
IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 1

Dynamic and Fault-Tolerant Clustering
for Scientific Workflows

Weiwei Chen, Student Member, IEEE, Rafael Ferreira da Silva, Ewa Deelman, Member, IEEE,
and Thomas Fahringer, Member, IEEE

Abstract—Task clustering has proven to be an effective method to reduce execution overhead and to improve the computational
granularity of scientific workflow tasks executing on distributed resources. However, a job composed of multiple tasks may have
a higher risk of suffering from failures than a single task job. In this paper, we conduct a theoretical analysis of the impact
of transient failures on the runtime performance of scientific workflow executions. We propose a general task failure modeling
framework that uses a Maximum Likelihood estimation-based parameter estimation process to model workflow performance.
We further propose 3 fault-tolerant clustering strategies to improve the runtime performance of workflow executions in faulty
execution environments. Experimental results show that failures can have significant impact on executions where task clustering
policies are not fault-tolerant, and that our solutions yield makespan improvements in such scenarios. In addition, we propose a
dynamic task clustering strategy to optimize the workflow’s makespan by dynamically adjusting the clustering granularity when
failures arise. A trace-based simulation of five real workflows shows that our dynamic method is able to adapt to unexpected
behaviors, and yields better makespans when compared to static methods.

Index Terms—scientific workflows, fault tolerance, parameter estimation, failure, machine learning, task clustering, job grouping

F

1 INTRODUCTION

S CIENTIFIC workflows can be composed of many fine
computational granularity tasks, where the task runtime

may be shorter than the system overhead—the period of
time during which miscellaneous work other than the user’s
computation is performed. Task clustering methods [1]–[6]
merge several short tasks into a single job such that the
job runtime is increased and the overall system overhead
is decreased. Task clustering is the most common tech-
nique used to address execution overheads and increase the
computational granularity of workflow tasks executed on
distributed resources [1]–[3]. However, existing clustering
strategies ignore or underestimate the impact of failures on
the system, despite their significant effect on large-scale
distributed systems [7]–[10], such as Grids [11]–[14] and
Clouds [11], [15], [16]. In this work, we focus particularly
on transient failures since they are expected to be more
prevalent than permanent failures [7].

A clustered job consists of multiple tasks. If a task
within a clustered job fails (i.e., is terminated by unexpected
events during its computation), the job is marked as failed,
even though tasks within the same job have successfully
completed their execution. Several techniques have been
developed to cope with the negative impact of job failures
on the execution of scientific workflows. The most common

• W. Chen, R. Ferreira da Silva and E. Deelman are with the Information
Sciences Institute, University of Southern California, Marina del Rey,
CA, USA. T. Fahringer is with the Institute for Computer Science,
University of Innsbruck, Innsbruck, Austria.

• Corresponding author: Weiwei Chen weiweich@google.com

technique is to retry the failed job [17]–[19]. However,
retrying a clustered job can be expensive since com-
pleted tasks within the job usually need to be recomputed,
thereby resource cycles are wasted. In addition, there is
no guarantee that recomputed tasks will succeed. As an
alternative, jobs can be replicated to avoid failures specific
to a worker node [20]. However, job replication may also
waste resources, in particular for long-running jobs. To
reduce resource waste, job executions can be periodically
checkpointed to limit the amount of retried work. However,
the overhead of performing checkpointing can limit its
benefits [7].

In this work, we propose three fault-tolerant task cluster-
ing methods to improve existing task clustering techniques
in a faulty distributed execution environment. The first
method retries failed tasks within a job by extracting them
into a new job. The second method dynamically adjusts
the granularity or clustering size (number of tasks in a job)
according to the estimated inter-arrival time of task failures.
The third method partitions the clustered jobs into finer jobs
(i.e., reduces the job granularity) and retries them.

We then evaluate these methods using a task transient
failure model based on a parameter learning process that
estimates the distribution of the task runtimes, the system
overheads, and the inter-arrival time of failures. The process
uses the Maximum Likelihood Estimation (MLE) based
on prior and posterior knowledge to build the estimates.
The prior knowledge about the parameters is modeled
as a distribution with known parameters. The posterior
knowledge about the task execution is also modeled as a
distribution with a known shape parameter and an unknown
scale parameter. The shape parameter affects the shape of a

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 2

distribution, while the scale parameter affects the stretching
or shrinking of a distribution.

The two first fault-tolerant task clustering methods were
introduced and evaluated in [2] using two real scientific
workflows. In this work, we extend our previous work by:
1) studying the performance gain of using fault-tolerant
task clustering methods over an existing task clustering
technique on a larger set of workflows (five widely used
scientific applications); 2) evaluating the performance im-
pact of the variance of the distribution of the task runtimes,
the system overheads, and the inter-arrival time of failures
on the workflow’s makespan (turnaround time to execute
all workflow tasks); and 3) characterizing the performance
impact on the workflow’s execution of dynamic and static
failure estimations with different inter-arrival times of fail-
ures.

The rest of this manuscript is organized as follows.
Section 2 gives an overview of the related work. Section 3
presents our workflow and task failure models. Section 4
details our fault-tolerant clustering methods. Section 5
reports experiments and results, and the manuscript closes
with a discussion and conclusions.

2 RELATED WORK

Failure analysis and modeling of computer systems have
been widely studied over the past two decades. These
studies include, for instance, the classification of common
system failure characteristics and distributions [8], root
cause analysis of failures [9], empirical and statistical
analysis of network system errors and failures [10], and
the development and analysis of techniques to prevent and
mitigate service failures [21].

In scientific workflow management systems (WMS),
fault tolerance issues have also been addressed. For in-
stance, the Pegasus WMS [22] has incorporated a task-
level monitoring system, which retries a job if a task
failure is detected. Provenance data is also tracked and used
to analyze the cause of failures [23]. A survey of fault
detection, prevention, and recovery techniques in current
grid WMS is available in [24]. The survey provides a
compilation of recovery techniques such as task replication,
checkpointing, resubmission, and migration. In this work,
we combine some of these techniques with task clustering
methods to improve the performance and reliability of fine-
grained tasks. To the be best of our knowledge, none of the
existing WMS have provided such features.

The low performance of fine-grained tasks is a com-
mon problem in widely distributed platforms where the
scheduling overhead and queuing times at resources are
high. Several papers have addressed the control of task
granularity of loosely coupled tasks. For instance, Muthu-
velu et al. [25] proposed a clustering algorithm that groups
bag of tasks based on the runtime, and later based on task
file size, CPU time, and resource constraints [26]. Recently,
they proposed an online scheduling algorithm [27] that
merges tasks based on resource network utilization, user’s
budget, and application deadline. In addition, Ng et al. [28]

and Ang et al. [29] also considered network bandwidth
to improve the performance of the task scheduling algo-
rithm. Longer tasks are assigned to resources with better
network bandwidth. Liu and Liao [30] proposed an adaptive
scheduling algorithm to group fine-grained tasks according
to the processing capacity and the network bandwidth of
the currently available resources.

Several papers have addressed the workflow-mapping
problem by using DAG scheduling heuristics [13], [31]–
[34]. In particular, HTCondor [34] uses matchmaking to
avoid scheduling tasks to compute nodes without sufficient
resources (CPU power, etc.). Previously, we adopted a
similar approach to avoid scheduling workflow tasks to
compute nodes with high failure rates [2]. In this work,
we focus on the performance gain of task clustering, in
particular on how to adjust the clustering size to balance
the cost of task retry and of the scheduling overheads.

The task granularity control has also been addressed
in scientific workflows. For instance, Singh et al. [1]
proposed a level- and label-based clustering. In level-based
clustering, tasks at the same workflow level are clustered
together. The number of clusters or tasks per cluster are
specified by the user. In the label-based clustering, the user
labels tasks that should be clustered together. Recently,
Ferreira da Silva et al. [3], [5] proposed task grouping and
ungrouping algorithms to control workflow task granularity
in a non-clairvoyant and online context, where none or few
characteristics about the application or resources are known
in advance. Although these techniques significantly reduce
the impact of the scheduling and queuing overheads, they
do not address the fault tolerance problem.

Machine learning techniques have been used to predict
execution time [35]–[37] and system overheads [38], and
to develop probability distributions for transient failure
characteristics. Duan et.al. [35] used Bayesian network to
model and predict workflow task runtimes. The important
attributes (e.g. external load, arguments, etc.) are dynam-
ically selected by the Bayesian network and fed into a
radial basis function neural network to perform further
predictions. Ferreira da Silva et al. [37] used regression
trees to dynamically estimate task needs including pro-
cess I/O, runtime, memory peak, and disk usage. In this
work, we use the knowledge obtained in prior works on
failure [23], overhead [38], and task runtime analyses [37]
as the foundations to build the prior knowledge based on
the Maximum Likelihood Estimation (MLE) that integrates
both the knowledge and runtime feedbacks to adjust the
parameter estimation accordingly.

