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Abstract. Improving energy efficiency has become necessary to enable
sustainable computational science. At the same time, scientific workflows
are key in facilitating distributed computing in virtually all domain sci-
ences. As data and computational requirements increase, I/O-intensive
workflows have become prevalent. In this work, we evaluate the ability
of two popular energy-aware workflow scheduling algorithms to provide
effective schedules for this class of workflow applications, that is, sched-
ules that strike a good compromise between workflow execution time
and energy consumption. These two algorithms make decisions based
on a widely used power consumption model that simply assumes linear
correlation to CPU usage. Previous work has shown this model to be in-
accurate, in particular for modeling power consumption of I/O-intensive
workflow executions, and has proposed an accurate model. We evalu-
ate the effectiveness of the two aforementioned algorithms based on this
accurate model. We find that, when making their decisions, these al-
gorithms can underestimate power consumption by up to 360%, which
makes it unclear how well these algorithm would fare in practice. To eval-
uate the benefit of using the more accurate power consumption model
in practice, we propose a simple scheduling algorithm that relies on this
model to balance the I/O load across the available compute resources.
Experimental results show that this algorithm achieves more desirable
compromises between energy consumption and workflow execution time
than the two popular algorithms.

Keywords: Scientific workflows · Energy-aware computing · Workflow
scheduling · Workflow simulation.

1 Introduction

Scientific workflows have become mainstream for the automated execution of
computational workloads on parallel and distributed computing platforms. Over
the past two decades, workflow applications have become more complex as the
volume of data and processing needs have substantially increased. At the same
time, computational platforms have increased their processing capacity and de-
veloped mechanisms for efficient workload management. An integral aspect of
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the workload processing lifecycle is energy management by which the system
makes scheduling and resource provisioning decisions so as to maximize work-
load throughput while reducing or bounding energy consumption [9]. In the past
few years, energy management for scientific workflows has gained traction, es-
pecially due to their singular contributions to major scientific discoveries. As a
result, several works have proposed energy-aware workflow scheduling algorithms
for a range of computing environments, and in particular cloud computing plat-
forms [8, 11,12,22].

These scheduling algorithms have all been designed and evaluated using the
traditional model for application power consumption [5, 7, 10, 12, 13, 21]: power
consumption is linear in CPU utilization and does not account for I/O opera-
tions. In previous work [15,17], we have experimentally quantified the accuracy
of this model and have identified sources of inaccuracy. A key finding was that
power consumption on multi-socket, multi-core compute nodes is not linearly
related to CPU utilization. Another finding was that, unsurprisingly, I/O opera-
tions (i.e., disk reads and writes) significantly impact power consumption. Since
many workflows are I/O-intensive, accounting for the power consumption of I/O
is crucial for power management of their executions. In that same work, we then
proposed a power consumption model that accounts for (i) computations that
execute on multi-socket, multi-core compute nodes; and (ii) I/O operations and
the idle power consumption caused by waiting for these operations to complete.
Experimental results show that this model, unlike the traditional simpler model,
has high accuracy with respect to real-world workflow executions on production
platforms.

Given the inaccuracies of the traditional power consumption model, it is un-
clear whether previously proposed energy-aware workflow scheduling algorithms
that use this model can be effective in practice. Published evaluations show good
results, but these results report on power consumption computed based on that
very same, inaccurate, model. One of the goals of this work is to assess the ef-
fectiveness on these algorithms in practice. To this end, we evaluate two popular
(i.e., most cited according to Google Scholar) energy-aware workflow scheduling
algorithms for cloud platforms [11, 22]. We perform this evaluation both when
assuming the traditional power consumption model and when assuming the ac-
curate model in [15,17]. We then propose a simple I/O-aware workflow schedul-
ing algorithm that uses the accurate model, and compare this algorithm to the
algorithms in [11,22]. Specifically, this work makes the following contributions:

1. An evaluation of two popular energy-aware workflow scheduling algorithms [11,
22] when used for executing I/O-intensive workflow applications, using the
traditional power model in the literature;

2. An analysis of how the results from the above evaluation differ when the
energy consumption of the schedules produced by the two algorithms is es-
timated using the accurate power model proposed in [15,17].

3. A simple I/O- and energy-aware workflow scheduling algorithm that lever-
ages the accurate power consumption model proposed in [15, 17] to judi-
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ciously allocate threads to cores in multi-socket, multi-core platforms and to
reduce the power consumption due to I/O operations.

