
WfCommons: Data Collection and Runtime
Experiments using Multiple Workflow Systems

Henri Casanova∗, Kyle Berney∗, Serge Chastel, Rafael Ferreira da Silva‡

∗Information and Computer Sciences Department, University of Hawaii, Honolulu, HI, USA
‡National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA

{henric,berneyk}@hawaii.edu, schastel.at.work@gmail.com, silvarf@ornl.gov

Abstract—Scientific workflows have become ubiquitous across
scientific fields, and their execution methods and systems continue
to be the subject of research and development. Most experimen-
tal evaluations of these workflows rely on workflow instances,
which can be either real-world or synthetic, to ensure relevance
to current application domains or explore hypothetical/future
scenarios. The WfCommons project addresses this need by
providing data and tools to support such evaluations. In this
paper, we present an overview of WfCommons and describe two
recent developments. Firstly, we introduce a workflow execution
“tracer” for Nextflow, which significantly enhances the set of real-
world instances available in WfCommons. Secondly, we describe
a workflow instance “translator” that enables the execution
of any real-world or synthetic WfCommons workflow instance
using Dask. Our contributions aim to provide researchers and
practitioners with more comprehensive resources for evaluating
scientific workflows.

Index Terms—Scientific workflows, workflow instance collec-
tion, workflow instance execution

I. INTRODUCTION

Scientific workflows are relied upon by thousands of re-
searchers for managing data analyses, simulations, and other
computations in almost every scientific domain [2]. It is
thus not surprising that workflows have been the target of a
large number of research and development activities. These
activities are diverse, including the design of resource manage-
ment and scheduling algorithms, the development of runtime
systems to execute workflows on various hardware/software
stacks, the quantitative and qualitative analysis of work-
flow configurations to identify commonalities and differences
across scientific domains, the development of workflow bench-
marks and the analysis of their results, etc. In spite of the
diversity of their purposes, all these activities share a common
need for access to sets of workflow instances. A workflow
instance can be actual workflow application code and data, a
set of log files obtained from a workflow execution, a formal
descriptions of a workflow (task compute and data volumes,
data- and control dependencies between these tasks), or any

This manuscript has been authored in part by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The publisher, by accepting the article for publication, acknowledges that
the U.S. Government retains a non-exclusive, paid up, irrevocable, world-
wide license to publish or reproduce the published form of the manuscript, or
allow others to do so, for U.S. Government purposes. The DOE will provide
public access to these results in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

combination of these. The above need typically encompasses
using both workflow instances from specific workflow appli-
cations (i.e., so as to ensure that research and development is
driven by real-world data) and synthetic instances generated
to be representative of these applications (i.e., so as to go
beyond available real-world data and explore hypothetical
and/or future scenarios).

The WfCommons project [1], [3] was established to provide
data and tools that cater to research and development needs of
the scientific workflow community. In this paper, we report
on recent developments in WfCommons, to be released in
WfCommons 1.0, that aim at enriching the data and tools that
it provides. More specifically, we present:

• The development of a Nextflow “tracer” to augment the
set of workflow instances provided by WfCommons; and

• The development of a Dask “translator” that makes
it possible to execute WfCommons workflow instances
using more workflow runtime systems; and

• An example use case that demonstrates the capabilities
of WfCommons in terms of experimental evaluations.

This paper is organized as follows. Section II provides an
overview of WfCommons and briefly discusses related efforts.
Section III, resp. Section IV, describes new workflow tracers,
resp. translators, available in WfCommons 1.0. Section V re-
ports on a use case. Finally, Section VI briefly summarizes our
recent accomplishments and outlines future work directions.