3 DESIGN AND MODELS

3.1 Workflow Management System Model
A workflow is modeled as a directed acyclic graph (DAG),
where each node in the DAG often represents a workflow
task, and the edges represent dependencies between the
tasks that constrain the order in which tasks are executed.
Dependencies typically represent data-flow dependencies in
the application, where the output files produced by one

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 3

File System

Worker Node
Execution Site

Workflow
Engine

Job
Scheduler

Workflow
Mapper

Local Queue

Submit Host

Job
Wrapper

Remote
Queue

Worker Node

Job
Wrapper

Worker Node

Job
Wrapper

Head Node

Fig. 1: Overview of the workflow management system.

task are used as inputs of another task. Each task is a
computational program and a set of parameters that need
to be executed. This model fits several WMS such as
Pegasus [22], Askalon [39], and Taverna [40].

In this work, we assume a single execution site with
multiple compute resources, such as virtual machines on
Cloud platforms. Fig. 1 shows a typical workflow execution
environment that targets a homogeneous computer cluster
(e.g., a dedicated cluster or a virtual cluster on Clouds).
The submit host prepares a workflow for execution (e.g.
clustering, mapping, etc.). The jobs are executed remotely
on individual worker nodes. The main components are:

Workflow Mapper: Generates an executable workflow
from an abstract workflow [22] provided by the user or a
workflow composition system. It restructures the workflow
to optimize performance, and adds tasks for data manage-
ment and provenance information generation. In this work,
the workflow mapper is also used to merge tasks into a
single clustered job (i.e., task clustering). A job then is a
single execution unit in the workflow execution system and
is composed of one or more tasks.

Workflow Engine: Executes jobs defined in the workflow
in order of their dependencies. Only jobs that have all their
parent jobs completed are submitted to the Job Scheduler.
The workflow engine relies on the resources (compute,
storage, and network) defined in the executable workflow
to perform computations. The time span between the job
release and its submission to the Job Scheduler is denoted
as the workflow engine delay.

Job Scheduler and Local Queue: Manage individual
workflow jobs and supervise their execution on local and
remote resources. The time span between the job submis-
sion to the scheduler and the beginning of its execution on
a worker node is denoted as the queue delay. This delay
reflects both the efficiency of the scheduler and the resource
availability.

Job Wrapper: Extracts tasks from clustered jobs and
executes them on the worker nodes. The clustering delay
is the elapsed time of the extraction process.

We extend the DAG model to be overhead aware (o-
DAG). System overheads play an important role in work-
flow execution and constitute a major part of the overall
runtime when tasks are poorly clustered [38], in particular
for tasks with very short runtimes. Fig. 2 illustrates how
we augment a DAG to be an o-DAG with the capability
to represent system overheads (s) such as the workflow

t

t t

t

1

2 3

4

t

s1

1

t

s2

2 t

s3

3

t

s4

4

DAG o-DAG

Fig. 2: Extending DAG to o-DAG (s is a system overhead).

engine and queue delays. In addition, system overheads
also include data transfer delays caused by staging-in and
staging-out of data. This classification of system overheads
is based on our prior workflow analysis [38]. Table 1
summarizes the system overheads and task runtimes of
three real scientific workflows executed on a real distributed
platform. Details about these scientific workflow applica-
tions will be presented in Section 5.1.

With an o-DAG model, we can explicitly express the
process of task clustering. In this work, we address task
clustering horizontally and vertically. Horizontal Cluster-
ing (HC) merges multiple tasks within the same horizontal
level of the workflow—the horizontal level of a task is
defined as the longest distance from the DAG’s entry task
to this task. Vertical Clustering (VC) merges tasks within
a pipeline of the workflow. Tasks in the same pipeline share
a single-parent-single-child relationship, i.e. a task tb has a
unique parent ta, which has a unique child tb.

Fig. 3 shows a simple example on how to perform HC,
in which two tasks t2 and t3, without data dependency
between them, are merged into a clustered job j1. Job
wrappers are often used to execute clustered jobs, but
they add an overhead defined as the clustering delay c.
The clustering delay measures the difference between the
sum of the actual task runtimes and the job runtime
seen by the job scheduler. After horizontal clustering, t2
and t3 in j1 can be executed in sequence or in paral-
lel, if parallelism is supported. In a parallel environment,
the overall runtime for the workflow in Fig. 3 (left) is
runtimel = s1 + t1 +max(s2 + t2,s3 + t3)+ s4 + t4, while the
overall runtime for the clustered workflow in Fig. 3 (right)
is runtimer = s1 + t1 + s2 +c1 + t2 + t3 + s4 + t4. runtimel >
runtimer as long as c1 < max(s2,s3), which is often the
case in many distributed systems since the clustering delay
within a single execution node is usually shorter than the
scheduling overhead across different execution nodes.

Fig. 4 illustrates an example of vertical clustering, in
which tasks t2, t4, and t6 are merged into j1, while tasks t3,
t5, and t7 are merged into j2. Similarly, clustering delays
c2 and c3 are added to j1 and j2 respectively, but system
overheads s4, s5, s6, and s7 are removed.

In situations where the scheduling and queue overheads
are important, the use of task clustering techniques can
significantly improve the workflow execution performance.
In an ideal scenario, where failures are absent, the number
of tasks in a clustered job (clustering size, k) would be

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 4

Number Number Average Workflow Average Average
Workflow of Tasks of Nodes Engine Delay Queue Delay Task Runtime
CyberShake 24142 5 12s 188s 5s
Epigenomics 83 8 6s 311s 158s
SIPHT 33 8 17s 945s 20s

TABLE 1: System overheads and task runtimes gathered from scientific workflow execution traces [38].

t

s1

1

t

s2

2 t

s3

3

t

s4

4

t

s1

1

t2 t

s

3

t

s4

4

2

c11j

Fig. 3: A simple example of horizontal clustering (color
indicates the horizontal level of a task).

t

s1

1

t

s2

2 t

s3

3

t

s10

10

t

s1

1

j

t

s4

4 t

s5

5

t

s6

6 t

s7

7

t

s2

2 t

s

3

t

c2

4 t

c3

5

t6 t7

3

j
1 2

t

s10

10

Fig. 4: A simple example of vertical clustering.

defined as the number of all tasks in the queue divided
by the number of available resources. Such a naı̈ve setting
assures that the number of jobs is equal to the number of
resources and the workflow can fully utilize the resources.
However, in a faulty environment the clustering size should
be defined according to the failure rates, in particular,
the task failure rate. Intuitively, if the task failure rate
is high, the clustered jobs may need to be re-executed
more often compared to the case without clustering. Such
performance degradation will counteract the benefits of
reducing scheduling overheads. In the rest of this paper, we
will show how to adjust k based on the estimated parameters
of the task runtime ttt, the system overhead sss, and the inter-
arrival time of task failures γγγ .

3.2 Task Failure Model

In our prior work [38], we have verified that system over-
heads sss better fits a Gamma or a Weibull distribution rather
than an Exponential or Normal distribution. Schroeder et
al. [9] have verified that the inter-arrival time of task
failures better fits a Weibull distribution (defined by a shape
parameter of 0.78) rather than the Lognormal and Expo-
nential distributions. In [41], transient errors also follow
a Weibull distribution. In [42], [43], Weibull, Gamma and

Lognormal distributions are among the best fit to estimate
task runtimes for a set of workflow traces. Without loss
of generality, we choose the Gamma distribution to model
the task runtime (ttt) and the system overhead (sss), and
the Weibull distribution to model the inter-arrival time of
failures (γγγ). sss, ttt, and γγγ are random variables of all tasks
instead of one specific task.

Probability distributions such as Weibull and Gamma are
usually described with two parameters: the shape parame-
ter (φ), and the scale parameter (θ). The shape parameter
affects the shape of a distribution, for example, whether it is
symmetrical or not. The scale parameter affects the stretch-
ing or shrinking of a distribution, for example, whether it
is approximately uniform or it has a peak. Both parameters
control the characteristics of a distribution. For example,
the mean of a Gamma distribution is φθ and the Maximum
Likelihood Estimation (MLE) is (φ −1)θ .

Let a, b be the parameters of the prior knowledge, D the
observed dataset, and θ the parameter we aim to estimate.
In Bayesian probability theory, if the posterior distribution
p(θ |D,a,b) is in the same family as the prior distribution
p(θ |a,b), the prior and the posterior distributions are then
called conjugate distributions, and the prior is called a
conjugate prior for the likelihood function [44]. For in-
stance, the Inverse-Gamma family is conjugate to itself
(or self-conjugate) with respect to a Weibull likelihood
function: if the likelihood function is Weibull, choosing
an Inverse-Gamma prior over the mean will ensure that
the posterior distribution is also Inverse-Gamma. Based on
this definition, the parameters estimation of our task failure
model has its foundations on prior works on failure and
performance analyzes [9], [38], [42], [43].

