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Abstract. Runtime systems that automate the execution of applica-
tions on distributed cyberinfrastructures need to make scheduling deci-
sions. Researchers have proposed many scheduling algorithms, but most
of them are designed based on analytical models and assumptions that
may not hold in practice. The literature is thus rife with algorithms
that have been evaluated only within the scope of their underlying as-
sumptions but whose practical effectiveness is unclear. It is thus difficult
for developers to decide which algorithm to implement in their runtime
systems.

To obviate the above difficulty, we propose an approach by which the
runtime system executes, throughout application execution, simulations
of this very execution. Each simulation is for a different algorithm in a
scheduling algorithm portfolio, and the best algorithm is selected based
on simulation results. The main objective of this work is to evaluate
the feasibility and potential merit of this portfolio scheduling approach,
even in the presence of simulation inaccuracy, when compared to the
traditional one-algorithm approach. We perform this evaluation via a
case study in the context of scientific workflows. Our main finding is that
portfolio scheduling can outperform the best one-algorithm approach
even in the presence of relatively large simulation inaccuracies.
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1 Introduction

Data processing and analysis applications that execute on parallel and dis-
tributed computing environments, or CyberInfrastructures (CI), arise in most
fields of science and engineering. A key endeavor has been to develop CI runtime
systems that make it straightforward for users to implement, deploy, and execute
their applications. To this end, all these systems automate application execution,
including the resource management and task scheduling decision making process.
Specifically, decisions must be made along, at least, the following axes:
– Selecting hardware and/or virtualized resources;
– Picking application configuration options (e.g., pick numbers of cores that

should be used by multi-threaded tasks);
– Scheduling application activities in time (when?) and space (which resource?).

Decisions along these axes must be made so as to meet user-level objectives and
constraints, which can encompass notions of performance, monetary cost, energy
consumption, reliability, etc. For simplicity, we call all above decisions scheduling
decisions, which must be made using scheduling algorithms. Scheduling problems
are generally NP-complete, and thus most proposed algorithms employ non-
guaranteed heuristics.

The design of scheduling algorithms has received an enormous amount of
effort. For instance, solely in the context of the popular “scientific workflow”
application model [4], hundreds of research publications propose scheduling al-
gorithms (see the many surveys on this topic [1, 3, 16, 20, 22, 25, 27]). Most of
these proposed algorithms reuse ideas and principles from the age-old and ex-
tensive DAG (Directed Acyclic Graph) scheduling literature [28]. Yet, when ex-
amining existing workflow runtime systems, there is a clear disconnect between
research and practice. Given the complexity of CI platforms and applications,
research results are typically obtained based on simplifying analytical models
and assumptions, so that scheduling problems are rendered more formalizable
and tractable. For instance, ignoring network contention greatly simplifies appli-
cation scheduling problems [13], but the computed schedules will perform poorly
in practice when network contention does occur. Furthermore, published evalu-
ation results for proposed algorithms cannot cover the whole range of situations
a runtime system could encounter in practice. The literature is thus rife with
scheduling algorithms that have been evaluated within the scope of their under-
lying assumptions, but whose potential effectiveness in practice is unquantified.
There is thus little incentive for developers of CI runtime systems to pay close
attention to scheduling research. Based on our own observation of production
systems, it seems that developers often opt for simple scheduling strategies that
are straightforward to implement but that may not lead to the most desirable
application executions.

A way to resolve the above disconnect between scheduling research and prac-
tice is simply to obviate the challenge of picking one particular scheduling algo-
rithm to implement as part of a CI runtime system. To this end, one can use
online simulations for picking which algorithm to use at runtime. In other words,
one executes fast simulations of the application execution throughout that very
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execution so as to “try out” many potential scheduling algorithms and automat-
ically select the most desirable one. Based on simulation results, some of these
algorithms may rarely (or even never) be used at runtime because simulations
show them to be non-competitive. CI runtime system developers can incremen-
tally add to their set of implemented algorithms, without ever having to decide
at compile time which algorithm should be used. This approach has been re-
ferred to as “portfolio scheduling” [12] in the job scheduling literature, for the
purpose of scheduling user jobs with known runtime estimates on a space-shared
parallel computing platform. In this work, we instead consider a CI runtime sys-
tem that automates the execution of an application workload that performs I/O,
communication, and computation operations. In this context, many scheduling
algorithms have been designed based on models and assumptions that are known
to be not realistic, which are necessary for designing the algorithms, but which
makes their effectiveness unclear in practice. The simulation can implement more
realistic models and assumptions, and thus has the potential to give a more ac-
curate measure of how these scheduling algorithms would actually perform in
practice. But, conversely, no simulation can be perfectly accurate.

Our objective in this work is to assess the feasibility and potential merit
of simulation-driven portfolio scheduling in CI runtime systems. Although the
approach is general, we perform our experimental evaluations in the specific
context of scientific workflows because they have become widespread as well as
the CI runtime systems available to execute them. More specifically, this work
makes the following contributions:

– We propose to use simulation-driven portfolio scheduling as part of CI run-
time systems that automate the execution of application workloads;

– We evaluate the feasibility and potential merit of this approach via a case
study to answer three main research questions: (i) What is the potential
improvement over the traditional one-algorithm approach? (ii) How much of
the upcoming application execution should be simulated? (iii) What level of
simulation accuracy is needed?

– Our main finding is that, at least in the context of our case study, the
portfolio scheduling approach outperforms the best one-algorithm approach
even in the presence of relatively low simulation accuracy.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 describes our approach, which we evaluate via the case study described
in Section 4. Section 5 discusses experimental results. Finally, Section 6 summa-
rizes our contributions and highlights directions for future work.