II. WFCOMMONS OVERVIEW

Figure 1 depicts the main WfCommons components and
how they relate to each other. WfCommons aims to make
real-world workflow instances accessible, and this objective is
shared by the Workflow Trace Archive, a recently established
project highlighted in [4]. The Workflow Trace Archive com-
prises workflow instances generated by a preliminary version
of WfCommons. WfCommons instances are constructed based
on executions of real workflow applications on hardware
platforms using several workflow runtime systems (arrow 1⃝ in
the figure). Workflow runtime systems typically take as input
some description of the workflow that is executed and generate
execution logs. From these, it is possible to trace the workflow
execution so as to generate re-usable workflow instances
(arrow 2⃝ in the figure). Several such workflow instances
have been collected in this manner based on execution of

xEXECUTE

xTRACE

ANANALYZE

ANGENERATE
ANUSE

ANUSE

Simulation- and
 Analysis-driven

R&D

ANGENERATE

Execution-driven
R&D

xEXECUTE

xEXECUTE

xOBSERVE

Hardware Platform
& Runtime System

WfInstances

Real
Workflow
instance
(JSON)

WfChef

Workflow
Recipe
(Python)

WfBench

Benchmark
Workflow
Instance
(JSON
Python C++)

WfGen

Synthetic
Workflow
Instance
(Python)

Workflow

WfCommons component

Focus of this paper

Hardware Platform
& Runtime System
Hardware Platform
& Runtime System

1
2

3

45
7

7

6

8

WfCommons use

6

Fig. 1. Overview of WfCommons components and their usage.

workflow configurations from 14 different applications with
the Makeflow [5], Nextflow [6], and Pegasus [7] systems. In
total, 170 workflow instances have been generated and are
available on GitHub [8]–[10].

In WfCommons, workflow instances are described in JSON
following a particular schema called WfFormat [11]. This
format includes information not only about the workflow’s
execution on the platform on which the instance was obtained,
but also about the workflow’s platform-independent structure
and specification, which is in contrast to the format used by the
Workflow Trace Archive. Other workflow description formats
have been proposed, including the popular Common Workflow
Language (CWL) [12]. The WfCommons format is inspired
by CWL, but encodes additional information regarding the
workflow’s execution and the hardware platform on which that
execution took place.

Using real-world workflow instances for performing re-
search and development is compelling but has limitations.
This is because the set of available instances is necessarily
limited, which in turn constraints the scope of the results
obtained with these instances. For instance, a set of real-
world instances for a particular scientific application may be
available for only relatively small numbers of tasks, but it
is often necessary to evaluate algorithms/systems with larger
instances so as to assess scalability. Obtaining real-world
instances at these larger sizes may not be easily doable without
domain expertise. The need for generating synthetic, but
representative, workflow instances has been clearly identified
in the workflow community and several authors have proposed
methods and tools for this purpose [13]–[19]. Improving upon
these previous results, as explained in [20], WfCommons

includes a component called WfChef, which takes as input
sets of real-world workflow instances of different sizes ob-
tained for a particular application, analyzes these instances,
and produces so-called “workflow recipes” (arrow 3⃝ in the
figure). A workflow recipe is data and code that together
describe the patterns and sub-structures found within workflow
instances from a single particular application. A recipe for a
particular workflow application can then be used by another
WfCommons component called WfGen to generate arbitrary
numbers of synthetic workflow instances of (almost) arbitrary
sizes (arrow 4⃝ in the figure). With these two components it
is thus possible to generate representative synthetic workflow
instances completely automatically without need for any expert
application knowledge.

Real-world workflow instances archived in WfInstances or
synthetic workflow instances generated by WfGen can be
used directly for research and development purposes, such as
driving simulations with and performing analysis of workflow
instances (arrows 7⃝ in the figure). But for other purposes
it is necessary to execute workflow instances on hardware
platforms using workflow runtime systems. For instance, this
is the case for benchmarking/comparing these platforms and
systems over a range of workflow scenarios, or for validating
results obtained from workflow execution simulations or from
analyses of workflow instances. One option is to use real-world
workflow instances as benchmarks, which limits the scope of
the obtained results to these particular workflow instances,
and requires that all application software be installed. An
alternative is to automatically generate executable workflow
benchmarks. This is the approach implemented in a WfCom-
mons component called WfBench. WfBench takes as input

an arbitrary workflow instance (typically a synthetic work-
flow instance generated by WfGen), and automatic produces
an executable workflow benchmark. The workflow tasks are
replaced by a benchmark program that can be configured to
mimic a range of CPU and memory usage behaviors [21].
The generated workflow benchmark can be executed without
installing any software besides WfCommons. The execution of
workflows instances shown by arrows 6⃝ in the figure, can be
performed on hardware platforms and with runtime systems
that differ from those used to obtain the original instances
(arrow 1⃝). These executions can then be observed, e.g., via
inspection of runtime system logs or other means for research
and development purposes (arrow 8⃝ in the figure).