Therefore, once observed data D, the posterior distribu-
tion of θ is determined as follows:

p(θ |D,a,b) = p(θ |a,b)×p(D|θ)
p(D|a,b)

∝ p(θ |a,b)× p(D|θ) (1)

where D is the observed inter-arrival time of failures X , the
observed task runtime RT , or the observed system over-
heads S; p(θ |D,a,b) is the posterior we aim to compute;
p(θ |a,b) is the prior, which we have already known from
previous works; and p(D|θ) is the likelihood. We define
X = {x1,x2, . . . ,xn} as the observed data of the inter-arrival
time of failures γγγ during the execution. Similarly, we define
RT = {t1, t2, . . . , tn}, and S = {s1,s2, . . . ,sn} as the observed
data of task runtime ttt and system overheads sss respectively.

More specifically, we model the inter-arrival time of
failures (γγγ) with a Weibull distribution as in [9], which
has a known shape parameter of φγ and an unknown scale
parameter θγ : γγγ ∼W (θγ ,φγ).

The conjugate pair of a Weibull distribution with a known
shape parameter φγ is an Inverse-Gamma distribution,

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 5

which means if the prior distribution follows an Inverse-
Gamma distribution Γ−1(aγ ,bγ) with the shape parameter
as aγ and the scale parameter as bγ , then the posterior
follows an Inverse-Gamma distribution as follows:

θγ ∼ Γ−1(aγ +n,bγ +∑n
i=1 xφγ

i) (2)

Equation 2 means the posterior estimation of θγ is
initially controlled by the prior knowledge (aγ and bγ)
and then gradually adjusted by observed data (n and xi).
The MLE (Maximum Likelihood Estimation) of the scale
parameter θγ is defined as:

MLE(θγ) =
bγ+∑n

i=1 xφγ

i
aγ+n+1 (3)

The understanding of the MLE is two fold: in the initial
case there is no observed data, thus the MLE is determined
by the prior knowledge, i.e. bγ

aγ+1 ; when n → ∞, the

MLE ∑n
i=1 xφγ

i
n+1 → xφγ , which means it is determined by

the observed data, and is close to the regularized average
of the observed data. If the estimation process only utilizes
the prior knowledge, it is named Static Estimation. If the
process utilizes both the prior and posterior knowledge, it
is named Dynamic Estimation.

We model the task runtime ttt with a Gamma distribution
as in [42], [43], with a known shape parameter φt and an
unknown scale parameter θt . The conjugate pair of Gamma
distribution with a known shape parameter is also a Gamma
distribution. If the prior knowledge follows Γ(at ,bt), where
at is the shape parameter and bt the rate parameter (or 1

bt
is

the scale parameter), the posterior follows Γ(at +nφt ,bt +

∑n
i=1 ti) with at +nφt as the shape parameter and bt +∑n

i=1 ti
as the rate parameter. The MLE of θt is then defined as
follows:

MLE(θt) =
bt+∑n

i=1 ti
at+nφt−1 (4)

Similarly, if we model the system overhead sss with a
Gamma distribution with a known shape parameter φs and
an unknown scale parameter θs, and the prior knowledge
as Γ(as,bs), the MLE of θs is thus defined as follows:

MLE(θs) =
bs +∑n

i=1 si

as +nφs−1
(5)

We have assumed that the task runtime, system over-
heads, and inter-arrival time between failures are a function
of task types. The reason is that tasks at different levels (the
deepest depth from the entry task to this task) are often of
different types in scientific workflows. Given n independent
tasks at the same workflow level and the distribution of the
task runtime, the system overheads, and the inter-arrival
time of failures, we aim at reducing the overall runtime
MMM for completing these tasks by adjusting the clustering
size k (the number of tasks in a job). MMM is also a random
variable, which includes the system overheads and the
runtime of the clustered job and its subsequent retried jobs
if the first attempt fails. We also assume that task failures

are independent for each worker node (but with the same
distribution) without considering the failures that bring the
whole system down (e.g. a failure in the shared file system).

The runtime of a job is a random variable indicated by
ddd. A clustered job succeeds only if all of its tasks succeed.
The job runtime is the sum of the cumulative task runtime
of k tasks and the system overhead. We assume that the
task runtime of each task is independent of each other,
therefore the cumulative task runtime of k tasks is also a
Gamma distribution since the sum of Gamma distributions
with the same scale parameter is still a Gamma distribution.
We also assume the system overhead is independent of all
the task runtimes. A general solution to express the sum
of independent Gamma distributions with different scale
and shape parameters is provided in [45]. For simplicity,
we limit this work to show a typical case where the
system overhead and the task runtime have the same scale
parameter (θts = θt = θs).

Therefore, the job runtime (regardless of whether it
succeeds of fails) is defined as follows:

ddd ∼ Γ(kφt +φs,θts) (6)
MLE(ddd) = (kφt +φs−1)θts (7)

Let N be the retry time of clustered jobs. The process to
run and retry a job is a Bernoulli trial with exactly two
possible outcomes: success or failure. Once a job fails,
it will be re-executed until it is eventually successfully
completed (since failures are assumed transient). For a
given job runtime di, the retry time Ni of a clustered job i
is defined as follows:

Ni =
1

1−F(di)
=

1

e
−
(

di
θγ

)φγ
= e

(
di
θγ

)φγ

(8)

where F(di) is the CDF (Cumulative Distribution Function)
of γγγ . The time to complete di successfully in a faulty
execution environment is determined as follows:

Mi = di×Ni = di× e

(
di
θγ

)φγ

(9)

Equation 9 has involved two distributions ddd and θγ (φγ is
known). From Equation 2, we have:

1
θγ
∼ Γ

(
aγ +n, 1

bγ+∑n
i=1 x

φγ

i

)
(10)

MLE
(

1
θγ

)
=

aγ +n−1

bγ +∑n
i=1 xφγ

i

(11)

Mi is a monotonic increasing function of both di and 1
θγ

,
and the two random variables are independent of each other,
therefore:

MLE(Mi) = MLE(di)e

(
MLE(di)MLE

(
1
θγ

))φγ

(12)

From Equation 12, to attain MLE(Mi) we just need to
attain MLE(di) and MLE

(
1
θγ

)
at the same time. In both

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 6

dimensions (di and 1
θγ

), Mi is a Gamma distribution, and
each Mi has the same distribution parameters, therefore:

MMM =
1
r
×∑

n
k
i=1 Mi ∼ Γ

MLE(MMM) = n
rk ×MLE(Mi)

= n
rk ×MLE(di)e

(
MLE(di)MLE

(
1
θγ

))φγ

(13)

where r is the number of resources. In this work, we
consider a compute cluster as a homogeneous cluster, which
is often the case in dedicated clusters and cloud platforms.

Let k∗ be the optimal clustering size that minimizes
Equation 13. argmin stands for the argument (k) of the
minimum [46], i.e., the value of k such that MLE(MMM) attains
its minimum value:

k∗ = argmin{MLE(MMM)} (14)

It is not trivial to find an analytical solution of k∗.
However, there are a few constraints that can simplify
the estimation of k∗: (i) k can only be an integer in
practice; (ii) MLE(MMM) is continuous and has one minimum.
Methods such as Newton’s method can be used to find the
minimal MLE(MMM) and the corresponding k. Fig. 5 shows
an example of MLE(MMM) using static estimation with a
low task failure rate (θγ = 40s), a medium task failure
rate (θγ = 30s) and a high task failure rate (θγ = 20s)
respectively. Other parameters are n = 50, φt = 5s and
φs = 50s, and the scale parameter θts is defined as 2 for
simplicity. These parameters are close to the parameters of

5 10 15 20
0

2

4

6

8

10
x 10

5

clustering size (k)

M
a

k
e

s
p

a
n

 (
s
e

c
o

n
d

s
)

θ
γ
=20

θ
γ
=30

θ
γ
=40

Fig. 5: Makespan with different clustering size and θγ .
(n = 1000, r = 20, φt = 5s, φs = 50s). Red dots are the
minimums.

20 40 60 80 100 120 140
0

5

10

θγ (seconds)

O
p
ti
m

a
l
c
lu

s
te

ri
n
g
 s

iz
e
 (
k
*)

Fig. 6: Optimal clustering size (k∗) with different θγ (n =
1000, r = 20, φt = 5s, φs = 50s).

tasks at the level of the mProjectPP tasks of the Montage
workflow (Section 5). Fig. 6 shows the relationship between
the optimal clustering size (k∗) and θγ , which is a non-
decreasing function. The optimal clustering size (red dots
in Fig. 5) when θγ ∈ {20,30,40} is 2, 3, and 5 respectively.
As expected, the longer the inter-arrival time of failures is,
the lower the task failure rate is. With a lower task failure
rate, a larger k value assures that system overheads are
reduced without retrying the tasks too many times.