2 Related Work

The idea of adaptive scheduling at runtime has been explored in many previous
works, typically to determine good values for parameters that define the behavior
of the scheduling algorithm. While a number of techniques can be used to de-
termine these values, some authors have used online simulation [7,14,15,29,30].
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Some of these works target discrete parameters that drastically change the be-
havior of the scheduling algorithm (e.g., a parameter that defines the job ordering
policy), and one could easy consider that these approaches select an algorithm
from a set of possible algorithms. Doing so has generally been called “portfolio
scheduling” and has been investigated in several works [12, 31, 32]. An impor-
tant question is that of the method for selecting a particular algorithm within
the portfolio. While many options are likely possible, such as machine learn-
ing [31], an attractive option used in previous works, and in this work, is on-line
simulation [12,32].

The above works that use on-line simulation for scheduling algorithm adapta-
tion and/or portfolio scheduling have shown that the approach can be effective.
However, these works all target some version of the “job scheduling” problem.
The goal is to allocate compute resources to jobs that request them for a pre-
determined time. As a result, the simulation boils down to merely computing
the deterministic schedule (i.e., a Gantt chart) generated by each algorithm.
The only source of inaccuracy in this computation is the job runtime estimates,
which, notoriously, are overestimated. Some of these works examine the impact
of inaccurate runtime estimates (e.g., [12,15]). Importantly, this inaccuracy does
not correspond to the typical notion of simulation inaccuracy, i.e., that due to
the simulation only approximating the real system. Instead, this is inaccuracy
of the input to the simulation, which is no different than the inaccuracy of the
input to the real-world system. In contexts more general than the job scheduling
problem, sources of simulation inaccuracies arise because the simulation cannot
perfectly capture the behavior of a complex system in which the simulated ap-
plication workload uses and contends for network, I/O, and compute resources.
Furthermore, information on the current state of the execution, on the plat-
form configuration, and on the application’s behavior, which are all needed to
instantiate a simulation, is not perfect. In this work we investigate and quantify
the effect of simulation inaccuracy by assuming that the performance metrics
estimated via simulation are inherently noisy. This investigation is particularly
relevant in this work as our case-study is in the context of workflow applications
that perform communication, I/O, and computation activities in a distributed
computing context. As a result, the sources of simulation inaccuracies are mul-
tiple and the magnitude of the error can be large. To the best of our knowledge,
this is the first work that evaluates the potential merit of portfolio scheduling in
this more general context, both in terms of the application workload and of the
platform on which this workflow is executed.

A challenge for portfolio scheduling based on online simulation is that of the
overhead of simulation. Several approaches to mitigate this overhead are pos-
sible, such as reducing the frequency at which online simulations are executed
and pruning the algorithm portfolio [12]. In this work, we also experiment with
reducing the simulation time horizon. As already mentioned, most of the afore-
mentioned works target job scheduling, for which the simulation overhead is
essentially that of executing the scheduling algorithm. This is because the sim-
ulation merely consists in computing job start and end times in a Gantt chart.
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In our more general setting, the simulation must employ various models (e.g., to
compute communication data transfer rates based on network topology, ongoing
network flows, and network protocol effects), which increase simulation overhead.
We discuss the simulation overhead challenge in more details in Section 5.5.

Many simulation frameworks have been developed that target the simulation
of parallel and distributed applications and platforms [5,6,8–10,17,18,21,23,24,
33], and they each achieve different compromises between accuracy and speed.
At one extreme are discrete-event models that capture “microscopic” behav-
iors of hardware/software systems (e.g., packet-level network simulation, block-
level disk simulation, cycle-accurate CPU simulation), which favor accuracy over
speed. At the other extreme are analytical models that capture “macroscopic”
behaviors via mathematical models. While these models lead to fast simulation,
they must be developed carefully if high levels of accuracy are to be achieved [34].
This work is agnostic to the simulation framework used to implement the simu-
lation, but a more accurate and more scalable framework is obviously preferable.
For the case study in Section 4, we implement a simulator using the SimGrid [9]
and WRENCH [10] frameworks. SimGrid provides accurate and scalable simu-
lation models and abstractions for simulating distributed applications, systems,
and platforms. To date, it has been used to obtain simulation results for 570+ re-
search publications. One drawback of SimGrid is that its simulation abstractions
are low-level, meaning that implementing simulators of complex systems can be
labor-intensive [19]. WRENCH builds on SimGrid to provide high-level simula-
tion abstractions that make it possible to implement simulators of complex CI
scenarios in only a few hundred lines of code [10].

3 Problem Statement, Approach, Research Questions

Consider a CI platform with hardware resources (compute, storage, network)
accessible via various software services for starting computations, storing data,
and moving data. Some application workload of interest is to be executed on
this platform. A CI runtime system is used to automate this execution, and as
part of this automation the system must make decisions regarding the allocation
of application activities to the hardware resources in time and space. These
scheduling decisions are made using some algorithm, with the goal of optimizing
some metric such as overall execution time.

In the above context, we propose to use simulation-driven portfolio schedul-
ing. The main caveat of scheduling algorithms in the literature is that they are
developed with simplifying models and assumptions so as to make the scheduling
problem algorithmically more tractable. By contrast, simulation does not need to
make simplifying assumptions. For instance, it can easily capture stochastic plat-
form and application behaviors, complex network sharing behaviors, or complex
overlap behaviors between computation, I/O, and network communication ac-
tivities. Although accounting for such behaviors makes the scheduling problem
algorithmically more difficult, simulations merely output relevant application-
level metrics (e.g., execution time, cost, energy consumption, reliability) for all
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candidate scheduling algorithms in a portfolio, and one can simply pick the most
desirable one. All algorithms in the portfolio must be implemented in the runtime
system. At the onset of application execution, a description of the application
and the available hardware resources is constructed based on (likely imperfect)
a-priori knowledge, so as to instantiate a simulator of the upcoming application
execution. Throughout execution, scheduling decisions are made using one of the
implemented algorithms, selected based on simulation results.