While all components above have been available since the
previous WfCommons release (v0.8), in the latest release
(v1.0), we have made new developments to allow new modal-
ities for steps shown by arrows 2⃝ and 6⃝ in Figure 1, which
are the topics of the next two sections.

III. WORKFLOW INSTANCE TRACERS

A. Motivation

The most fundamental WfCommons component is WfIn-
stances, since it provides real-world workflow instances that
can be used directly or passed to WfChef to generate synthetic
workflow instances. Each instance encodes both structural
and execution information about the workflow. The structural
information includes a list of workflow tasks, where each
workflow task is described by a unique name, a path to
an executable, a list of command-line arguments provided
to the task, and a set of input and output files, each with
a unique name and a size. The execution information in-
cludes a description of the hardware platform on which the
workflow was executed and an execution time for each task.
Given a workflow executed using a runtime system on some
hardware platform, all the necessary information is available
from the input provided to this runtime system (typically
some description of the workflow’s structural information) and
from the output it produces (typically a set of log files). To
automate the process of adding instances to WfInstances, we
have implemented workflow execution “tracers” that generate
workflow instances based on the runtime system input/output
(arrow 2⃝ in Figure 1).

The current workflow model in WfCommons, as formalized
by the WfFormat JSON schema, is a static workflow in which
all tasks are known ahead of time and all data-dependencies
are via input/output files. This model fits traditional workflow
runtime systems, e.g., Pegasus [7] and Makeflow [5]. We
have developed tracers for these two runtime systems. These
tracers parse input files and log files so as to construct
instances, and have been used to contribute instances to
WfInstances. While for these two runtime systems developing
a tracer was straightforward, this is not necessarily the case
in general. Modern runtime systems use a different workflow
model [22]. For instance, the input to the runtime system
can be programmatic rather than purely descriptive, in which
case the structure of the workflow is not known a-priori. Data

dependencies may not necessarily be file-based but also based
on some more general notion of data communication. Finally,
runtime systems may produce logs that do not contain all the
information necessary for re-constructing a workflow instance.

B. Nextflow Tracer

A popular runtime system for which the difficulties outlined
in the previous section occur is Nextflow [6]. Nextflow is
used heavily in the field of bioinformatics. Notably, a large
set of Nextflow workflows (a.k.a. “pipelines”) is available on-
line [23]. These workflows are maintained, documented, and
containerized, so that it is straightforward to execute them as
is, which provides a large set of real-world workflow instances
that could be contributed to WfInstances.

Nextflow uses the dataflow programming model. A
Nextflow workflow is defined by a user script (e.g., bash,
Python) that sets up processes that may communicate via input
and output channels. These channels are used to pass data
between processes. If processes need to exchange data stored
in files, then a shared file system is required and messages
are exchanged that contain globally visible file paths. The
workflow can execute on the user’s machine or in a distributed
manner using various compute back-ends (e.g., SLURM, AWS
Batch, Google Cloud Batch).

A preliminary Nextflow tracer was developed as part of
WfCommons 0.8, and was used to produce the workflow
instances available at [9]. This tracer operated by parsing
the execution’s standard output and the log files produced by
Nextflow as is, which posed several challenges. First, it was
not possible to fully determine the workflow’s task dependency
structure and in some cases led to task graphs with cycles.
Second, although the number of bytes read/written by each
task is logged, parsing the log files did not make it possible
to determine which of that data was from input and output
files, what these files may have been, and what file sizes were.
This is in part due to Nextflow providing non-file based data-
dependencies between tasks via “data channels”. As a result,
Nextflow instances provided as part of WfInstances with the
tracer in WfCommons 0.8 are best-effort attempt and come
with limitations.

