JOURNAL OF COMPUTING IN SCIENCE & ENGINEERING, VOL. X, NO. X, 2019

The Evolution of the Pegasus
Workflow Management Software

Ewa Deelman, Fellow, IEEE, Karan Vahi, Member, IEEE, Mats Rynge, Rajiv Mayani,
Rafael Ferreira da Silva, Member, IEEE, George Papadimitriou, Miron Livny

Abstract—Since 2001 the Pegasus Workflow Management System has evolved into a robust and scalable system that automates the
execution of a number of complex applications running on a variety of heterogeneous, distributed high-throughput, and
high-performance computing environments. Pegasus was built on the principle of separation between the workflow description and
workflow execution, providing the ability to port and adapt the workflow based on the target execution environment. Through its
user-driven research and development it has adapted to the needs of a number of scientific communities, utilizing and developing novel
algorithms and software engineering solutions. This paper describes the evolution of Pegasus over time and provides motivations
behind the design decisions. The paper concludes with selected lessons learned.

Index Terms—workflow management systems, sustainability, large-scale distributed computing

1 INTRODUCTION

ODAY’S computational and data science applications
Tprocess vast amounts of data (from remote sensors,
instruments, etc.) and conduct large-scale simulations of
underlying science phenomena. These applications com-
prise thousands of computational tasks and process large
datasets, which are often distributed and stored on het-
erogeneous resources. Scientific workflows have emerged
as a flexible representation that declaratively express the
complexity of such applications with data and control de-
pendencies. They have become mainstream in domains such
as astronomy, physics, climate science, earthquake science,
biology, and others [1]-[4]. Workflows can be cyclic or
acyclic, hierarchical (a workflow within a workflow), and
form workflow ensembles (sets of interrelated workflows).
Different semantics can be associated with the workflow
graph, resulting in different types of execution [4]: in some
cases, the nodes of the graph are standalone executables
while in other cases, the nodes are long-lived services.

Workflows enable scientists to think about a sequence of
analysis that needs to be performed on the data they col-
lected. Workflows also enable scientists to analyze a series
of simulations that can model our physical world or predict
new systems behavior. There are a number of community
codes that have been developed within various science do-
mains, including but not limited to astronomy, bioinformat-
ics, ecology, and material science. Scientific workflows allow
scientists to chain these codes together to solve problems
of greater complexity and scale. Individual codes can be
developed by experts in a particular domain, resulting in

e E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. Ferreira da Silva, and G.
Papadimitriou are with the Information Sciences Institute, University of
Southern California, Marina Del Rey, CA, 90292, USA.

E-mail: {deelman,vahi,rynge,mayani,rafsilva,georgpap }@isi.edu

e M. Livny is with University of Wisconsin, Madison.

E-mail: miron@cs.wisc.edu

Manuscript received XXXX; revised XXXX.

workflows that can be used as a multi-disciplinary research
instruments. Workflows do not examine the internals of
these codes but rather treat them as black boxes with
specific inputs, parameters, and outputs. The challenge in
building workflows is to connect the right components
together based on their capabilities and the data they require
and produce. Sometimes, additional components (called
shims [5], [6]) need to be added to execute the workflows
correctly. Because of the high level of abstraction they
provide, workflows give access to sophisticated analysis
and simulations to non-developers. Since they explicitly
state the “recipe” for the computation, they can be used to
evaluate the quality of the scientific result and can foster
reproducibility.

In this paper, we describe the Pegasus workflow man-
agement system [7]], [8], which is being used in a number
of scientific domains. Since 2001, Pegasus has been cre-
ated and enhanced in response to the needs of scientists
to conduct complex computations on heterogeneous and
distributed cyberinfrastructures. We describe how Pegasus
was conceptualized, how it benefited from advances in
Computer Science and how the professional software de-
velopment approach has contributed to the adoption and
sustainability of the software. Pegasus is grounded in the
challenging and ever-increasing needs of a multitude of
scientific applications and thus continuously innovates and
enhances its capabilities. Pegasus delivers robust automa-
tion capabilities to researchers studying seismic phenom-
ena [9], to astronomers seeking to understand the structure
of the universe [10], to material scientists developing new
drug delivery methods [11], and to students seeking to
understand human population migration [12]. This paper
describes the challenges of developing cyberinfrastructure
capabilities that have an impact on scientific discovery and
innovate in the changing cyberinfrastructure landscape.