Realizing the above approach in practice entails addressing many research
and engineering challenges that are outside the scope of this work. Our objective
here is to determine whether this approach has potential merit in the first place.
To this end, we focus on the following research questions:

How much of an improvement can the online simulation approach
afford? We wish to compare our proposed approach to the traditional one-
algorithm approach in which the runtime system uses a single scheduling algo-
rithm throughout application execution. Assuming that a significant improve-
ment is achieved, intriguing questions arise regarding the usefulness of individual
algorithms (i.e., how many algorithms are never used? how many different algo-
rithms are used throughout application execution?).

How much of the upcoming application execution should be simu-
lated? In spite of advances in scalable simulation techniques for simulating
distributed applications and platforms, online simulations do not take zero time.
One easy way to reduce simulation overhead is to bound the simulated time
horizon and not simulate the upcoming application execution until completion.
We wish to quantify the impact of making simulations “short-sighted” on the
effectiveness of our proposed approach.

What level of simulation accuracy is needed? Simulations are never 100%
accurate, because of inaccuracies inherent to the simulation models or because
model parameters are not instantiated in a way that perfectly matches real-world
settings. We wish to determine what level of simulation accuracy is needed for
our proposed approach to outperform the traditional one-algorithm approach.

We answer these questions via the case study described in the next section.

4 Case Study

We consider the execution of scientific workflow applications on a multi-cluster
CI deployment, where the goal is to minimize overall execution time, or makespan.
Scientific workflows have been used by computational scientists to support some
of the most significant discoveries of the past several decades [4], and are exe-
cuted daily to serve a wealth of scientific domains. Many workflows have high
computational demands and, as such, are executed in production on HPC clus-
ters. Setting up, orchestrating, monitoring, and optimizing workflow executions
on these platforms is challenging, and the way to address this challenge is to
rely on runtime systems, or Workflow Management Systems (WMSs), that can
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automate workflow execution [26]. The past decade has witnessed a proliferation
of WMSs [35], but there is no consensus on which scheduling algorithms should
be implemented in these systems, which is why we picked this context for this
case study.

4.1 Platform configurations

We consider multi-cluster platforms. Each cluster hosts homogeneous 8-core com-
pute nodes connected via a 100GbE interconnect, as well as network-attached
storage with I/O read/write bandwidths of 100MBps. Core speed is measured
in Gflop/sec, but our experiments are agnostic to the particular units since, as
described in Section 4.2, workflow task compute times are given in seconds on
a reference 100Gflops/sec core. That is, compute speeds are only used to scale
task compute times based on the reference compute time. Each cluster is con-
nected to the Internet on a network path with some bottleneck bandwidth. The
network-attached storage is used to cache application data. That is, whenever
a compute node in a cluster needs to write application data, it writes it to the
cluster’s network-attached storage. Whenever a compute node in a cluster needs
to read application data, it does so from the network-attached storage if pos-
sible. Otherwise, the data is read from a remote location (the user’s machine,
where all input data is located initially, or another cluster’s network-attached
storage) and cached locally. We assume that storage capacity at each cluster is
large enough to hold all application data.

We conduct experiments with the 9 synthetic 1-, 2-, and 3-cluster platform
configurations listed in Table 1. These configurations do not correspond to par-
ticular real-world platforms and many other configurations could be considered.
Our goal is to span a spectrum of diverse but reasonable platform configurations,
over which different scheduling algorithms would likely make different decisions
(e.g., due to the different ratios of compute speed to Internet bandwidth for the
clusters in configurations P4 to P9).

4.2 Workflow configurations

We consider 8 real-world scientific workflow instances, as listed in Table 2. These
instances are provided by the WfCommons project4 and were derived based on
logs from actual executions [11]. Each instance defines a set of tasks, each with
particular amounts of computation to perform, and input and output files of
particular sizes. Some output files of a task are input files to other tasks, thus
creating data dependencies between tasks. We selected instances whose work
(i.e., execution time on a single 100Gflop/sec core) are in between 5 and 10 hours.
The metrics shown in the table show that the workflow instances correspond to a
diverse set of configurations, with different structures and different computation-
data ratios. As a result, we expect that different scheduling algorithms will fare
differently across these workflow instances.

4 https://wfcommons.org/instances

https://wfcommons.org/instances
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Table 1: Multi-cluster platform configurations used for experiments. Each cluster
is defined by a number of nodes (“nodes”), a core speed in Gflop/sec (“speed”),
and an Internet bandwidth in MBps (“bdwidth”).

Config
Cluster #1 Cluster #2 Cluster #3

nodes speed bdwidth nodes speed bdwidth nodes speed bdwidth

P1 96 100 100 n/a n/a
P2 48 50 100 48 150 100 n/a
P3 48 50 100 48 400 10 n/a
P4 32 100 100 32 200 200 32 300 300
P5 32 100 100 32 200 300 32 300 200
P6 32 100 200 32 200 100 32 300 300
P7 32 100 200 32 200 300 32 300 100
P8 32 100 300 32 200 200 32 300 100
P9 32 100 300 32 200 100 32 300 200

Table 2: Workflow configurations used in our experiments, indicating for each
the application name (“name”), the application domain (“domain”), the number
of tasks (“tasks”), the sequential compute time in hours on a single 100Gflop/sec
core (“work”), the sum of all data file sizes (“footprint”), the number of levels
(“depth”), and the size of the largest level (“max width”).