In WfCommons 1.0, we implemented a Nextflow tracer
that addresses the aforementioned limitations. This new tracer
requires that the Nextflow source code be modified, so that
each task logs the input and output messages received via its
input and output data channels, respectively. The modifications
are minimal, and for now they are listed in the tracer’s
documentation, the intent being to contribute them to Nextflow
via a pull request. The tracer parses these log messages to
determine the location and size of the input and output files
for all tasks, based on file paths contained in exchanged
data channel messages. All other information necessary to
construct a WfCommons workflow instance is provided by
Nextflow’s logging and visualization output. Specifically, we
utilize Nextflow’s execution logs to obtain profile information
for each task (e.g., runtime, memory requested). Also, it turns
out that Nextflow produces a representation of the workflow’s

process graph in DOT format. This is a Directed Acyclic
Graph (DAG) in which each vertex is a process, which may
correspond to one or more workflow tasks (i.e., these tasks
all correspond to the invocation of the same executable).
This output from Nextflow is intended to produce a graphical
rendering of the process graph, but we use it to reconstruct
data channel dependencies between processes.

The tracer in WfCommons 1.0 improves upon that available
in WfCommons 0.8, but has limitations due to the use of data
channels. First, because the current version of WfFormat does
not support data channels, the generated workflow instances
do not include data payloads that correspond to non-file
data dependencies between workflow tasks. Thus, the overall
data footprint specified in the generated workflow instance
is a lower bound on that of the actual Nextflow workflow.
Second, the Nextflow profiling data for each task includes the
number of bytes read and written by the task. Based on our
investigation, it is not easy to determine whether and/or when
these numbers of bytes include non-file data.

Manual inspection of the workflows we have traced to
date indicates that non-file data passed via data channels is
a small fraction of the overall data footprint of the workflow.
Using the produced workflow instances for analysis or to drive
simulation should produce realistic results. However, since
information about data channel use is lost in the workflow
instances when encoded in the JSON WfFormat schema, these
workflow instances cannot be executed again using Nextflow
or any other workflow runtime system. In other words, for
these instances, top arrow 6⃝ in Figure 1 is not feasible for
the workflow instances produced by the Nextflow tracer.

The WfCommons Nextflow tracer is available on
GitHub [24] and has been used to produce workflow
instances for 15 different Nextflow workflows.

IV. WORKFLOW INSTANCE TRANSLATORS

A. Motivation

Executing WfCommons workflow instances on real-world
platforms is useful for at least two purposes. First, one
may wish to execute real-world workflow instances using
a different runtime system than the one that was used to
obtain the instance. This is because not all workflow runtime
systems are installed, or easily installable, on all platforms (for
instance, some institutions prohibit installing runtime systems
that require superuser privileges). Second, one may wish to
conduct benchmarking campaigns by executing large numbers
of workflow benchmarks (e.g., as generated by WfBench) on
different platforms using different runtime systems.

Given the above, there is a strong incentive to develop
WfCommons workflow instance “translator” for popular work-
flow runtime systems. A translator takes as input a workflow
instance and produces as output all configuration files and/or
code necessary to execute the instance using a target runtime
system. This provides instance portability across runtime sys-
tems since a real-world workflow instance constructed from an
execution with some runtime system (arrow 1⃝ in Figure 1)
can be executed seamlessly with another runtime system (top

arrow 6⃝ in Figure 1). Furthermore, WfCommons translators
can be used to execute any synthetic benchmark workflow
instance produced by WfGen, without the need to install any
scientific application software (bottom arrow 6⃝ in Figure 1).