From this theoretic analysis, we conclude that (i) the
longer the inter-arrival time of failures is, the better runtime
performance the task clustering has; and (ii) by adjusting
the clustering size according to the inter-arrival time, the
overall runtime performance can be improved.

Parameter Description
t, s, d distribution of task runtime, overhead, job runtime
γ distribution of the inter-arrival time of failures
θγ , φγ scale and shape parameters of γ

θt , φt scale and shape parameters of t
θs, φs scale and shape parameters of s
aγ , bγ prior knowledge of γ

at , bt prior knowledge of t
as, bs prior knowledge of s
k number of tasks in a job
N distribution of the retry time of clustered jobs
Ni retry time of job i
M distribution of the overall runtime
Mi the overall runtime to complete job i
r the number of available worker nodes
n the number of tasks

TABLE 2: Explanation of the symbols used in this work.

4 FAULT-TOLERANT CLUSTERING
Inappropriate task clustering may negatively impact the
workflow makespan in faulty distributed environments. In
this section, we propose three fault-tolerant task clustering
methods—Selective Reclustering (SR), Dynamic Recluster-
ing (DR), and Vertical Reclustering (VR)—that adjust the
clustering size (k) of the jobs to reduce the impact of
task failures on the workflow execution. These methods are
based on the Horizontal Clustering (HC) [1] technique that
has been implemented and used in the Pegasus workflow
management system (WMS) [22].

Horizontal Clustering (HC). Horizontal clustering merges
multiple tasks within the same horizontal level of the work-
flow. The clustering granularity (number of tasks within a
cluster) of a clustered job is controlled by the user, who
defines either the number of tasks per clustered job (clus-
ters.size), or the number of clustered jobs per horizontal
level of the workflow (clusters.num). For simplicity, we set
clusters.num to be the same as the amount of available
resources. In [47], we have evaluated the runtime perfor-
mance for different clustering granularities. Algorithm 1
shows the pseudocode for HC. The Clustering and
Merge procedures are invoked in the initial task clustering
process, while the Reclustering procedure is invoked
when a failed job is detected by the monitoring system.
Fig. 7 shows an example for k = 4. As a result, there are
four tasks in a clustered job. During execution, three out of
these tasks (t1, t2, t3) fail. Due to the lack of an adaptive

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 7

Algorithm 1 Horizontal Clustering algorithm.
Require: W : workflow; C: max number of tasks per job defined by

clusters.size or clusters.num
1: procedure CLUSTERING(W,C)
2: for level < depth(W) do
3: T L← TASKSATLEVEL(W, level) . Divide W based on depth
4: CL← MERGE(T L,C) . Returns a list of clustered jobs
5: W ←W −T L+CL . Merge dependencies as well
6: end for
7: end procedure
8: procedure MERGE(T L,C)
9: J← {} . An empty job

10: CL←{} . An empty list of clustered jobs
11: while T L is not empty do
12: J.add (T L.pop(C) . Pops C tasks that are not merged
13: CL.add(J)
14: end while
15: return CL
16: end procedure
17: procedure RECLUSTERING(J) . J is a failed job
18: Jnew← COPYOF(J) . Copy Job J
19: W ←W + Jnew . Re-execute it
20: end procedure

t1 t2

c1

t3 t4 t1 t2

c1

t3 t4

Preparation First Try Reclustering

t1 t2

c1

t3 t4

j1 1 2j j

Fig. 7: An example of Horizontal Clustering (red boxes are
failed tasks).

mechanism, HC keeps retrying all of the four tasks in the
following attempts until all of them succeed.

Selective Reclustering (SR). The selective re-clustering
technique, on the other hand, merges only failed tasks
within a clustered job into a new clustered job. Algorithm 2
shows the pseudocode of the Reclustering procedure
for the SR method. The Clustering and Merge pro-
cedures are the same as those for HC. Fig. 8 shows an
example of the SR method. In the first attempt, the clustered
job, composed of 4 tasks, has 3 failed tasks (t1, t2, t3).
Three failed tasks are merged into a new clustered job j2
and retried. This approach does not intend to adjust the
clustering size k, although the clustering size may become
smaller after each attempt since subsequent clustered jobs
may have fewer tasks. In the example, k has decreased
from 4 to 3. However, the optimal clustering size may not
be 3, which limits the workflow performance if the θγ is
small and k should be decreased as much as possible. The
advantage of SR is that it is simple to implement and can
be incorporated into existing WMS with minimum impact
on the workflow execution efficiency as shown in Section 5.

Dynamic Reclustering (DR). The Selective Reclustering
method does not analyze the clustering size, rather it uses
a self-adjusted approach to reduce k to the number of failed
tasks. However, the actual optimal clustering size may be
larger or smaller than the number of failed tasks. Therefore,
we propose the Dynamic Reclustering method that merges
failed tasks into new clustered jobs in which the clustering
size is set to k∗ according to Equation 14. Algorithm 3
shows the pseudocode for the Reclustering procedure
for the DR method. Fig. 9 shows an example where k is

Algorithm 2 Selective Reclustering algorithm.
Require: W : workflow; C: max number of tasks per job defined by

clusters.size or clusters.num
1: procedure RECLUSTERING(J) . J is a failed job
2: T L← GETTASKS(J)
3: Jnew←{} . An empty job
4: for all Task t in T L do
5: if t is failed then
6: Jnew.add (t)
7: end if
8: end for
9: W ←W + Jnew . Re-execute it

10: end procedure

c1 c1

Preparation First Try Reclustering

c1
j
1 1 2

j j

t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3

Fig. 8: An example of Selective Reclustering (red boxes
are failed tasks). Failed tasks are merged into a new job
and retried.

initially set to 4. In the first attempt, 3 tasks within the clus-
tered job have failed. Therefore, there are only 3 tasks to
be retried, and thus the clustering size should be decreased
to 2 accordingly. Two new clustered jobs j2 (containing
t1 and t2) and j3 (containing t3) are created. Reducing
the granularity of failed clustered jobs may decrease the
probability of future failures, since at least one of the jobs
will execute on a different worker node.

Vertical Reclustering (VR). VR is an extension of the Ver-
tical Clustering (Section 3.1) method. Similar to Selective
Reclustering, Vertical Reclustering only retries failed or not

Algorithm 3 Dynamic Reclustering algorithm.
Require: W : workflow; C: max number of tasks per job defined by

clusters.size or clusters.num
1: procedure RECLUSTERING(J) . J is a failed job
2: T L← GETTASKS(J)
3: Jnew←{}
4: for all Task t in T L do
5: if t is failed then
6: Jnew.add (t)
7: end if
8: if Jnew.size()> k∗ then
9: W ←W + Jnew

10: Jnew←{}
11: end if
12: end for
13: W ←W + Jnew . Re-execute it
14: end procedure

c1 c1

t1 t2

c1

t3

c2

Preparation First Try Reclustering

1
j j

1

2

3

j

j

t1 t2 t3 t4 t1 t2 t3 t4

Fig. 9: An example of Dynamic Reclustering (red boxes
are failed tasks). The clustering size k is adjusted to 2 and
thus failed tasks are merged into two new clustered jobs.

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 8

Algorithm 4 Vertical Reclustering algorithm.
Require: W : workflow;
1: procedure CLUSTERING(W)
2: for level < depth(W) do
3: T L← TASKSATLEVEL(W, level) . Divide W based on depth
4: CL,T Lmerged ← MERGE(T L) . List of clustered jobs
5: W ←W −T Lmerged +CL . Merge dependencies as well
6: end for
7: end procedure
8: procedure MERGE(T L)
9: T Lmerged ← T L . All the tasks that have been merged

10: CL←{} . An empty list of clustered jobs
11: for all t in T L do
12: J← {t}
13: while t has only 1 child tchild and tchild has only 1 parent do
14: J.add (tchild)
15: T Lmerged ← T Lmerged + tchild
16: t← tchild
17: end while
18: CL.add(J)
19: end for
20: return CL, T Lmerged
21: end procedure
22: procedure RECLUSTERING(J) . J is a failed job
23: T L← GETTASKS(J)
24: k∗← J.size()/2 . Reduce the clustering size by half
25: Jnew←{}
26: for all Task t in T L do
27: if t is failed or not completed then
28: Jnew.add (t)
29: end if
30: if Jnew.size()> k∗ then
31: W ←W + Jnew; Jnew←{}
32: end if
33: end for
34: W ←W + Jnew . Re-execute it
35: end procedure

j

t1

t

c1

2

t3

1

t 4

j

t1

t

c1

2

t3

1

t 4

t3

t 4

j
c2

2

t3

t 4

j
c2

2

t3

t 4

Preparation First Try Reclustering Second Try Reclustering

Fig. 10: An example of Vertical Reclustering (red boxes
are failed tasks). The clustering size is decreased by half
when a job execution fails.

completed tasks. If a failure is detected, k is decreased by
half and failed tasks are re-clustered accordingly. Fig. 10
shows an example of VR where tasks within a pipeline are
initially merged into a single clustered job (t1, t2, t3, t4). t3
fails at the first attempt assuming it is a failure-prone task
(i.e., its θγ is short). VR then retries only the failed task (t3)
and tasks that have not been yet completed (t4) by merging
them into a new job j2. In the second attempt, j2 fails
and then it is divided into two single task jobs (t3 and t4).
Since the clustering size is minimum (k = 1), VR performs
no vertical clustering and continue retrying t3 and t4 (but
still following their data dependency) until they succeed.
Algorithm 4 shows the pseudocode for the VR method.

