frontendv.infor.
uva.es.