4. An evaluation of this algorithm, which shows that it achieves a preferable
compromise between energy consumption and workflow execution time when
compared to the two algorithms in [11,22].

2 Background

2.1 Scientific Workflows

Scientific workflows are a cornerstone of modern scientific computing, and they
have underpinned some of the most significant discoveries of the last decade [4,6].
They are used to describe complex computational applications that require ef-
ficient and robust management of large volumes of data, which are typically
stored/processed on heterogeneous, distributed resources. In many cases, a work-
flow can be described as a directed acyclic graph, where the vertices represent
tasks and the edges represent data or control dependencies. As workflows con-
tinue to be adopted by scientific projects and user communities, they are becom-
ing more complex. Today’s production workflows can be composed of millions of
individual tasks that execute for milliseconds to hours, and that can be single-
threaded programs, multi-threaded programs, tightly coupled parallel programs
(e.g., MPI programs), or loosely coupled parallel programs (e.g., MapReduce
jobs), all within a single workflow [14]. Many of these workflows are used to an-
alyze terabyte-scale datasets obtained from streams, from files, or object stores.
As a result, most workflows comprise I/O-intensive tasks, and many workflows
are mostly composed of such tasks [3]. These are the workflows we specifically
target in this work.

2.2 Power and Energy Consumption

In [15,17], we have investigated the impact of CPU utilization and disk I/O op-
erations on the energy usage of I/O-intensive workflow executions on platforms
that comprises multi-socket, multi-core compute nodes. In contrast to the tradi-
tional power consumption model used in the energy-aware workflow scheduling
literature, we find that power consumption is impacted non-linearly by CPU
utilization and depends on the way in which workflow tasks are allocated to
cores and sockets. Our experimental results also show that I/O operations, as
well as the idling due to waiting for these operations to complete, have signifi-
cant impact on overall power consumption. Based on these results, we proposed
a power consumption model for I/O-intensive workflows that accounts for the
above phenomena. Experimental evaluation of this model showed that it accu-
rately captures real-world behavior, whereas the traditional model used in the
literature can be inaccurate by up to two orders of magnitudes. Below, we briefly
describe both models, which are used for the experiments conducted in this work.
(Note that neither model accounts for energy consumption due to RAM usage.)
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Traditional power and energy model. Energy-aware workflow scheduling
studies [5,7,10,12,13,21,22] typically assume that the dynamic power (i.e., not
accounting for the host’s idle power consumption) consumed by the execution of
a task at time t, P (t), is linearly related to the task’s CPU utilization, u(t), as:

P (t) = (Pmax − Pmin) · u(t) · 1
n , (1)

where Pmax is the power consumption when the compute node is at its maxi-
mum utilization, Pmin is the idle power consumption (i.e., when there is no or
only background activity), and n is the number of cores. Note that u(t) can be
computed by benchmarking the task on a dedicated compute node.

Given this power consumption model, the energy consumption of a task, E,
is modeled as follows:

E = r · Pmin +

∫ r

0

P (t)dt, (2)

where r denotes the task’s execution time.

I/O-aware power consumption model. The model proposed in [15,17] mod-
els P (t), the power consumption of a compute node at time t, as:

P (t) = PCPU(t) + PI/O(t), (3)

where PCPU(t), resp. PI/O(t), is the power consumption due to CPU utilization,
resp. I/O operations.

Let s denote the number of sockets on the compute node, and n the number
of cores per socket, so that the total number of cores on the compute node is
s · n. Let K denote the set of tasks that use at least one core on the compute
node. PCPU(t) is then defined as follows:

PCPU(t) =
∑
k,i,j

PCPU(k, i, j, t), (4)

where PCPU(k, i, j, t) is the power consumption of CPU utilization at time t
due to the execution of task k (k ∈ K) on socket i (0 ≤ i < s) at core j
(0 ≤ j < n) on the compute node. Experiments on real-world systems show that
power consumption does not linearly increase as cores on sockets are allocated
to workflow tasks, and that the behavior depends on the scheme used to allocate
each additional core on a socket. We consider two such schemes: (i) unpaired
– cores are allocated to tasks in sequence on a single socket until all cores on
that socket are allocated, and then cores on the next socket are allocated in
sequence; and (ii) pairwise – cores are allocated to tasks in round-robin fashion
across sockets (i.e., each core is allocated on a different socket than the previously
allocated core). Both core allocation schemes can be supported by configuring
the hardware/software infrastructure accordingly. Based on experimental results,
the following model for PCPU(k, i, j, t) is derived:

PCPU(k,i,j,t)=

(Pmax−Pmin)·
u(t)
s·n if j = 0 (first core on a socket)

0.881·PCPU(k,i,j−1,t) if j > 0 and pairwise

0.900·PCPU(k,i,j−1,t) if j > 0 and unpaired

(5)
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where u(t) is the task’s CPU utilization at time t. The model is written recur-
sively as the power consumption due to allocating a task to a core on a socket
depends on the power consumption due to previously allocated cores on that
socket. The 0.881 and 0.900 coefficients above are obtained from linear regres-
sions based on measurements obtained on real-world platforms [15,17].

Similarly to the definition of PCPU, we have:

PI/O(t) =
∑
k,i,j

PI/O(k, i, j, t), (6)

where PI/O(k, i, j, t) is the power consumption of I/O operations at time t due
to the execution of task k (k ∈ K) on socket i (0 ≤ i < s) at core j (0 ≤ j < n)
on the compute node. PI/O(k, i, j, t) is modeled as follows:

PI/O(k,i,j,t)=

{
0.486·(1+0.317·ω(t))·PCPU(k,i,j,t) if pairwise

0.213·(1+0.317·ω(t))·PCPU(k,i,j,t) otherwise
(7)

where the 0.486 and 0.213 values above come from linear regressions [15, 17],
and ω(t) is 0 if I/O resources are not saturated at time t, or 1 if they are
(i.e., idle time due to IOWait). More precisely, ω(t) is equal to 1 whenever
the volume of I/O requests placed by concurrently running tasks exceeds some
platform-dependent maximum I/O throughput. In Eq. 7, ω(t) is weighted by an
application-independent single factor (0.317).

A detailed description and evaluation of the above model is available in [15,
17]. In this work, we limit our analysis to the unpaired scheme, as it yields the
lowest energy consumption of the two schemes. For simplicity, in the rest of this
paper we denote the above model for the unpaired scheme as the realistic model
(in contrast to the traditional model described earlier).

3 Analysis of Energy-aware Workflow Scheduling
Algorithms

In this section, we describe two widely-used energy-aware workflow scheduling
algorithms that leverage the traditional power consumption model for making
scheduling decisions described in the previous section. We then evaluate the en-
ergy consumption for schedules computed by these two algorithms using both
the traditional and the realistic models. We do so by using a simulator that can
simulate the power consumption of a workflow execution on a compute platform
for either model. We perform these simulations based on real-world execution
traces of three I/O-intensive workflow applications. The specific scheduling prob-
lem that these algorithms aim to solve is as follows.

Scheduling problem statement. Consider a workflow that consist of single-
threaded tasks. This workflow must be executed on a cloud platform that com-
prises homogeneous, multi-core compute nodes. Initially, all compute nodes are
powered off. A compute node can be powered on at any time. Virtual machine
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(VM) instances can be created at any time on a node that is powered on. Each
VM instance is started for an integral number of hours. After this time expires,
the VM is shutdown. A node is automatically powered off if it is not running any
VM instance. The cores on a node are never oversubscribed (i.e., a node runs
at most as many VM instances as it has cores). A VM runs a single workflow
task at a time, which runs uninterrupted from its start until its completion. The
metrics to minimize are the workflow execution time, or makespan, and the total
energy consumption of the workflow execution.

3.1 SPSS-EB

The Static Provisioning-Static Scheduling under Energy and Budget Constraints
(SPSS-EB) algorithm in [11] computes a static resource provisioning and task
schedule at the onset of application execution. It considers tasks in topologi-
cal order (i.e., respecting task dependencies). For each task to be scheduled,
with earliest start time t (computed based on the completion times of its al-
ready scheduled parent tasks), the algorithm considers the three options below
in sequence:
1. If possible, schedule the task to run at the earliest time t′ ≥ t on a VM

instance that is already scheduled to be running at time t′ and that will be
able to complete the task before this VM instance expires.

2. Otherwise, if possible, schedule a new VM instance to start at time t on a
node that has already been scheduled to be powered on and will have at
least one idle core at that time, and schedule the task on that instance at
time t.

3. Otherwise schedule a new node to be powered on at time t, schedule a new
VM instance to be started on that node at time t, and schedule the task to
execute on that VM instance at time t.