Config name domain tasks work footprint depth max width

W1 Montage Astronomy 4,846 8.7 12.15 GB 8 3,411
W2 Epigenomics Bioinformatics 1,095 5.6 8.25 GB 9 271
W3 Bwa Bioinformatics 1004 3.7 56.89 MB 3 1,000
W4 Cycles Agroecosystem 874 5.2 6.17 GB 4 432
W5 1000Genome Bioinformatics 328 6.0 25.96 GB 3 208
W6 Blast Bioinformatics 303 8.7 0.47 MB 3 300
W7 Soykb Bioinformatics 156 6.7 2.82 GB 11 100
W8 Srasearch Bioinformatics 22 5.2 16.50 GB 3 11

The workflow instances available on the WfCommons collection do not in-
clude information about the execution of workflow tasks on multiple cores, but
only give a single execution time t, which is a sequential execution time on a
single core. Due to this lack of information, we assume an Amdahl’s Law parallel
speedup behavior [2]: a task that executes in time t on one core executes in time
αt/n + (1 − α)t on n of these cores. For each task, we sample α uniformly be-
tween 0.8 and 1.0. This may not correspond to the actual speedup behaviors of
workflow tasks in a real-world workflow, but in the scope of this case-study has
no impact on simulation inaccuracy (since we use as ground truth the execution
of the workflow assuming these very same task speedup behaviors).

4.3 Algorithms

We assume that the WMS used to execute workflows employs a typical list-
scheduling approach for deciding, at runtime, which ready task should be exe-
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cuted on which compute resources, while enforcing that not two tasks run simul-
taneously on the same core. The scheduling algorithm proceeds in three steps
as follows. While there is at least one ready task and one idle core on which no
task has been scheduled:

1. pick a ready task using some criterion C1;
2. pick a cluster with at least one idle core using some criterion C2;
3. pick a number of cores for the task execution using some criterion C3;
4. schedule the picked task on the picked cluster using the picked number of

cores.

We consider the following options for each of the above criteria:

– Criterion C1:
• 0: Pick the task with the largest bottom-level (i.e., prioritize tasks on

the critical path);
• 1: Pick the task with the largest number of children tasks;
• 2: Pick the task with the largest amount of input and output data;
• 3: Pick the task with the largest amount of computation to perform.

– Criterion C2:
• 0: Pick the cluster that stores the largest amount of task input data in

its network-attached storage;
• 1: Pick the cluster with the most idle cores;
• 2: Pick the cluster with the fastest cores.

– Criterion C3:
• 0: Pick as many cores as possible while ensuring that the task’s parallel

efficiency is above 90%;
• 1: Pick as many cores as possible while ensuring that the task’s parallel

efficiency is above 50%;
• 2: Pick as many cores as possible.

We denote each algorithm as Ax, where x = 9× C1 + 3× C2 + C3, which gives
us 36 different algorithms (A0 to A35). All above scheduling criteria have been
proposed in the literature. Although many other options could be considered,
these 36 algorithms provide us with a sufficiently large and diverse sample set
to conduct our investigation.

4.4 Experimental Methodology

An implementation of our online simulation approach in this case study entails
(i) an implementation of a WMS that executes workflows on multi-cluster plat-
forms; and (ii) an implementation of a simulator of these executions that can be
invoked at runtime by the WMS. We face two main technical difficulties. First,
to answer the third research question in Section 3, we need to experiment with
different levels of simulation accuracy to measure the resulting impact on the
effectiveness of our proposed approach, including quantifying the best-case ef-
fectiveness when online simulations are 100% accurate. This is not possible with
a real-world implementation since a given simulator is necessarily inaccurate.
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Second, we wish to evaluate our approach on a large range of workflows, plat-
forms, and algorithms. For instance, in this particular case study, we evaluate a
total of 9× 8× 36 = 2, 592 experimental scenarios (9 platform configurations, 8
workflows, 36 algorithms). Even if we had access to a large number of different
platform configurations, it would be difficult to obtain all experimental results,
not only in terms of time and energy consumption, but also in terms of ensuring
that these results are repeatable. The need to obtain many diverse and repeat-
able experimental results is, incidentally, the main reason why researchers in the
field resort to simulation.

Given the above, we perform our case study entirely in simulation. We im-
plement a WMS simulator, with WRENCH5 (v1.10) and SimGrid6 (v3.29), that
simulates a WMS that executes workflows on multi-cluster platforms using any
one of our 36 algorithms. This simulator provides us with an analog of a pro-
duction WMS implementation, which we enhance with our online simulation
approach. That is, during its simulated execution, our simulator runs as many
(online) simulations of its future execution as there are scheduling algorithms
(36 in this case study). This is done simply by having the simulator call the
fork system call to create a child process that is a clone of the simulator, for
each algorithm. Each child then continues the simulated workflow execution and
reports the simulated workflow completion date to its parent process. In this
fashion, the simulator can explore all its possible futures for all algorithms. The
WMS then picks the algorithm that achieved the fastest workflow execution in
those simulations. The simulator outputs the workflow makespan, in seconds,
based on the following input:

– A workflow instance – One of the 8 instances in Section 4.2, available
as a JSON file using the WfFormat format7. We use w to denote the total
amount of sequential work, i.e., the sum of the sequential task execution
times on a reference 100Gflops/sec core (the 4th column in Table 2).

– A platform configuration – One of the 9 configurations in Section 4.1.
– A fraction of total work, α – This parameter defines how often our

online simulation approach is applied throughout workflow execution: it is
applied at the onset of the workflow execution and subsequently each time
an additional fraction α of the total work w has been completed. For in-
stance, w = 10, 000 Gflop and α = 0.2, our approach will be invoked 5 times
throughout workflow execution, once at the beginning of the execution, and
once each time an additional 2,000 Gflop of sequential work has been per-
formed. Note that the amount of work performed so far at any given time
is known since the amount of work of each task in the workflow (i.e., its
execution time in seconds on a single core) is also known.