WfCommons 0.8 includes translators for Pegasus [7] and
Swift/T [25]. Both these runtime systems employ a static
Directed Acyclic Graph (DAG) model of the workflow, which
directly maps to the WfFormat JSON descriptions of our
workflow instances, and thus rendered the development of
these translators straightforward. A popular runtime system
that supports workflows is Dask [26], [27]. Dask has become a
standard tool in the Python Data Science ecosystem, supports a
variety of compute back-ends, and it is currently used routinely
at many institutions and compute facilities. With Dask users
develop workflows as Python programs, which affords more
flexibility than DAG-based workflow runtime systems. The
latest WfCommons release includes a Dask translator, briefly
described in the next section, that makes it possible to execute
any WfCommons workflow instance using Dask.

B. Dask Translator

In the Dask framework, a workflow is created by im-
plementing each workflow task as a Python function. This
function is then passed, along with its arguments, as
a callback function to Dask’s submit() method (short
for dask.distributed.Client.submit()), which re-
turns a Future (short for dask.distributed.Future).
The Future points to the function’s invocation and re-
solves whenever the function returns from that invocation.
Importantly, the arguments passed to the function can include
Futures, which makes it possible to implement control-
dependencies between function invocations, and thus between
workflow tasks. Future objects are promises of completion
of a task and are managed transparently by the Dask runtime.

The WfCommons Dask translator takes as input a workflow
instance in the WfFormat JSON format and produces as output
a Python program that uses the Dask API and can be run
to execute the workflow. Control-dependencies between tasks
are realized through the use of a single callback function
execute_task() that is passed to submit() and called
to invoke the execution of each workflow task. The first
argument passed to execute_task() is the function that
executes the task.

The generation of the Python program that can be run to ex-
ecute the workflow is performed as follows. First, information
regarding how each task should be executed is collected from
workflow instance. The translator sorts the workflow tasks in
topological order according to task-dependencies specified in
the workflow JSON document. For each task in this order,
code is generated to call submit() using the aforementioned
execute_task() callback function, passing it task-specific
arguments and the list of Futures on which the task depends.
These Futures are the return values of previous calls to
submit() for the task’s parents. Third, the translator gen-
erates code to wait on all the Futures returned by calls to
submit() for the workflow’s exit tasks.

TABLE I
BWA WORKFLOW BENCHMARK EXECUTION RESULTS OBTAINED WITH PEGASUS AND DASK ON 3 CHAMELEON CLOUD 48-CORE COMPUTE NODES. ALL

RESULTS ARE AVERAGED OVER 5 TRIALS, WITH COEFFICIENTS OF VARIANCE IN PERCENTAGE SHOWN IN PARENTHESES.

Pegasus Dask
#tasks makespan pre-delay post-delay makespan pre-delay post-delay
198 0h26m38s (5.6%) 40.0s (0.0%) 38.6s (6.5%) 0h22m56s (7.7%) 0.2s (2.0%) 1.5s (1.5%)
498 0h40m29s (6.3%) 40.2s (1.1%) 39.4s (4.2%) 0h32m11s (3.2%) 0.3s (4.5%) 3.7s (0.6%)
998 0h59m17s (0.7%) 40.2s (1.1%) 38.2s (4.7%) 0h53m28s (2.6%) 0.5s (2.0%) 7.4s (0.8%)
1,998 1h42m48s (3.0%) 40.4s (1.4%) 39.4s (5.8%) 1h29m15s (0.5%) 0.9s (1.6%) 14.9s (0.4%)

When the generated program is executed, all workflow tasks
are concurrently submitted for execution to Dask. Initially,
only the workflow’s entry tasks are ready to execute because
submit() is passed an empty list of futures. A task becomes
ready only when the futures of all of its parents have resolved,
which will then trigger its execution as soon as idle compute
resources are available.

V. EXAMPLE USE CASE

To illustrate the capabilities afforded by WfCommons, in
this section we describe an example use case. The objective
is to evaluate two workflow runtime systems, Pegasus [7]
and Dask [26], when used to execute workflows from the
Bioinformatics application Burrows-Wheeler Aligner (BWA)
tool [28]. BWA is a software package for mapping low-
divergent sequences against a large reference genome, such
as the human genome. BWA workflows have been developed
based on the Makeflow [5] runtime system, as available in a
GitHub repository [29]. 15 of these workflows were executed
using Makeflow in December 2020 on the Chameleon Cloud
testbed [30]. Based on the Makeflow input files and logs,
WfCommons instances were constructed and made publicly
available as WfInstances (arrows 1⃝ and 2⃝ in Figure 1).