5 EXPERIMENTS AND DISCUSSIONS

In this section, we evaluate our methods with five scientific
workflow applications, whose runtime information is gath-
ered from real execution traces. We conduct a simulation-
based approach in which we vary system parameters such
as the task failures inter-arrival time in order to evaluate
the reliability of our fault-tolerant task clustering methods.

5.1 Scientific Workflow Applications

In the experiments, we use the following scientific work-
flow applications: LIGO Inspiral analysis, Montage, Cy-
berShake, Epigenomics, and SIPHT. Below, we briefly
describe each of them and present their main characteristics
and structures:

LIGO. Laser Interferometer Gravitational Wave Observa-
tory (LIGO) [48] workflows are used to search for grav-
itational wave signatures in data collected by large-scale
interferometers. The observatories’ mission is to detect and
measure gravitational waves predicted by general relativity
(Einstein’s theory of gravity), in which gravity is described
as due to the curvature of the fabric of time and space.
Fig. 11a shows a simplified version of the workflow. The
LIGO Inspiral workflow is separated into multiple groups
of interconnected tasks, which we call branches in the rest
of this work. Each branch may have a different number of
pipelines. The LIGO workflow is a data-intensive workflow.

Montage. Montage [49] is an astronomy application used to
construct large image mosaics of the sky. Input images are
reprojected onto a sphere and overlap is calculated for each
input image. The application re-projects input images to
the correct orientation while keeping background emission
level constant in all images. Images are added by rectifying
them to a common flux scale and background level. Finally
the reprojected images are co-added into a final mosaic.
The resulting mosaic image can provide a much deeper and
detailed understanding of the portion of the sky in question.
Fig. 11b illustrates a small Montage workflow. The size of
the workflow depends on the number of images used in
constructing the desired mosaic of the sky.

Cybershake. CyberShake [50] is a seismology application
that calculates probabilistic seismic hazard curves for geo-
graphic sites in the Southern California region. It identifies
all ruptures within 200km of the site of interest and
converts rupture definition into multiple rupture variations
with differing hypocenter locations and slip distributions. It
calculates synthetic seismograms for each rupture variance
from where peak intensity measures are extracted and
combined with the original rupture probabilities to produce
probabilistic seismic hazard curves for the site. Fig. 11c
shows an illustration of the Cybershake workflow.

Epigenomics. The Epigenomics workflow [51] is a CPU-
intensive application. Initial data are acquired from the
Illumina-Solexa Genetic Analyzer in the form of DNA
sequence lanes. Each Solexa machine can generate multiple
lanes of DNA sequences. These data are converted into a

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 9

...

(a) LIGO
(b) Montage

(c) CyberShake

...

(d) Epigenomics (multiple branches)

(e) SIPHT

Fig. 11: Simplified visualization of the scientific workflows.

format that can be used by sequence mapping software. The
workflow maps DNA sequences to the correct locations in
a reference Genome. Then it generates a map that displays
the sequence density showing how many times a certain
sequence expresses itself on a particular location on the
reference genome. The simplified structure of Epigenomics
is shown in Fig. 11d.

SIPHT. The SIPHT workflow [52] conducts a wide search
for small untranslated RNAs (sRNAs) that regulates sev-
eral processes such as secretion or virulence in bacteria.
The kingdom-wide prediction and annotation of sRNA
encoding genes involves a variety of individual programs
that are executed in the proper order using Pegasus [22].
These involve the prediction of ρ-independent transcrip-
tional terminators, BLAST (Basic Local Alignment Search
Tools [53]) comparisons of the inter genetic regions of
different replicons and the annotations of any sRNAs that
are found. A simplified structure of the SIPHT workflow is
shown in Fig. 11e.

Table 3 shows the summary of the main workflow char-
acteristics: number of tasks, average data size, and average
task runtimes for the five workflows.

Tasks Avg. Data Size Avg. Task Runtime
LIGO 800 5 MB 228s
Montage 300 3 MB 11s
CyberShake 700 148 MB 23s
Epigenomics 165 355 MB 2952s
SIPHT 1000 360 KB 180s

TABLE 3: Summary of the main workflow characteristics.

5.2 Experiment Conditions

We adopt a trace-based simulation approach, where we ex-
tend our WorkflowSim [54] simulator with the fault-tolerant
clustering methods to simulate a controlled distributed

environment, where system (i.e., the inter-arrival time of
failures) and workflow (i.e., avg. task runtime) settings can
be varied to fully explore the performance of our fault-
tolerant clustering algorithms. WorkflowSim is an open
source workflow simulator that extends CloudSim [55] by
providing support for task clustering, task scheduling, and
resource provisioning at the workflow level. It has been
recently used in multiple workflow study areas [2], [54],
[56] and its correctness has been verified in [54].

The simulated computing platform is composed of 20
single homogeneous core virtual machines (worker nodes),
which is the quota per user of some typical distributed en-
vironments such as Amazon EC2 [57] and FutureGrid [58].
This assumption is also consistent with the setting of many
real execution experiments [59]. Each simulated virtual
machine (VM) has 512MB of memory and the capacity to
process 1,000 million instructions per second. The default
network bandwidth is 15MB according to the execution
environment in FutureGrid, where our traces were col-
lected. In our execution model, the network bandwidth is
the maximum allowed data transfer speed between a pair
of virtual machines per file. By default, tasks at the same
horizontal level are merged into 20 clustered jobs, which is
a simple granularity control selection based on the strength
of task clustering (as shown in [47]).

Workload Dataset. We collected workflow execution
traces [38], [59] (including overhead and task runtime
information) from real runs of the 5 scientific workflow
applications previously described. The traces are used to
feed the Workflow Generator [60] toolkit to create synthetic
workflows. The toolkit uses statistical data gathered from
traces of actual scientific workflow executions to generate
realistic, synthetic workflows that resemble the real applica-
tions. The number of inputs to be processed, the number of
tasks in the workflow, and their composition determine the

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 10

structure of the generated workflow. Traces, profile data,
and characterizations are freely available online for the
community [61]. For the experiments a synthetic workflow
was generated for each workflow application according to
the characteristics shown in Table 3.

Experiment Sets. Three sets of experiments are conducted.
Experiment 1 evaluates the performance of our fault-
tolerant clustering methods (DR, VR, and SR) over an
existing task clustering method (HC), which is devoided
of fault-tolerant mechanisms. The goal of the experiment
is to identify conditions where each method works best and
worst. We also evaluate the performance improvement for
different θγ values (the scale parameter of the distribution
of the inter-arrival time of task failures). θγ ranges from
1 to 10 times of the average task runtime such that the
workflows run in a reasonable amount of time and the
performance difference is visually explicit.

Experiment 2 evaluates the performance impact of the
variation of the average task runtime per level (defined as
the average task runtime of all the tasks per level), and
the average system overheads per level for one scientific
workflow application (CyberShake). In particular, we are
interested in the performance of DR based on the results
of Experiment 1. For this experiment, we define θγ = 100
since it better highlights the difference between the four
methods. We vary the average task runtime of the Cyber-
Shake workflow (originally of about 23 seconds, Table 3)
by using a multiplier factor fr ∈ [0.5,1.3]. We also vary the
average system overheads (originally of about 50 seconds)
by using a multiplier factor fo ∈ [0.2,1.8].

Experiment 3 evaluates the performance of the static
and dynamic estimation. In the static estimation process,
only the prior knowledge (shape and scale parameters of
a Inverse-Gamma distribution for the inter-arrival time of
failures, and a Gamma distribution for the task runtime
and system overhead) is used to estimate the MLEs of
the unknown parameters (scales parameters of the inter-
arrival failures θγ , the task runtime θt , and the system
overhead θs). In contrast, the dynamic estimation process
leverages the runtime data collected during the execution
and update the MLEs respectively. In this experiment, the
prior knowledge such as the shape parameter aγ , and the
scale parameter bγ of the inter-arrival time of failures θγ are
set manually based on our experience and other researchers’
work [9]. The runtime data, such as the series of the
actual inter-arrival time of tasks xi, are collected during
the simulation execution and used to adjust all the MLEs
based on Equations 3, 4, 5, 7, 11.