For each option above, if multiple VM instances or nodes are possible, pick the
one that will complete the task the earliest, breaking ties by picking the VM
instance or node that will lead to the highest energy saving.

We refer the reader to [11] for a more detailed description of and pseudo-code
for the algorithm. Note that the algorithm therein also considers the monetary
cost of running VM instances (as charged by the cloud provider), which is used
to break ties and also used to evaluate the goodness of the schedule. In this work,
we ignore monetary cost and only consider energy consumption and execution
time.

3.2 EnReal

Like SPSS-EB, the Energy-aware Resource Allocation (EnReal) algorithm [22]
computes a static schedule by considering tasks in topological order. For each
task to be scheduled, with earliest start time t (computed based on the com-
pletion times of its already scheduled parent tasks), the algorithm follows the
following steps:
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1. If possible, schedule the task to run at the earliest time t′ ≥ t on a VM
instance that is already scheduled to be running at time t′ or shortly after
time t′ (defined by “time partitions” – computed based on the number of
overlapping tasks) and that will be able to complete the task before this VM
instance expires. Ties are broken by picking the VM instance that would
consume the least amount of energy, and then by picking the VM instance
that would lead to a more balanced allocation of tasks on compute nodes.

2. Otherwise, if possible, start a new VM at time t′ ≥ t on a node that is
already scheduled to be on at time t′. Ties are broken by picking the node
with the highest number of already scheduled VM instances.

3. Otherwise, schedule a new node to be powered on at time t, schedule a new
VM instance to be started on that node at time t, and schedule the task to
execute on that VM instance at time t.
We refer the reader to [22] for a more detailed description of and pseudo-

code for the algorithm. Note that the algorithm therein also considers migration,
which relocates a VM instance from a compute node to another. The objective is
to save energy by co-locating computations so as to reduce the number of nodes
that are powered-on. In this work, we ignore migration as the energy savings it
provides for relatively short-running tasks is marginal [20].

3.3 Workflow Energy Consumption Analysis

The analysis presented in this work is based on the simulated execution of
real-world execution traces of scientific workflow applications executed on the
Chameleon Cloud [2] platform, an academic cloud testbed. These traces are
distributed as part of the WfCommons project [18] and represent a number of
different configurations, in which the number of tasks and their characteristics
(e.g., input data size, number of I/O operations, flops) vary. Therefore, we argue
that these traces form a representative set of small- and large-scale workflow
configurations. Specifically, we consider three I/O-intensive workflows:
– 1000Genome – A bioinformatics workflow that identifies mutational overlaps

using data from the 1000 genomes project in order to provide a null distribu-
tion for rigorous statistical evaluation of potential disease-related mutations.
We consider 15 instances of 1000Genome, with between 260 and 902 tasks.

– Montage – An astronomy workflow for generating custom mosaics of the
sky. The workflow re-projects images to correct orientation, and rectifying a
common flux scale and background level. We consider 9 instances of Montage,
with between 59 and 2122 tasks.

– SoyKB – A bioinformatics workflow that resequences soybean germplasm
lines selected for desirable traits such as oil, protein, soybean cyst nematode
resistance, stress resistance, and root system architecture. We consider 9
instances of SoyKB, with between 96 and 676 tasks.

Simulator . We have developed a simulator for our experimental evaluation and
validation purposes. The simulator is based on WRENCH [1], a framework for
implementing simulators of workflow management systems, with the goal of pro-
ducing simulators that are accurate and can run scalably on a single computer
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while requiring minimal software development effort. In [1], we have demon-
strated that WRENCH achieves these objectives, and provides high simulation
accuracy for workflow executions using state-of-the-art workflow systems. To en-
sure accurate and coherent results, the simulations conducted here use the same
platform description as for the evaluation of the power model developed in our
previous work [15, 17]: 4 compute nodes each with 2 hexacore processors. The
simulator code and experimental scenarios used in the rest of this paper are all
publicly available online [19].