In this example use case, we use WfChef to generate
workflow recipes that describe the overall structure and sub-
structures found in these 15 workflow instances (arrow 3⃝
in Figure 1). Using this recipe, we use WfGen to generate
4 synthetic workflow instances (arrow 4⃝ in Figure 1). We
ask WfGen to generate instances with 200, 500, 1000, and
2000 tasks. Because WfGen generates these instances by re-
using and replicating particular substructures identified by
WfChef in real-world workflow instances, it cannot always
generates workflow instances with the exact number of tasks
specified. In this case, the generated instances have 198, 498,
998, and 1,998 tasks. Using these instances, we then used
WfBench to generate corresponding workflow benchmarks.
These benchmarks are generated in a way that respects the
workflow structure, but replaces the tasks’ executables by
an invocation of a CPU-Memory benchmark program with
a specified amount of work to perform, and replaces the
tasks’ input/output file with arbitrary files to that the total data
footprint of the workflow is also specified. In our case, each
workflow task runs by itself in about 35 seconds on a single
core of the platform used to run the benchmark (described
hereafter), and the total workflow footprint is set to 100GB.

Although the original workflows were executed using Make-
flow, the generated benchmarks can be executed using any of
the WfCommons translators. We use the Pegasus translator
(available since WfCommons 0.8) and the recently developed
Dask translator (described in Section IV-B). Using these
two translators, we run the workflow benchmarks on the
Chameleon Cloud testbed. Specifically, we execute the bench-
marks on 3 48-core worker nodes (2.60GHz Intel Skylake), for
a total of 144 cores that execute workflow tasks. Workflow
executions in Pegasus or in Dask only have one technical
difference: Under the hood, Pegasus uses HTCondor [31] to
execute workflow tasks on its worker nodes. This requires the
staging and therefore the transfer of data files and executables
from and to the coordinator file system, that is the node
running HTCondor schedd. Conversely, a shared file system
(NFS in our case) was required to perform the workflow exe-
cutions in Dask. In both cases, the coordinator (the HTCondor
schedd and the Dask scheduler) was running on a dedicated
node that performed no computation.

Table I shows results obtained by executing the four BWA
workflow benchmarks, reporting on the workflow makespan
(elapsed time between the submission of the workflow to the
runtime system and its completion, i.e., the overall execution
time as perceived by the user), the pre-delay (time elapsed
between the submission of the workflow and the beginning of
the execution of the first workflow task), and the post-delay
(time elapsed between the completion of the last workflow
task and the completion of the workflow). The metrics are
computed from runtime system log files, based on back-
to-back benchmark executions on dedicated compute nodes,
using 5 trials for each execution. The results show that Pegasus
executions have significantly higher overhead when compared
to Dask executions (Pegasus makespans are between 16% and
25% longer than their Dask counterparts). The higher pre-
and post-delay values with Pegasus are due to it performing
staging / cleanup of data/executables on the compute nodes at
the beginning / end of the execution, while Dask instead uses
a shared file system. Larger makespans with Pegasus may also
be due to HTCondor, which necessarily adds overhead.

The results in Table I in no way provide an in-depth com-
parison of Pegasus and Dask. Conducting more experiments
and analyzing execution logs in detail would be necessary for
a full-fledged comparison. Our objective here is to illustrate
that, using WfCommons, performing this kind of experimen-
tal study is low-labor. Specifically, generating a workflow

benchmarks is done with 2 lines of Python. Executing each
benchmark with the Pegasus translator is done with 4 lines of
Python. Executing each benchmark with the Dask translator
is done with 2 Shell commands. Overall, the entire code a
WfCommons user would have to write to generate the results
in Table I consists of less than 40 lines of Python/Shell.