Inter-arrival Time of Failures Function (θγ(t)). The
experiments use two sets of the θγ function. The first is
a step function (Fig. 12), in which θγ is decreased from
500 seconds to 50 seconds at time Td . The step function of
θγ at time tc is defined as follows:

θγ(tc) =

{
50 if tc ≥ Td

500 if 0 < tc < Td
(15)

Td t c

500

50

θγ (seconds)

Timeline

Fig. 12: A Step Function of θγ . tc is the current time and
Td is the moment θγ changes from 500 to 50 seconds.

Tc t c

500

50

θγ (seconds)

Timeline

2Tc

τ τ τ

Fig. 13: A Pulse Function of θγ . tc is the current time and
Tc is the period of the wave. τ is the width of the pulse.

This function simulates a scenario, where failures happen
more frequently than expected. We evaluate the perfor-
mance difference of dynamic and static estimations for
1000≤ Td ≤ 5000 based on the estimation of the workflow
makespan. Theoretically, the later we change θγ , the less the
re-clustering is influenced by the estimation error, and thus
the smaller the workflow makespan is. There is one special
case when Td → 0, which means the prior knowledge is
wrong at the very beginning.

The second function is a pulse wave function (Fig. 13)
in which the amplitude alternates at a steady frequency
between a fixed minimum (50 seconds) to a maximum (500
seconds) value. The function is defined as follows:

θγ(tc) =

{
500 if 0 < tc ≤ τ

50 if τ < tc < Tc
(16)

where Tc is the period, and τ is the duty cycle of the
oscillator. This function simulates a scenario where the
failures follow a periodic pattern [62] extracted from failure
traces obtained from production distributed systems. In this
work, we vary Tc from 1,000 seconds to 10,000 seconds
based on the estimation of the workflow’s makespan, and
τ from 0.1Tc to 0.5Tc.

5.3 Results and Discussion
Experiment 1. Fig. 14 shows the performance of the
Horizontal Clustering (HC), Selective Reclustering (SR),
Dynamic Reclustering (DR), and Vertical Reclustering
(VR) methods for the five workflows. DR, SR, and VR
significantly improve the makespan when compared to HC
in a large scale. By decreasing the inter-arrival time of
failures (θγ) and thereby generating more task failures, the
performance improvement of our methods becomes more
significant. Among the three methods, DR and VR perform
consistently better than SR, which fails to improve the
overall makespan when θγ is small. The reason is that SR
does not adjust k according to the occurrence of failures.

The performance of VR is tightly coupled to the work-
flow structure and the average task runtime. For example,

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 11

800 1000 1200 1400 1600 1800 2000
10

3

10
4

10
5

10
6

M
ak
es
pa
nc
e
in
Lo
g
sc
al
e
(s
ec
on
ds
)

Scale Parameter of the Iter−arrival Time of Failures θγ (second)

LIGO

DR
SR
VR
HC

(a) LIGO workflow

20 30 40 50 60 70 80 90 100
10

2

10
3

10
4

M
ak
es
pa
nc
e
in
Lo
g
sc
al
e
(s
ec
on
ds
)

Scale Parameter of the Iter−arrival Time of Failures θγ (second)

Montage

DR
SR
VR
HC

(b) Montage workflow

100 200 300 400 500 600 700 800 900 1000
10

2

10
3

10
4

10
5

M
ak
es
pa
nc
e
in
Lo
g
sc
al
e
(s
ec
on
ds
)

Scale Parameter of the Iter−arrival Time of Failures θγ (second)

CyberShake

DR
SR
VR
HC

(c) CyberShake workflow

3000 4000 5000 6000 7000 8000 9000 10000
10

4

10
5

10
6

10
7

10
8

M
ak
es
pa
nc
e
in
Lo
g
sc
al
e
(s
ec
on
ds
)

Scale Parameter of the Iter−arrival Time of Failures θγ (second)

Epigenomics

DR
SR
VR
HC

(d) Epigenomics workflow

1500 2500 3500 4500 5500 6500 7500 8500 9500
10

4

10
5

10
6

10
7

M
a
ke
sp
a
n
ce

in
L
o
g
sc
a
le
(s
e
co
n
d
s)

Scale Parameter of the Iter−arrival Time of Failures θγ (second)

SIPHT

DR
SR
VR
HC

(e) SIPHT workflow

Fig. 14: (Experiment 1): Performance evaluation of our
fault-tolerant task clustering methods for different values
of the inter-arrival time (θγ).

according to Fig. 11d and Table 3, the Epigenomics work-
flow has a long task runtime (around 50 minutes) and the
pipeline length is 4. This means that vertical clustering
creates very long jobs (∼ 50×4= 200 minutes) and thereby
VR is more sensitive to the decrease of γ . As indicated
in Fig. 14.d, the makespan increases more significantly
with the decrease of θγ than for other workflows. In
contrast, vertical clustering does not improve makespan in
the CyberShake workflow (Fig. 14.c) since it does not have
many pipelines (Fig. 11c). In addition, the average task
runtime of the CyberShake workflow is relatively short
(around 23 seconds). Compared to horizontal clustering
methods such as HC, SR, and DR, vertical clustering does
not generate long jobs and thus the performance of VR is
less sensitive to the variation of the scale parameter of the
distribution of the inter-arrival time of failures θγ .

Table 4 shows the average number of tasks for the
minimum (min(θγ)) and maximum (max(θγ)) values of the
scale parameter of the inter-arrival time of failures. Most
of the algorithms have same performance when the inter-
arrival time of failures is sparse, except for HC. For small
θγ values, DR significantly reduces the number of tasks.

Experiment 2. Fig. 15 shows the performance (CyberShake
workflow) of the task clustering methods, when the task
runtime is varied by a multiplier factor fr. By increasing
the task runtime, HC has the most negative impact on
the workflow’s makespan (increase from a scale of 104 to
∼ 106). This is due to the lack of fault-tolerant mechanisms,
since HC retries the entire clustered job. SR and VR,
however, retry only failed tasks that are merged into a new
clustered job. Although the selective and vertical methods

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
10

3

10
4

10
5

10
6

M
a
ke

sp
a
n
ce

 in
 L

o
g
 s

ca
le

 (
se

co
n
d
s)

Multiplier of Task Runtime tθ

DR
SR
VR
HC

Fig. 15: (Experiment 2): Influence of varying task runtime
(θt) on makespan for the CyberShake workflow.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

3

10
4

10
5

10
6

M
a
ke

sp
a
n
ce

 in
 L

o
g
 s

ca
le

 (
se

co
n
d
s)

Multiplier of System Overhead θs

DR
SR
VR
HC

Fig. 16: (Experiment 2): Influence of varying system over-
head (θs) on makespan for the CyberShake workflow.

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 12

Workflow HC VR SR DR
min(θγ) max(θγ) min(θγ) max(θγ) min(θγ) max(θγ) min(θγ) max(θγ)

LIGO 9765 2300 1113 966 1569 924 939 848
Montage 2467 613 469 331 694 333 411 335
CyberShake 30470 1014 849 714 1480 712 786 712
Epigenomics 6134 369 1016 311 3304 335 455 202
SIPHT 18803 1693 1158 1016 1640 1015 1113 1018

TABLE 4: (Experiment 1): Average number of tasks for min and max values of θγ for each algorithm.

significantly speedup the execution when compared to HC,
they have no mechanism to adjust the clustering size to the
actual optimal clustering size k, which may be larger or
smaller than the number of failed tasks. By dynamically
adjusting the clustering size, DR yields better makespans,
in particular for high values of θt .

Fig. 16 shows the performance (for the CyberShake
workflow) of the task clustering methods when the sys-
tem overhead is varied by using a multiplier factor fo.
Similarly, with the increase of the system overhead, HC
is significantly impacted while SR and VR perform better.
Again, for high θs values DR performs best. Note that the
improvement gained by the fault-tolerant methods is less
significant than the performance improvements shown in
Fig. 15. The reason is that clustered jobs may have multiple
tasks but only one system overhead per job.

Experiment 3. Fig. 17 shows the performance evaluation
of the dynamic and static estimations for the CyberShake
workflow with a step function of θγ . In this experiment, we
use DR as the fault-tolerant task clustering method since
it yielded the best performance in the past experiments.
The step signal function changes the inter-arrival time
of failures (θγ) from 500 to 50 seconds at time Td . For
high values of Td , failures are scarce since θγ is close to
the workflow makespan. Therefore, the influence of θγ is
negligible, and thus both the static and dynamic estimations
have the same behavior. When failures are more frequent,
i.e., low values for Td , the dynamic estimation improves
the workflow’s makespan by up to 22%. This improvement
is due to the ability of the dynamic estimation process to
update the MLEs of θγ and adapt the clustering size.