Evaluation results. Fig. 1-top shows the simulated energy consumption of
the schedules computed by the SPSS-EB and EnReal algorithms, as computed
with both the traditional and the realistic models, for all Montage, SoyKB, and
1000Genome workflow application instances. Recall that both algorithms make
scheduling decisions assuming that the traditional model holds in practice. En-
ergy consumption does not necessarily increase monotonically with the number
of workflow tasks due to irregular workflows structures. Comparing the “SPSS-
EB/traditional” to the “EnReal/traditional” results would thus correspond to
comparisons traditionally done in the literature. Instead, comparing the “SPSS-
EB/realistic” to the “EnReal/realistic” results corresponds to a realistic com-
parison. We can see that, in some cases, results vary significantly. For instance,
for the 364-task 1000Genome workflow, the traditional comparison gives a clear
advantage to SPSS-EB, while the realistic comparison gives a larger advantage
to EnReal. In total, such “reversals” are observed for 6 of the 9 Montage execu-
tions, none of the SoyKB executions, and 6 of the 15 1000Genome executions.
When no reversals occur, the magnitude of the advantage of one algorithm over
the other can be largely overestimated when assuming that the traditional model
holds. For instance, consider the 1000Genome execution with 820 and 920 tasks.
A traditional comparison would indicate that EnReal consumes marginally less
energy than SPSS-EB, while a realistic comparison shows that, in fact, SPSS-
EB consumes about twice as much energy as EnReal. Overall, the traditional
model can lead to misleading results. We conclude that published results evalu-
ating these and other energy-aware workflow scheduling algorithms do not allow
for an accurate quantitative comparison of how algorithms would perform in
practice, and in particular for I/O-intensive workflows.

The results in Fig. 1-top show smaller discrepancies between the traditional
and the realistic models for EnReal than for SPSS-EB. We term the absolute
difference between the energy consumption computed based on the two models
the “error”. Table 1 summarizes the results in Fig. 1 and shows the maximum
error, the mean error, and the standard deviation of the error for both algo-
rithms computed for all workflow instances for each application. The maximum
error is up to three orders of magnitude for SPSS-EB, but only up to half an
order of magnitude for EnReal. The mean error for SPSS-EB can also be much
larger than that of EnReal, especially for the 1000Genome workflows. One may
wonder how come, for some workflows, EnReal results are much less sensitive
to the choice of the power consumption model. We analyzed the schedules com-
puted by EnReal. When multiple options are possible for scheduling a task,
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Fig. 1. Simulated workflow energy consumption (top) and makespan (bottom) for each
workflow application instance for the SPSS-EB and EnReal algorithms. Results are
shown when simulating energy consumption with the traditional power model and the
realistic power model.

Workflow Algorithm
Energy Error (KWh)

Max Mean Stand. Deviation

Montage SPSS-EB 0.45 (160.71%) 0.09 (39.31%) 0.17 (52.07%)
EnReal 0.22 (17.01%) 0.06 (7.81%) 0.01 (1.89%)

SoyKB SPSS-EB 0.66 (33.76%) 0.13 (5.37%) 0.37 (15.72%)
EnReal 0.12 (10.46%) 0.11 (9.17%) 0.02 (1.65%)

1000Genome SPSS-EB 5.88 (360.57%) 1.95 (187.46%) 1.80 (120.50%)
EnReal 0.35 (26.29%) 0.11 (14.65%) 0.10 (7.08%)

Table 1. Energy consumption error (maximum, mean, and standard deviation) for
both algorithms and for each set of workflow instances.

EnReal balances the distribution of tasks among cores and computing nodes. As
a result, it “involuntarily” also distributes the I/O load, which saves energy. By
contrast, SPSS-EB favors early task completions, thus leading to I/O contention,
which can translate to much higher energy consumption than would occur if the
traditional model held in practice (e.g., for 8 of the 15 1000Genome executions).

When considering only the results obtained with the realistic model in Fig. 1-
top, there are significant reductions in energy consumption for most cases when
using the EnReal algorithm relative to using the SPSS-EB algorithm. However,
these energy savings come at the cost of higher makespans. Makespan results
are shown in Fig. 1-bottom. EnReal consistently leads to higher makespans than
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SPSS-EB (on average higher by 4.35x for Montage, 1.71x for SoyKB, and 3.81x
for 1000Genome). This is because EnReal fosters resource re-use. More precisely,
and unlike SPSS-EB, it does not create a new VM instance if an already running
instance will become idle in the near future.

The results in this section make it possible to evaluate and compare algo-
rithms using our realistic power model, but these algorithms make their schedul-
ing decisions based on the traditional model. In practice, they can make very
suboptimal decisions, such as execute I/O-intensive tasks concurrently on the
same compute node in an attempt to save energy. Such decisions can be particu-
larly harmful for the overall energy consumption since the time waiting for I/O
operations to complete, as seen in [15, 17], can significantly increase idle power
consumption. In the next section, we investigate whether is possible to design a
simple algorithm that makes good decisions based on the realistic model.