VI. CONCLUSION

In this paper, we have provided an overview of WfCommons
and of its components, have described recent developments
that aim to augment the set of workflow instances that Wf-
Commons can provide and to make these instances executable
with modern workflow runtime systems, and described an
illustrative use case. WfCommons was initially designed and
developed with DAG-based and file-based workflow runtime
systems in mind. Hence, WfFormat was not designed to
support dynamic/programmatic workflows or workflows in
which task data-dependencies are not always file-based. As
explained in Section III, this design hindered the implementa-
tion of the Nextflow tracer, as Nextflow supports non-file data-
dependencies. Furthermore, although the Dask translator de-
scribed in Section IV uses Dask for executing static workflows,
Dask provides the ability to execute workflows in which tasks
are created dynamically at runtime rather than at compile time,
and Dask does not impose that task dependencies be file-based.
Consequently, a future direction is to augment WfFormat to
support a broader range of modern workflow models [22],
which will require reviewing workflow descriptions modalities
in popular/emerging workflow runtime systems as well as
recognized standards such as CWL [12].

ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leader-
ship Computing Facility at the Oak Ridge National Labo-
ratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. This research was partially supported by NSF
Award #2106059. Finally, we thank the NSF Chameleon Cloud
for providing time grants to access their resources.

REFERENCES

[1] “WfCommons Project,” https://wfcommons.org, 2023.
[2] C. S. Liew, M. P. Atkinson, M. Galea, T. F. Ang, P. Martin, and

J. I. V. Hemert, “Scientific workflows: moving across paradigms,” ACM
Computing Surveys (CSUR), vol. 49, no. 4, pp. 1–39, 2016.

[3] T. Coleman, H. Casanova, L. Pottier, M. Kaushik, E. Deelman, and
R. Ferreira da Silva, “WfCommons: A Framework for Enabling Scien-
tific Workflow Research and Development,” Future Generation Com-
puter Systems, vol. 128, pp. 16–27, 2022.

[4] L. Versluis, R. Mathá, S. Talluri, T. Hegeman, R. Prodan, E. Deelman,
and A. Iosup, “The Workflow Trace Archive: Open-Access Data From
Public and Private Computing Infrastructures,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 9, pp. 2170–2184, 2020.

[5] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,”
in 1st ACM SIGMOD Workshop on Scalable Workflow Execution En-
gines and Technologies. ACM, 2012, p. 1.

[6] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational work-
flows,” Nature Biotechnology, pp. 316–319, 2017.

[7] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus: a Workflow Management System for Science Automation,”
Future Generation Computer Systems, vol. 46, pp. 17–35, 2015.

[8] “WfCommons Makeflow Execution Instances,” https://github.com/
wfcommons/makeflow-instances, 2023.

[9] “WfCommons Nextflow Execution Instances,” https://github.com/
wfcommons/nextflow-instances, 2023.

[10] “WfCommons Pegasus Execution Instances,” https://github.com/
wfcommons/pegasus-instances, 2023.

[11] “WfFormat: The WfCommons JSON Schema,” https://github.com/
wfcommons/wfformat, 2023.

[12] M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanić,
H. Ménager, S. Soiland-Reyes, B. Gavrilović, C. Goble et al., “Methods
included: Standardizing computational reuse and portability with the
common workflow language,” Communications of the ACM, vol. 65,
no. 6, pp. 54–63, 2022.

[13] “DAGGEN: a synthetic task graph generator,” https://github.com/
frs69wq/daggen, 2021.

[14] M. A. Amer and R. Lucas, “Evaluating Workflow Tools with SDAG,”
in SC Companion: High Performance Computing, Networking Storage
and Analysis. IEEE, 2012, pp. 54–63.

[15] D. G. Amalarethinam and G. J. Mary, “Dagen-a tool to generate
arbitrary directed acyclic graphs used for multiprocessor scheduling,”
International Journal of Research and Reviews in Computer Science,
vol. 2, no. 3, p. 782, 2011.

[16] D. G. Amalarethinam and P. Muthulakshmi, “Dagitizer–a tool to gen-
erate directed acyclic graph through randomizer to model scheduling
in grid computing,” in Advances in Computer Science, Engineering &
Applications. Springer, 2012, pp. 969–978.