Fig. 18 shows the performance evaluation of the dynamic
and static estimations with a pulse function of θγ . For this
experiment, we define the width of the pulse τ = 0.1 ·Tc,
0.3 ·Tc, 0.5 ·Tc, where Tc is the period of the wave (Equa-
tion 16). For τ = 0.1 ·Tc (Fig. 18.a), the dynamic estimation

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2
x 10

4

M
a
k
e
s
p
a
n
c
e
 (
s
e
c
o
n
d
s
)

Td (second)

Dynamic Estimation
Static Estimation

Fig. 17: (Experiment 3): Performance evaluation of the
static and dynamic estimations for the CyberShake work-
flow using a step function.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

M
a
k
e
s
p
a
n
c
e
 (
s
e
c
o
n
d
s
)

Tc (second)

Dynamic Estimation
Static Estimation

(a) Pulse τ = 0.1 ·Tc

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2000

4000

6000

8000

10000

12000

M
a
k
e
s
p
a
n
c
e
 (
s
e
c
o
n
d
s
)

Tc (second)

Dynamic Estimation
Static Estimation

(b) Pulse τ = 0.3 ·Tc

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2000

4000

6000

8000

10000

M
a
k
e
s
p
a
n
c
e
 (
s
e
c
o
n
d
s
)

Tc (second)

Dynamic Estimation
Static Estimation

(c) Pulse τ = 0.5 ·Tc

Fig. 18: (Experiment 3): Performance evaluation of the
static and dynamic estimations for the CyberShake work-
flow using a pulse function.

improves the makespan by up to 25.7% when compared
to the static estimation case. For τ = 0.3 · Tc (Fig. 18.b),
the performance gain of dynamic estimation over static
estimation is up to 27.3%. For Tc = 1000, the performance
gain is not significant since the inter-arrival time of failures
changes frequently and then the dynamic estimation process
is not able to update swiftly. For Tc = 10000, the
performance difference is negligible since the inter-arrival
time is close to the workflow makespan. For τ = 0.5 ·Tc,
the gain of dynamic over static estimation is negligible and
nearly constant (up to 9.1%) since θγ has equal influence
on the failure occurrence regardless of its value.

Our experimental results show that adaptive task re-
clustering methods results in better performance than sim-
ple static methods that retry failed clustered jobs. However,

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 13

the performance gain may be significantly impacted if the
job clustering size is not adjusted to the nearly optimal size.
The Dynamic Reclustering algorithm outperforms most of
the methods for the 5 workflow applications, however, it
yields poorer performance when the workflow structure
is irregular (e.g., SIPHT workflow). In this case, Vertical
Reclustering would be more suitable.

6 CONCLUSION AND FUTURE WORK

In this work, we modeled transient failures in a distributed
environment and assess their influence on task clustering.
We proposed three dynamic clustering methods to improve
the fault tolerance of task clustering and applied them to
five widely used scientific workflows. Experimental results
showed that the proposed methods significantly improve the
workflow’s makespan when compared to an existing task
clustering method used in workflow management systems.
In particular, the Dynamic Reclustering method performed
best among all methods since it could adjust the clustering
size based on the Maximum Likelihood Estimation of
task runtime, system overheads, and the inter-arrival time
of failures. The Vertical Reclustering method significantly
improved the performance for workflows that had short
task runtimes. The dynamic estimation process, which used
data collected during the workflow execution, could further
improve the overall runtime in a dynamic environment
where the inter-arrival time of failures fluctuated.

This work focused on the evaluation of fault-tolerant
task clustering techniques on homogeneous environments.
In the future, we plan to combine our work with fault-
tolerant scheduling in heterogeneous environments, i.e, a
scheduling algorithm that avoids mapping clustered jobs
to failure-prone nodes. We also intend to combine vertical
clustering methods with horizontal clustering methods. For
example, vertical clustering can be performed either before
or after horizontal clustering, which we believe would bring
different performance improvement.

We assumed that the inter-arrival time of transient fail-
ures is a function of task type, which is one of the major
impact factors. In the future, we plan to consider other
factors such as the execution site, which may improve the
accuracy of the model. In this paper we assumed that the
network bandwidth is the maximum possible data transfer
speed between a pair of virtual machines per file. Future
work will consider different network models to explore their
impact on our fault-tolerant clustering techniques.

ACKNOWLEDGMENTS
This work was supported by NFS under grant number IIS-0905032,
and SI2–SSI program, award number ACI–1148515. We thank Boleslaw
Szymanski, Gideon Juve, Karan Vahi, Mats Rynge, and Rajiv Mayani for
their valuable help. Traces are collected from experiments conducted on
FutureGrid, which is supported by NSF under grant FutureGrid 0910812.

REFERENCES
[1] G. Singh, M. Su, K. Vahi, E. Deelman, B. Berriman, J. Good, D. S.

Katz, G. Mehta, Workflow task clustering for best effort systems
with pegasus, in: 15th ACM Mardi Gras Conference, 2008.

[2] W. Chen, E. Deelman, Fault tolerant clustering in scientific work-
flows, in: IEEE Eighth World Congress on Services, 2012, pp. 9–16.

[3] R. Ferreira da Silva, T. Glatard, F. Desprez, On-line, non-clairvoyant
optimization of workflow activity granularity on grids, in: Euro-Par
2013 Parallel Processing, Vol. 8097 of LNCS, 2013, pp. 255–266.

[4] K. Maheshwari, et al., Job and data clustering for aggregate use of
multiple production cyberinfrastructures, in: 5th Inter. workshop on
Data-Intensive Distributed Computing, 2012.

[5] R. Ferreira da Silva, T. Glatard, F. Desprez, Controlling fairness
and task granularity in distributed, online, non-clairvoyant workflow
executions, Concurrency and Computation: Practice and Experience
26 (14) (2014) 2347–2366. doi:10.1002/cpe.3303.

[6] W. Chen, E. Deelman, Integration of workflow partitioning and
resource provisioning, in: The 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid ’12), 2012.

[7] Y. Zhang, M. S. Squillante, Performance implications of failures
in large-scale cluster scheduling, in: The 10th Workshop on Job
Scheduling Strategies for Parallel Processing, 2004.

[8] D. Tang, et al., Failure analysis and modeling of a vaxcluster system,
in: Int. Symp. on Fault-tolerant computing, 1990.

[9] B. Schroeder, G. A. Gibson, A large-scale study of failures in
high-performance computing systems, in: Int. Conf. on Dependable
Systems and Networks, 2006.

[10] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, Y. Zhang, Fail-
ure data analysis of a large-scale heterogeneous server environment,
in: International Conf. on Dependable Systems and Networks, 2004.

[11] J. Bresnahan, T. Freeman, et al., Managing appliance launches in
infrastructure clouds, in: Teragrid Conference, 2011.

[12] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil,
M. Su, K. Vahi, M. Livny, Pegasus: Mapping scientific workflows
onto the grid, in: Across Grid Conference, 2004.

[13] R. Duan, et al., Run-time optimisation of grid workflow applications,
in: 7th IEEE/ACM Inter. Conf. on Grid Computing, 2006, pp. 33–40.

[14] R. Ferreira da Silva, T. Glatard, A science-gateway workload archive
to study pilot jobs, user activity, bag of tasks, task sub-steps,
and workflow executions, in: Euro-Par 2012: Parallel Processing
Workshops, Vol. 7640, 2013. doi:10.1007/978-3-642-36949-0 10.

[15] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The cost
of doing science on the cloud: The montage example, in: 2008
ACM/IEEE Conference on Supercomputing, 2008.

[16] G. B. Berriman, G. Juve, E. Deelman, et al., The application of
cloud computing to astronomy: A study of cost and performance, in:
Workshop on e-Science challenges in Astronomy and Astrophysics,
2010.

[17] Y. Zhang, A. Mandal, C. Koelbel, K. Cooper, Combined fault
tolerance and scheduling techniques for workflow applications on
computational grids, in: 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid, 2009, pp. 244–251.

[18] J. Montagnat, et al., Workflow-based comparison of two distributed
computing infrastructures, in: 5th Workshop on Workflows in Sup-
port of Large-Scale Science, 2010, pp. 1–10.

[19] G. Kandaswamy, A. Mandal, D. Reed, Fault tolerance and recovery
of scientific workflows on computational grids, in: 8th IEEE Inter.
Symp. on Cluster Computing and the Grid, 2008, 2008, pp. 777–782.

[20] K. Plankensteiner, et al., A new fault tolerance heuristic for scientific
workflows in highly distributed environments based on resubmission
impact, in: 5th IEEE Inter. Conf. on e-Science, 2009, pp. 313–320.