4 Energy-aware Scheduling of I/O-intensive Workflows

In this section, we present an energy-aware workflow scheduling algorithm that
accounts for the energy cost of I/O by using the power consumption model
described in Section 2.2 as a basis for making scheduling decisions. Our goal is
to show that it is possible, and in fact straightforward, to design an algorithm
that compares favorably to previously proposed algorithms that rely on the
traditional power model.

4.1 I/O- and Energy-aware Scheduling

We propose IOBalance, an I/O- and energy-aware workflow scheduling algo-
rithm that aims at minimizing energy consumption of I/O-intensive workflows
by reducing I/O contention and data movement operations. Contention is less-
ened by distributing tasks that perform high number of I/O operations among
available (running) nodes; data movement reduction is achieved by assigning
tasks to nodes in which most of the tasks’ input data are available (i.e., has been
produced by a previous task).

Like SPSS-EB and EnReal, IOBalance computes a static schedule, deciding
when to power hosts on and when to start VM instances. Tasks are scheduled in
topological order, marking a task ready whenever all its parent tasks have been
scheduled (initially all entry tasks are marked ready). Among all ready tasks to
be scheduled, the algorithm first schedules the task with the highest volume of
I/O operations, breaking ties based on the task’s earliest start time (i.e., picking
the task that can be started the earliest). Given a task to be scheduled with
earliest start time t, IOBalance considers three options below in sequence:
1. If possible, schedule the task on a VM instance that is already scheduled to be

running at time t or later, and that can complete the task before expiration.
For each such VM instance the algorithm determines: (i) the energy cost
of the task’s execution (computed using the power consumption model in
Eq. 3); and (ii) the earliest time at which the task could start on this VM
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instance. The algorithm picks the VM instance with the lowest energy cost.
If multiple instances have the same energy cost, then it picks the one that
can start the task the earliest.

2. Otherwise, if possible, schedule a new VM instance to start at time t on a
host that has already been scheduled to be powered on and will have at least
one idle core at that time, and schedule the task on that instance at time t.
If multiple such hosts exist, pick the host that already stores the largest
amount of data needed by the task (so as to reduce data movements). VM
instances on the same host are allocated to cores in round-robin fashion.

3. Otherwise, schedule a new host to be powered on at time t, schedule a new
VM instance to be started on that host at time t, and schedule the task to
execute on that VM instance at time t. If multiple such hosts exist, pick the
host that already stores the largest amount of data needed by the task.

4.2 Experimental Evaluation

To evaluate the effectiveness of our algorithm and compare it to SPSS-EB and
EnReal, we implemented it in the simulator used for the experiments in Sec-
tion 3.3. Hereafter, we only show results for the realistic power consumption
model. That is, the power consumed by the execution of the workflow on the
compute platform is simulated based on the realistic model. However, recall that
SPSS-EB and EnReal make scheduling decisions assuming the traditional model.

Fig. 2-top shows the simulated energy consumption of the schedules com-
puted by the SPSS-EB, EnReal, and IOBalance algorithms, for all Montage,
SoyKB, and 1000Genome workflow application instances. Overall, IOBalance
saves significant energy when compared to SPSS-EB for all Montage and SoyKB
workflow instances. Energy savings are up to 53% and on average 32% for Mon-
tage, up to 44% and on average 18% for SoyKB, and up to 64% and on average
36% for 1000Genome. When compared to EnReal, our proposed algorithm leads
to schedules that consume more energy for most workflow instances. Specifically,
consumed energy is higher than that of EnReal by up to 52% and on average
30% for SoyKB workflows, and up to 48% and on average 18% for 1000Genome
workflows. For Montage workflows, however, IOBalance leads to lower energy
consumption than EnReal for 6 of the 9 workflow instances, by up to 47%.