[17] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P.
Barros, “Workflow patterns,” Distributed and parallel databases, vol. 14,
no. 1, pp. 5–51, 2003.

[18] D. Garijo, P. Alper, K. Belhajjame, O. Corcho, Y. Gil, and C. Goble,
“Common motifs in scientific workflows: An empirical analysis,” Future
Generation Computer Systems, vol. 36, pp. 338–351, 2014.

[19] R. Ferreira da Silva, W. Chen, G. Juve, K. Vahi, and E. Deelman,
“Community resources for enabling and evaluating research in dis-
tributed scientific workflows,” in 10th IEEE International Conference
on e-Science, ser. eScience’14, 2014, pp. 177–184.

[20] T. Coleman, H. Casanova, and R. Ferreira da Silva, “Wfchef: Automated
generation of accurate scientific workflow generators,” in 17th IEEE
eScience Conference, 2021, pp. 159–168.

[21] T. Coleman, H. Cansanova, K. Maheshwari, L. Pottier, S. R. Wilkinson,
J. Wozniak, F. Suter, M. Shankar, and R. Ferreira da Silva, “Wf-
Bench: Automated Generation of Scientific Workflow Benchmarks,”
in 2022 IEEE/ACM International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS), 2022, pp. 100–111.

[22] R. Ferreira da Silva, R. M. Badia, V. Bala, D. Bard, T. Bremer et al.,
“Workflows Community Summit 2022: A Roadmap Revolution,” Oak
Ridge National Laboratory, Tech. Rep. ORNL/TM-2023/2885, 2023.

[23] “nf-core Nextflow pipelines,” https://nf-co.re/pipelines, 2023.
[24] “WfCommons Nextflow workflow tracer,” https://github.com/

wfcommons/nextflow workflow tracer, 2023.
[25] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and I. T.

Foster, “Swift/T: Large-scale application composition via distributed-
memory dataflow processing,” in Proc. IEEE/ACM International Symp.
on Cluster, Cloud, and Grid Computing. IEEE, 2013, pp. 95–102.

[26] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th Python in science confer-
ence, no. 130-136, 2015.

[27] “The Dask project,” https://www.dask.org/, 2023.
[28] “Burrows-Wheeler Aligner,” https://bio-bwa.sourceforge.net/, 2023.
[29] “BWA Makeflow workflows,” https://github.com/

cooperative-computing-lab/makeflow-examples/tree/master/bwa, 2023.
[30] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,

M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons Learned from
the Chameleon Testbed,” in Proc. of the 2020 USENIX Annual Technical
Conference (USENIX ATC ’20). USENIX Association, July 2020.

[31] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in prac-
tice: the Condor experience,” Concurrency - Practice and Experience,
vol. 17, no. 2-4, pp. 323–356, 2005.

https://wfcommons.org
https://github.com/wfcommons/makeflow-instances
https://github.com/wfcommons/makeflow-instances
https://github.com/wfcommons/nextflow-instances
https://github.com/wfcommons/nextflow-instances
https://github.com/wfcommons/pegasus-instances
https://github.com/wfcommons/pegasus-instances
https://github.com/wfcommons/wfformat
https://github.com/wfcommons/wfformat
https://github.com/frs69wq/daggen
https://github.com/frs69wq/daggen
https://nf-co.re/pipelines
https://github.com/wfcommons/nextflow_workflow_tracer
https://github.com/wfcommons/nextflow_workflow_tracer
https://www.dask.org/
https://bio-bwa.sourceforge.net/
https://github.com/cooperative-computing-lab/makeflow-examples/tree/master/bwa
https://github.com/cooperative-computing-lab/makeflow-examples/tree/master/bwa

	Introduction
	WfCommons Overview
	Workflow Instance Tracers
	Motivation
	Nextflow Tracer

	Workflow Instance Translators
	Motivation
	Dask Translator

	Example Use Case
	Conclusion
	References