– A fraction of total work, β – Each online simulation proceeds until
execution of a fraction β of the total sequential work has been simulated and

5 https://wrench-project.org
6 https://simgrid.org
7 https://wfcommons.org/format

https://wrench-project.org
https://simgrid.org
https://wfcommons.org/format
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Fig. 1: Percent degradation from best for all algorithms over all experimental
scenarios, sorted by increasing maximum values. Maximum values are shown as
a blue solid lines. Data points for the A8 algorithm are shown as red dots.

reports the current simulation date to the parent process. In other terms, β
defines the time horizon of the simulations.

– A relative simulation error, e – This parameter denotes the relative
range of an uniformly distributed simulation error. That is, when an online
simulation determines that a fraction β of the sequential work was performed
in time t, it reports, instead, a time max(0, t + U(−t × e, t × e)), where
U(a, b) denotes the uniform random distribution on the (a, b) interval. For
any experiment for which e > 0, we run 10 samples.

Simulator code and all simulation data are publicly available8.

5 Results

5.1 Diversity of one-algorithm approaches

In Section 4, we claimed that our experimental scenarios (workflow and platform
configurations) would lead our different algorithms to exhibit a range of behav-
iors. In this section, we verify this claim quantitatively. Figure 1 shows, for each
experimental scenario (i.e., a workflow and platform combination) the relative
difference, in percentage, between the makespan achieved by each algorithm and
that achieved by the best algorithm for this scenario, which is typically termed
“degradation from best” or dfb. In other terms, assuming a set of n algorithms,
if for a particular experimental scenario each algorithm i achieves a makespan

8 https://github.com/wrench-project/jsspp2022_submission_data

https://github.com/wrench-project/jsspp2022_submission_data
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mi, then the dfb of algorithm j is defined as:

dfb(j) = 100× mj −minimi

minimi
.

If dfb(j) is zero, then algorithm j achieves the best makespan, while if dfb(j) =
100%, then algorithm j achieves a makespan that is twice as long as that achieved
by the best algorithm.

In Figure 1, the scenarios are sorted by increasing value of the maximum
dfb. Results show that maximum dfb values range from 4.38% to 883.81%. We
note that the experimental scenarios on the horizontal axis are loosely sorted by
the workflow configurations, meaning that scheduling algorithm behaviors are
sensitive to workflow structures. Furthermore, we see that for most experimental
scenarios, many algorithms lead to different dfb values, and thus makespans.
Overall, we conclude that our experimental scenarios are sufficient to highlight
the diversity between our 36 scheduling algorithms.

Although the above results indicate diversity, one may wonder whether some
(or perhaps just one?) algorithm is always best, in which case, one should just use
that algorithm. To this end, for each algorithm, we can compute its average dfb
over all experimental scenarios. We find that algorithm A8 achieves the lowest
average dfb at 6.47%. While this number is relatively low, it does not mean
that algorithm A8 is consistently a good choice. It happens to be the best (or
within 1% of the best) choice for 37 of our 72 scenarios. However, it has a dfb
higher than 10% for 7 of the remaining 35 scenarios, and as high as 159.60%.
This is illustrated in Figure 1 where the data points for algorithm A8 are shown
as red dots. We conclude that no single algorithm is best, and that although
algorithm A8 is the “best on average” choice, it can be vastly outperformed by
other algorithms for some experimental scenarios.

5.2 Evaluation in the ideal case (β = 1, e = 0)

In this section, we compare our simulation-driven portfolio scheduling approach
to the one-algorithm approach under ideal conditions, that is, with the two
following assumptions: (i) each online simulation simulates the application exe-
cution until completion (β = 1); and (ii) simulations are 100% accurate (e = 0).
In upcoming sections, we relax these assumptions. Unless specified otherwise, all
results hereafter are obtained with α = 0.1, i.e., online simulations are invoked
10 times throughout workflow execution.

Because of these two assumptions, given any experimental scenario, our ap-
proach is guaranteed to never be outperformed by any one algorithm: at the
onset of the execution it simulates all possible algorithms and necessarily picks
the best one. That is, if we were to plot the degradation from best of our ap-
proach in Figure 1, its data points would all be on the y = 0 line. In this and
upcoming sections, we compare our approach to the one-algorithm approach that
uses algorithm A8, which, for simplicity, we term the one-algorithm approach. As
seen in the previous section, A8 is the algorithm with the lowest average degra-
dation from best among all 36 algorithms. It thus corresponds to the best choice
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Fig. 2: Percentage improvement over the one-algorithm approach for each work-
flow (each data point is for a different platform configuration).

that a runtime system developer could make if asked to pick one algorithm to
implement in their system, at least in the scope of this case study. Picking A8 as
our main competitor allows us to evaluate the effectiveness of our approach in
the worst case. We note that, in practice, the runtime system developer may very
well pick another algorithm, in which case all results hereafter would be more
favorable (and often drastically more favorable) for our approach. Algorithm A8

prioritizes tasks with the highest bottom-level (C1 = 0), selects the cluster with
the fastest cores (C2 = 2), and uses as many cores are possible on a compute
node (C3 = 2).

Figure 2 shows relative makespan improvements over the one-algorithm ap-
proach. Results are grouped by workflow, showing 9 data points for each workflow
(for the 9 platform configurations). Horizontal lines show average improvements.
Relative improvement is always positive and can be large, and average improve-
ment is above 5% for 5 of the 8 workflow configurations (Table 2).

Two kinds of data points are shown in Figure 2. The data points marked
with circles correspond to cases in which A8 is not the best, or close to the
best, of the 36 algorithms for that experimental scenario (i.e., its degradation
from best is larger than 1%). For these data points, we expect our approach to
provide improvement because it will simply use another algorithm. For instance,
the data point above 70% for workflow W1 corresponds to an execution on plat-
form P3. For this experimental scenario, Figure 1 shows that algorithm A8 has
almost the worst degradation from best. Our approach thus eliminates A8 from
consideration based on simulation results.