These energy results must be put in perspective with the makespan results
shown in Fig. 2-bottom. For 30 of the 33 workflow instances IOBalance leads
to makespan that is within 5% of the makespan achieved by SPSS-EB (the ex-
ceptions are the 58- and 178-task Montage workflows, and the 176-task SoyKB
workflow). IOBalance schedules tasks in a way that reduces potential I/O con-
tention, thus saving on energy, while rarely increasing the makespan when com-
pared to SPSS-EB. For instance, the 1000Genome workflow is composed of a
large number of I/O-intensive tasks that run for a couple of minutes and pro-
cess high volumes of data (O(GB)) [16]. These tasks, if all scheduled on the
same node (or a small number of nodes), suffer from local and remote I/O con-
tention, which increases power consumption as defined by ω(t) in PI/O (Eq. 7).
The distribution of I/O-intensive tasks among cores/nodes counterbalanced by
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Fig. 2. Simulated workflow energy consumption (top) and makespan (bottom) for each
workflow application instance for the SPSS-EB, EnReal, and IOBalance algorithms.
Results are shown when simulating energy consumption with the realistic power model.

CPU-bound tasks prevents waiting for I/O operations to complete, which saves
on energy by avoiding idle power consumption, but allows CPU-intensive tasks
to benefit from the idle CPU cycles, which reduces makespan. IOBalance leads
to makespan shorter, by up to 333% and on average by 94%, than EnReal for all
workflow instances. So although EnReal schedules consume less energy, as noted
when comparing SPSS-EB and EnReal in Section 3.3, this energy saving comes
at the cost of 2x longer makespan on average.

We conclude that even a simple algorithm like IOBalance can improve on
the state of the art because it makes scheduling decisions based on the realistic
power consumption model. SPSS-EB and EnReal achieve different compromises
between energy and makespan, with SPSS-EB consuming more energy but lead-
ing to shorter makespans and EnReal consuming less energy but leading to much
longer makespans. IOBalance achieves a compromise that is strictly preferable
to that achieved by SPSS-EB, saving significant energy while achieving similar
makespans. For most workflow instances it leads to higher energy consumption
than EnReal but achieves much shorter makespans.

5 Related Work

The need to manage energy consumption in large cloud data-centers has received
significant attention in this past decade [9]. At the application and system lev-
els, researchers have investigated techniques and algorithms to enable energy-
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efficient executions. In the scientific workflows literature, a range of energy-aware
workflow task scheduling or resource provisioning algorithms [5, 7, 10, 12, 13, 21]
have been proposed. In [7], only dynamic energy consumption is considered and
an algorithm composed of five sub-algorithms (VM selection, sequence tasks
merging, parallel tasks merging, VM reuse, and task slacking algorithm) is pro-
posed. Similarly, [12] also only considers dynamic energy consumption, but uses
reinforcement learning for a more budget oriented analysis. Other works consider
both static and dynamic energy consumption [5,10,13,21]. All these works make
the strong assumption that power consumption is linearly correlated with CPU
utilization and equally divided among virtual machines (or CPU cores within a
compute node), and ignore power consumption due to I/O. The work in [15,17]
shows that, at least for I/O-intensive workflow executions, these assumptions
do not hold in practice, and proposes an accurate, if more complex, power con-
sumption model. We use this model in this work.

Dynamic Voltage and Frequency Scaling (DVFS) is a well-known power man-
agement technique [7, 10, 12, 21]. It is used to decrease processor frequency to
save energy and is often paired with slack time optimization, a method that
takes advantage of idle slots resulting from early-completing tasks. Algorithms
that implement this combined approach generally succeed in reducing power
consumption (see the comparison to EnReal in [5]). This reduction comes at a
sharp increase in workflow makespan. The algorithms considered in this work
(the two algorithms in [11,22] and the algorithm proposed in Section 4.1) do not
use DVFS, but could conceivably be augmented to do so.

6 Conclusion and Future Work

In this work, we evaluate two popular energy-aware workflow scheduling algo-
rithms when used for executing I/O-intensive workflow applications. We quantify
the energy consumption of the schedules they compute using both the tradi-
tional, but inaccurate, power consumption model used in the literature and the
accurate power model developed in [15,17]. We show that comparing these algo-
rithms under the traditional model leads to misleading results. Furthermore, as
both algorithms make scheduling decisions based on the inaccurate traditional
model, it is unclear how effective they can be in practice. For this reason, we
propose a simple I/O-aware workflow scheduling algorithm that uses the accu-
rate power consumption model, and compare this algorithm to the above two
algorithms. Experimental results show that this algorithm achieves a strictly
preferable tradeoff between makespan and energy than one of its two competi-
tors. Although it often leads to higher energy consumption than the other com-
petitor, it also achieves a 2x shorter makespan on average. In future work, we
plan to broaden our analysis to consider the use of DVFS.
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