[21] D. Oppenheimer, A. Ganapathi, D. A. Patterson, Why do internet
services fail and what can be done about it?, Computer Science
Division, University of California, 2002.

[22] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maech-
ling, R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, K. Wenger,
Pegasus, a workflow management system for science automation, Fu-
ture Generation Computer Systemsdoi:10.1016/j.future.2014.10.008.

[23] T. Samak, D. Gunter, M. Goode, E. Deelman, G. Mehta, F. Silva,
K. Vahi, Failure prediction and localization in large scientific work-
flows, in: The 6th Workshop on Workflows in Suppporting of Large-
Scale Science, 2011.

[24] K. Plankensteiner, R. Prodan, T. Fahringer, A. Kertész, P. Kacsuk,
Fault detection, prevention and recovery in current grid workflow
systems, in: Grid and Services Evolution, 2009, pp. 1–13.

[25] N. Muthuvelu, et al., A dynamic job grouping-based scheduling for
deploying applications with fine-grained tasks on global grids, in:
Australasian workshop on Grid computing and e-research, 2005.

[26] N. Muthuvelu, I. Chai, C. Eswaran, An adaptive and parameterized
job grouping algorithm for scheduling grid jobs, in: 10th Inter. Conf.
on Advanced Communication Technology, 2008, pp. 975 –980.

IEEE TRANSACTIONS ON CLOUD COMPUTING, FEBRUARY 2015 14

[27] N. Muthuvelu, I. Chai, E. Chikkannan, R. Buyya, On-line task
granularity adaptation for dynamic grid applications, in: Algorithms
and Architectures for Parallel Processing, Vol. 6081 of LNCS, 2010.

[28] W. K. Ng, T. Ang, T. Ling, C. Liew, Scheduling framework for
bandwidth-aware job grouping-based scheduling in grid computing,
Malaysian Journal of Computer Science 19 (2) (2006) 117–126.

[29] T. Ang, W. Ng, T. Ling, L. Por, C. Liew, A bandwidth-aware
job grouping-based scheduling on grid environment, Information
Technology Journal 8 (2009) 372–377.

[30] Q. Liu, Y. Liao, Grouping-based fine-grained job scheduling in
grid computing, in: First International Workshop on Education
Technology and Computer Science, 2009.

[31] H. Topcuoglu, et al., Performance-effective and low-complexity task
scheduling for heterogeneous computing, IEEE Transactions on
Parallel and Distributed Systems 13 (3) (2002) 260–274.

[32] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal,
K. Kennedy, Task scheduling strategies for workflow-based appli-
cations in grids, in: 5th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid ’05), 2005.

[33] M. Wieczorek, R. Prodan, T. Fahringer, Scheduling of scientific
workflows in the askalon grid environment, in: ACM SIGMOD
Record, Vol. 34, 2005, pp. 56–62.

[34] S. Kalayci, et al., Distributed and adaptive execution of condor
dagman workflows, in: 22nd International Conference on Software
Engineering and Knowledge Engineering, 2010.

[35] R. Duan, et al., A hybrid intelligent method for performance model-
ing and prediction of workflow activities in grids, in: 9th IEEE/ACM
Inter. Symp. on Cluster Computing and the Grid, 2009, pp. 339–347.

[36] H. Li, D. Groep, L. Wolters, Efficient response time predictions by
exploiting application and resource state similarities, in: The 6th
IEEE/ACM International Workshop on Grid Computing, 2005, p. 8.

[37] R. Ferreira da Silva, G. Juve, E. Deelman, et al., Toward fine-grained
online task characteristics estimation in scientific workflows, in: 8th
Workshop on Workflows in Support of Large-Scale Science, 2013,
pp. 58–67. doi:10.1145/2534248.2534254.

[38] W. Chen, E. Deelman, Workflow overhead analysis and optimiza-
tions, in: 6th Workshop on Workflows in Support of Large-Scale
Science, 2011.

[39] T. Fahringer, et al., Askalon: A development and grid computing
environment for scientific workflows, in: Workflows for e-Science,
2007, pp. 450–471.

[40] T. Oinn, et al., Taverna: a tool for the composition and enactment
of bioinformatics workflows, Bioinformatics 20 (17) (2004) 3045–
3054.

[41] S. R. McConnel, D. P. Siewiorek, M. M. Tsao, The measurement
and analysis of transient errors in digital computer systems, in: Proc.
9th Int. Symp. Fault-Tolerant Computing, 1979, pp. 67–70.

[42] X.-H. Sun, M. Wu, Grid harvest service: a system for long-term,
application-level task scheduling, in: International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2003, p. 8.

[43] A. Iosup, O. Sonmez, S. Anoep, D. Epema, The performance of
bags-of-tasks in large-scale distributed systems, in: 17th Inter. Symp.
on High Performance Distributed Computing, 2008, pp. 97–108.

[44] P. Diaconis, D. Ylvisaker, et al., Conjugate priors for exponential
families, The Annals of statistics 7 (2) (1979) 269–281.

[45] S. Nadarajah, A review of results on sums of random variables, Acta
Applicandae Mathematicae 103 (2) (2008) 131–140.

[46] Arg max, http://en.wikipedia.org/wiki/Arg_max.
[47] W. Chen, R. Ferreira da Silva, E. Deelman, R. Sakellariou, Balanced

task clustering in scientific workflows, in: IEEE 9th Inter. Conf. on
eScience, 2013, pp. 188–195. doi:10.1109/eScience.2013.40.

[48] LIGO, http://www.ligo.caltech.edu.
[49] G. B. Berriman, E. Deelman, et al., Montage: a grid-enabled engine

for delivering custom science-grade mosaics on demand, in: SPIE
Conference on Astronomical Telescopes and Instrumentation, 2004.

[50] R. Graves, T. Jordan, S. Callaghan, E. Deelman, E. Field, et al.,
Cybershake: A physics-based seismic hazard model for southern
california, Pure and Applied Geophysics 168 (3-4) (2010) 367–381.

[51] USC Epigenome Center, http://epigenome.usc.edu.
[52] SIPHT, http://pegasus.isi.edu/applications/sipht.
[53] BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi.
[54] W. Chen, E. Deelman, Workflowsim: A toolkit for simulating

scientific workflows in distributed environments, in: The 8th IEEE
International Conference on eScience, 2012.

[55] R. N. Calheiros, et al., CloudSim: a toolkit for modeling and simu-
lation of cloud computing environments and evaluation of resource
provisioning algorithms, Software: Practice and Experience 41 (1).

[56] F. Jrad, J. Tao, A. Streit, A broker-based framework for multi-
cloud workflows, in: 2013 international workshop on Multi-cloud
applications and federated clouds, 2013, pp. 61–68.

[57] Amazon Web Services, http://aws.amazon.com.
[58] FutureGrid, http://futuregrid.org/.
[59] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, K. Vahi,

Characterizing and profiling scientific workflows, Future Generation
Computer Systems 29 (3) (2013) 682 – 692.

[60] R. Ferreira da Silva, W. Chen, G. Juve, K. Vahi, E. Deelman, Com-
munity resources for enabling and evaluating research on scientific
workflows, in: 10th IEEE International Conference on e-Science,
2014, pp. 177–184. doi:10.1109/eScience.2014.44.

[61] Workflow Archive, http://workflowarchive.org.
[62] N. Yigitbasi, M. Gallet, D. Kondo, A. Iosup, D. Epema, Analysis

and modeling of time-correlated failures in large-scale distributed
systems, in: 11th Inter. Conf. on Grid Computing, 2010, pp. 65–72.

Weiwei Chen received his PhD in Computer
Science from University of Southern Califor-
nia, USA in 2014. In 2009, he completed
his bachelor in the Dept. of Automation, Ts-
inghua University, China. His research inter-
ests include distributed computing, service
computing and data analysis. He currently
works at Google’s infrastructure team.

Rafael Ferreira da Silva is a Computer
Scientist at the USC Information Sciences
Institute. He received his PhD in Com-
puter Science from INSA-Lyon, France, in
2013. His research focuses on the optimiza-
tion of the execution of scientific workflows
on heterogeneous distributed systems. See
http://www.rafaelsilva.com for further infor-
mation.

Ewa Deelman is a Research Associate Pro-
fessor at the USC Computer Science De-
partment and a Assistant Division Director at
the USC Information Sciences Institute. Her
research interests include the design and
exploration of distributed scientific environ-
ments, with emphasis on workflow manage-
ment. She received her PhD in Computer
Science from the Rensselaer Polytechnic In-
stitute in 1997.

Thomas Fahringer received the Ph.D. de-
gree in 1993 from the Vienna University
of Technology. Since 2003, he has been
a full professor of computer science in the
Institute of Computer Science, University of
Innsbruck, Austria. His main research inter-
ests include software architectures, program-
ming paradigms, compiler technology, perfor-
mance analysis, and prediction for parallel
and distributed systems.