The data points marked with triangles correspond to experimental scenarios
in which A8 has degradation from best below 1%. For some of these scenarios
our approach leads to non-negligible improvement (up to 9.3% improvement for
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Fig. 3: Percentage improvement over the one-algorithm approach, for each work-
flow and for different β values. Each violin plot shows minimum, maximum, and
average values as well as the overall shape of the distribution of the data points.

the W4:P5 scenario). This is because, for these scenarios, it is beneficial to use
more than one scheduling algorithm. In fact, we can compare our approach to
an one-algorithm “oracle” that would always pick the best algorithm to use for
each experimental scenario. We find that our approach outperforms this oracle
for 56 of our 72 experimental scenarios, and outperforms it by more than 5% for
11 of them. The main motivation for this work is that it is difficult to pick one
algorithm to implement as part of a CI runtime system. These results show that
one should, in fact, use more than one algorithm for a single workflow execution.

An interesting question is that of the number of different algorithms used by
our approach. In these results, this number is at most 10 since α = 0.1. Our
approach uses a single algorithm for only 4 of our 72 experimental scenarios.
Across all scenarios, our approach uses up to 6 different algorithms during a
single workflow execution and 3.08 different algorithms on average. Overall, out
of our 36 different algorithms 25 of them end up being used at least once by
our approach. Algorithm A8 is, unsurprisingly, the algorithm most used by our
approach. But some algorithms that have poor average degradation from best
are also used. For instance, algorithm A0 is used for 12 of our 72 scenarios, but
has the 4th largest average degradation from best at 176.26%.

5.3 Evaluation with shorter simulation time horizons (β < 1)

One may wonder whether it is necessary for online simulations to simulate the
execution until completion. The results in the previous section are for β = 1, i.e.,
workflow execution is always simulated until completion. Given a value of β, a
workflow, and a platform configuration, we measure the percentage improvement
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Fig. 4: Percentage improvement over the one-algorithm approach, for each work-
flow and for different e values. Each violin plot shows minimum, maximum, and
average values as well as the overall shape of the distribution of the data points.

(or loss) that our approach achieves over the one-algorithm approach. Figure 3
shows results for several β value and workflow combinations. For each combi-
nation, there are 9 data points, one for each platform configuration. For better
readability, these data points are shown as violin plots, which indicate the min-
imum, maximum, and average values as well as the shape of the distribution.
Each data point below the y = 0 line corresponds to cases in which our approach
loses to the one-algorithm approach.

As expected, the results in Figure 3 show that the number of times our
approach loses to the one-algorithm approach increases as β decreases, i.e., as
the simulation becomes more shortsighted. But the trends vary depending on the
workflow. At one extreme, e.g. for workflow W1, our approach remains beneficial
for β as low as 0.1 (i.e., when only 10% of the total work is simulated). At
the other extreme, for workflow W8, as soon as β is 0.8 or below, our approach
experiences losses. The fact that different workflows exhibit different behaviors
is not surprising. Depending on workflow structures, scheduling decisions made
at the onset of the execution may or may not have a large influence on the later
phases of that execution. Given that, it is likely difficult to determine what level
of shortsightedness is acceptable for a given workflow. We then conclude that
simulating the entire execution of the application until completion (β = 1) is
the safest option. All results presented hereafter, unless specified otherwise, are
for β = 1. The downside of using β = 1 is that it maximizes simulation times,
the implications of which are discussed in Section 5.5.
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5.4 Evaluation with simulation inaccuracies (e > 0)

There are many sources of simulation inaccuracy, including: imperfect simulation
models; imperfect instantiation of these models based on inaccurate information
about the application, the platform, and the state of the ongoing execution
of the application on that platform; and inherent platform/system noise. We
need to ascertain whether our approach can tolerate a relatively high level of
simulation inaccuracy. To answer this question, we apply uniformly distributed
perturbations to simulated makespans in the interval [−e, e], for various values
of e (see details in Section 4.4). Figure 4 is similar to Figure 3 but shows results
for several values of e. For e > 0, each violin plot in the figure corresponds to 90
data points (9 platform configurations and 10 samples for 10 different seeds of
the random number generator). Results show that our approach is reasonably
tolerant to simulation error. Even when e = 0.2 (i.e., a simulated makespan can
be underestimated or overestimated by up to 20%), our approach remains mostly
beneficial and maintains positive average improvement over the one-algorithm
approach for all workflows. For e = 0.4 and above, our approach begins to be
outperformed by the one-algorithm approach.

Simulators developed using SimGrid and WRENCH, as the one developed in
this work, have been reported to achieve simulation errors well below 20%. For
instance, the WMS simulator in [10] achieves makespan errors below 5%. Other
simulators, however, may experience higher error. In practice, it would then
be useful to perform simulation error forensics and apply corrective measures.
That is, the runtime system could keep track of the simulated execution for the
algorithm that ends up being selected, and then compare this execution to what
actually happened in the real execution. The goal would be to identify sources
of simulation error, and correct for them in the instantiation of the simulator
before the next round of online simulations.

Overall, we conclude that simulation errors with current state-of-the-art sim-
ulation implementations, albeit unavoidable, are sufficiently small or mitigable
for our approach to be feasible.

5.5 Simulation overhead

On-line simulations for driving portfolio scheduling do not have to hold up the
application execution, but can be done concurrently with that execution, so
that the simulation overhead can be fully hidden. One option, which we do not
consider in this work, is to execute the simulations on the same resources as
that on which the application executes. In this case, the simulation executions
compete with and thus slows down the application execution, having a possibly
large (and difficult to estimate) negative impact on application performance.
Instead, we consider that the simulations execute on the host on which the CI
runtime system itself executes (typically some multi-core hosts that orchestrates
the application execution on other “remote” resources). Due to the overhead
being hidden by application execution, its only impact is to delay algorithm
selection. Since algorithm selection is performed at arbitrary times throughout
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execution, the only strong requirement is that the overhead be small (i.e., by at
least one orders of magnitude) relative to the overall makespan. In what follows,
we verify that this requirement can be achieved in practice.

Some parallel and distributed computing simulation frameworks, such as Sim-
Grid, which we use in this work, have placed a large emphasis on scalability. To
this end, analytical simulation models have been developed that have low com-
putational complexity and that can be implemented efficiently. In Section 5.3,
we saw that it is typically useful to simulate the upcoming application execution
to completion. Furthermore, the number of algorithms to simulate could (and
should) be large. Therefore, in spite of these simulations relying on scalable
simulation models, simulation overhead could be large.

Table 3: Simulated makespan, simulation time, ratio thereof, and peak memory
footprint of the simulation when simulating the execution of each workflow on
platform configuration P4 with algorithm A8. Results obtained on a 2.3GHz core.

Workflow
simulated makespan simulation time

ratio
peak memory footprint

(sec) (sec) (MB)

W1 338.77 29.35 11.5 149.95
W2 221.67 2.86 77.5 36.19
W3 170.63 5.58 30.6 65.98
W4 57.62 4.48 12.9 65.58
W5 5,618.07 3.20 1,755.6 16.96
W6 57.21 0.77 74.3 19.32
W7 4,887.52 6.97 701.2 28.96
W8 416.16 0.11 3783.2 5.98

Most simulation frameworks implement discrete-event (as opposed to discrete-
time) simulation. That is, computational complexity depends on the number of
events to simulate and not on the length of time being simulated. Table 3 shows
results obtained when simulating the full execution of each workflow on platform
configuration P4 using algorithm A8. Simulations were executed on one core of
a 2.3GHz Intel Core i9 and the results in the table are averaged over 10 trials.
Since algorithm A8 generally leads to shorter makespans than its competitors,
the results in the table correspond to a worst case in terms of ratio of simulated
makespan to simulation time. Also note that these results are for simulating
the full workflow execution. As the execution progresses, online simulations only
need to simulate the remaining application execution. That is, the simulation
overhead decreases at each round of online simulation. Thus the results in the
table correspond to the maximum (initial) simulation overhead.

We find that for most workflows the ratio of simulated makespan to simula-
tion time is large. But for some workflows, such as W1, the ratio is only 11.5x.
This is because this workflow has a high number of tasks relative to its total com-
putational work as well as a high data footprint (see Table 2), which increases
the number of execution events to simulate. This is also the case for workflow
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W4, and in this case is also due to the fact that the simulated makespan is low.
As seen in Figure 3, for these two workflows, it would be possible to reduce the
fraction of work being simulated, so as to reduce the simulation time. In partic-
ular, our approach performs well for W1 even when simulating the execution of
only 10% of the total work.

The results in Table 3 are for the simulation of one algorithm. Our approach
needs to run one simulation for each available algorithm (36, in this case study).
These simulations are independent and can be executed in parallel on multiple
cores, which is feasible due to the relatively low memory footprints reported
in Table 3. For instance, running 36 concurrent simulations for workflow W1,
which causes the largest simulation memory footprint in our case study, only
requires 5.2GB of RAM. Running these 36 simulations concurrently on a 48-
core Cascadelake 2.8GHz machine takes only 23% longer than running only
the slowest one of these simulations (simulations take different amounts of time
depending on the scheduling algorithm in use).

Another option for mitigating simulation overhead is to reduce the frequency
at which online simulations are executed [12]. All experiments presented so far
have used α = 0.1, that is, online simulations are invoked each time 10% of the
total work has been completed. It turns out that, at least for the results in this
case study, increasing α does not lead to significant performance degradation. We
conducted experiments with α = 0.2, so that online simulations are invoked only
5 times during the whole execution instead of 10 times with α = 0.1. Comparing
results between our approach and the one-algorithm approach, we find that there
is at most a one-point decrease in effectiveness for 7 of the workflows and at most
a two-point decrease for the remaining workflow. That is, if with α = 0.1 our
approach outperforms the one-algorithm approach by x%, then with α = 0.2
it outperforms it by at least x − 2% and typically by at least x − 1%. In no
instance does our approach lose to the one-algorithm approach with α = 0.2.
These results are obtained assuming that simulations are perfectly accurate. For
a simulation error range at 20% (e = 0.2), then our approach experiences less
than a one-point decrease in effectiveness for 5 workflows (instead of 7) and less
than a two-point decrease for the remaining 3 workflows (instead of 1). Overall,
at least within the scope of this case study, decreasing the frequency at which
online simulations are executed, which reduces simulation overhead, does not
have a large negative impact on the overall effectiveness of our approach.

We recognize that for a large number of candidate scheduling algorithms,
i.e., well beyond the 36 used in our case study, it may also be necessary to
investigate techniques for pruning the set of candidate algorithms (removing
algorithms that tend to perform similarly, removing algorithms that tend to
perform poorly) to avoid prohibitive simulation overhead. This could be done
using, for instance, the technique proposed in [12] by which algorithms are placed
in different categories depending on their past simulated performance, and a
bounded amount of simulation time is allocated to each category.
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6 Conclusion

In this work, we have assessed the potential merit of using simulation-driven
portfolio scheduling in CI runtime systems that automates the execution of ap-
plication workloads. The main goal is to obviate the well-known challenge of
selecting a particular scheduling algorithm to implement in a runtime system. In
a case study, we have shown that our portfolio scheduling approach outperforms
the one-algorithm approach, even if this approach happens to use the algorithm
that performs best, on average, across all experimental scenarios considered in
the case study. Although in some cases our approach remain effective when sim-
ulating only a fraction of the upcoming execution, simulating the execution to
completion is the safest option. Crucially, our approach retains its advantage
over the one-algorithm approach even in the presence of relatively large simula-
tion error, i.e., larger than what state-of-the-art simulators have been reported
to achieve. Because simulation executions can be concurrent with the applica-
tion execution, the simulation overhead only needs to be small relative to the
overall application makespan. We have shown that achieving this requirement is
feasible in practice by using simple techniques.

Recall that we have compared our proposed approach to the best possible
rational choice a runtime system developer could make for implementing the
one-algorithm approach in the context of our case study (i.e., pick algorithm
A8). It is not clear how this best choice could be made in practice (besides by
conducting a full experimental case study as done in this work), hence the main
motivation for this work. Were the system developer to pick a middle-of-the-
pack algorithm, say algorithm A22, which has an average degradation from best
at 49.79% (the worst algorithm has average degradation from best at 179.23%),
all results presented in Section 5 would be drastically improved. For instance,
our approach would outperform the one-algorithm approach on average for all
workflows for simulation error ranges up to 80% (instead of up to 20%).

The simulation-driven portfolio scheduling approach implemented for our
case study, as described in Section 4.4, could likely be enhanced in several ways.
For instance, instead of performing algorithm selection throughout execution
based on amounts of work performed since the last algorithm selection, one
could instead account for the structure of the workflow and perform it each time
a workflow level has completed. This is because often different workflow levels
have different data and computation demands, and thus can be better served by
different scheduling algorithms. The main conclusion from the results presented
in this work is that it is likely worth implementing simulation-driven portfolio
scheduling in a real runtime system. We plan to do so as part of production
Workflow Management Systems, so that we can reproduce in practice some of
the results presented in our case study. A particularly interesting future work
direction, to be pursued once a prototype implementation is available, is the
investigation of simulation forensics techniques to detect and mitigate simula-
tion error at runtime. Another interesting direction is the optimization of other
metrics of application execution (e.g., energy consumption). Finally, although
workflows are a general model of computation, it would be interesting to investi-
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gate whether the results in this work can generalize to other kinds of applications
for which CI runtime systems must be developed that make scheduling decisions.
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23. Núñez, A., Vázquez-Poletti, J., Caminero, A., Carretero, J., Llorente, I.M.: Design
of a New Cloud Computing Simulation Platform. In: Proc. of the 11th Intl. Conf.
on Computational Science and its Applications. pp. 582–593 (June 2011)

24. Qayyum, T., Malik, A.W., Khan Khattak, M.A., Khalid, O., Khan, S.U.: FogNet-
Sim++: A Toolkit for Modeling and Simulation of Distributed Fog Environment.
IEEE Access 6, 63570–63583 (2018)

25. Rodriguez, M.A., Buyya, R.: A taxonomy and survey on scheduling algorithms
for scientific workflows in iaas cloud computing environments. Concurrency and
Computation: Practice and Experience 29(8), e4041 (2017)

https://doi.org/10.1109/TPDS.2018.2820699
https://hal.archives-ouvertes.fr/hal-01963216


22 H. Casanova et al.

26. Ferreira da Silva, R., Casanova, H., Chard, K., Altintas, I., Badia, R.M., Balis, B.,
Coleman, T.a., Coppens, F., Di Natale, F., Enders, B., Fahringer, T., Filgueira, R.,
Fursin, G., Garijo, D., Goble, C., Howell, D., Jha, S., Katz, D.S., Laney, D., Leser,
U., Malawski, M., Mehta, K., Pottier, L., Ozik, J., Peterson, J.L., Ramakrishnan,
L., Soiland-Reyes, S., Thain, D., Wolf, M.: A community roadmap for scientific
workflows research and development. In: 2021 IEEE Workshop on Workflows in
Support of Large-Scale Science (WORKS). pp. 81–90 (2021)

27. Singh, L., Singh, S.: A Survey of Workflow Scheduling Algorithms and Research
Issues. International Journal of Computer Applications 74(15), 21–28 (2013)

28. Sinnen, O.: Task Scheduling for Parallel Systems (Wiley Series on Parallel and
Distributed Computing). Wiley-Interscience, USA (2007)

29. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Selective Reserva-
tion Strategies for Backfill Job Scheduling. In: Proc. Workshop on Job Scheduling
Strategies for Parallel Processing. pp. 55–71 (2002)

30. Streit, A.: The self-tuning dynP job-scheduler. In: Proc. 16th International Parallel
and Distributed Processing Symposium (2002)

31. Sukhija, N., Malone, B., Srivastava, S., Banicescu, I., Ciorba, F.M.: Portfolio-
Based Selection of Robust Dynamic Loop Scheduling Algorithms Using Machine
Learning. In: Proc. IEEE International Parallel Distributed Processing Symposium
Workshops. pp. 1638–1647 (2014)

32. Talby, D., Feitelson, D.: Improving and stabilizing parallel computer performance
using adaptive backfilling. In: Proc. 19th IEEE International Parallel and Dis-
tributed Processing Symposium (2005)

33. Tikir, M., Laurenzano, M., Carrington, L., Snavely, A.: PSINS: An Open Source
Event Tracer and Execution Simulator for MPI Applications. In: Proc. of the
15th Intl. Euro-Par Conf. on Parallel Processing. pp. 135–148. No. 5704 in LNCS,
Springer (Aug 2009)

34. Velho, P., Mello Schnorr, L., Casanova, H., Legrand, A.: On the Validity of Flow-
level TCP Network Models for Grid and Cloud Simulations. ACM Transactions on
Modeling and Computer Simulation 23(4) (2013)

35. Existing workflow systems. https://s.apache.org/existing-workflow-systems
(2022)

https://s.apache.org/existing-workflow-systems

	 On the Feasibility of Simulation-driven Portfolio Scheduling for Cyberinfrastructure Runtime Systems 