JOURNAL OF COMPUTING IN SCIENCE & ENGINEERING, VOL. X, NO. X, 2019

2 FROM THE VIRTUAL DATA CONCEPTS TO ScCI-
ENTIFIC WORKFLOWS

In 2000, the National Science Foundation funded the Grids
Physics Network (GriPhyN) project [13], which was aimed
at developing solutions to support a number of physics
applications executing across a distributed platform, the
Grid [14]. Among the target physics were two high-energy
projects: CMS [15] and ATLAS [16] experiments at the Large
Hadron Collider, an astrophysics project called the Laser
Interferometer Gravitational-wave Observatory (LIGO) [17],
[18]], and the astronomy effort, the Sloan Digital Sky Survey
(SDSS) [19] The main idea of the GriPhyN project was
to extend the database concept of view materialization to
distributed environments. GriPhyN aimed to develop a
“Virtual Data Grid,” which would deliver data products
in response to a user’s request. The requested data could
already exist somewhere in the distributed environment, or
it would have to be derived.

Science, as exemplified by the above applications, is
often distributed in nature. Collaborators work at different
institutions and have access to a variety of heterogeneous
resources on campus and to resources that are part of
Department of Energy (DOE) laboratories. Scientists also
utilize resources from national cyberinfrastructures such as
the Open Science Grid (OSG) [20], XSEDE [21], and commer-
cial and academic clouds [22]-[25]. Workflows, as designed
by scientists, can also be very heterogeneous and require
a varied set of computational resources to execute (e.g.,
simple clusters, high-performance computing resources, vi-
sualization clusters). Datasets are also distributed in the
environment among different community archives, project
storage systems, and local disks. Scientific workflows need
to operate across all these resources to access data and lever-
age the available resources . The Grid aimed at bridging
the heterogeneous and distributed resources by providing
standardized authentication, job scheduling, data transfer,
and information services [26], [27]. However, the workflow
management system needed to build on these capabilities to
coordinate job submission, data transfers, and the like.

Initially, we pursued the use of artificial intelligence (AI)
planning technologies to create a plan based on the user’s
request (goal). Using such technologies, we assisted LIGO
by developing planner rules for the LIGO pulsar search [28].
We designed a web-based interface to help the user specify
the request in terms of application-specific parameters, such
as the time frame in which the search should be conducted.
Based on the request, the system would determine whether
the data was already instantiated and if not, the system
would then determine how to compute the data. Next, the
system would plan the data movements and computations
required to obtain the results and would then execute that
plan. The plan was based on the workflow described by
the scientists, shown below in Fig. [} The user would fill
out a web form with metadata characterizing the desired
result and the system would develop the plan and provide
the results on the fly. Unfortunately, the LIGO scientists did
not like our approach. The request representation (metadata
entered via a web interface) was too abstract and the users
preferred to manipulate the science workflows (like the one
in Fig. (1) directly. Additionally, we ran into scalability issues

2

with the underlying Prodigy AI planner [29]. The LIGO
workflows were expected to have at least tens of thousands
of tasks with hundreds of thousands of files. Al planning
techniques could not effectively reason about and arrive at
a viable plan at that scale. As a result, we focused on facil-
itating explicit workflow design and efficient and scalable
workflow management in distributed environments.

Working with the GriPhyN applications, we found that
they had common workflow challenges. These challenges
included the need to describe complex workflows in a
simple way, the ability to access distributed, heterogeneous
data, and the ability to compute resources that may change
over time (in terms of software and hardware). Conse-
quently, we identified the separation between workflow
description and workflow execution and the resulting map-
ping of the workflow description onto the available dis-
tributed resources as a key aspect of our work. In Pegasus,
the workflow description is abstract in that it uses logical
names for transformations (tasks) and for files (task input
and output data). The workflow management system then
maps the abstract workflow to the resources based on their
availability, performance, and the availability of input data
at the resource, among others. The abstract workflow de-
scription itself is described in a simple XML-based format
called the DAX (Directed Acyclic Graph in XML) [7]. To
construct and run DAXes, scientists interact with Pegasus
through the command line and API interfaces (in Java, Perl,
Python, and R), through Jupyter Notebook [30], through
portals and infrastructure hubs such as CyVerse [31] and
HUBzero [32]], through higher-level workflow composition
tools such as Wings [6], or through application-specific
composition tools (e.g., OpenSees [33]]). Although creating a
Pegasus workflow is easy (can be done in less than one day),
the challenge of the workflow creation lies in the conceptual
workflow design. The workflow components also have to be
codes that are portable across different environments. For
example, the workflow components cannot contain hard-
coded paths. In cases where users want to submit the
workflows to remote resources, these resources need to be
able to accept incoming jobs, which may require interactions
with the resource providers.

By focusing on the separation of the abstract and exe-
cutable workflows, Pegasus can map and execute a work-
flow across heterogeneous platforms (such as campus and
high-performance clusters and clouds). The user’s workflow
can also be migrated between platforms as the platform
hardware and software change over time. This paradigm
is especially powerful as it has allowed users to migrate and
adapt to the changing computing landscape over the past 20
years without many changes to their workflow description.
Users have been able to take advantage of improvements
both in data management and computing infrastructure to
scale the performance and throughput of their workflows,
thus improving their scientific productivity.

3 BUILDING ON PROVEN ABSTRACTIONS AND
TECHNOLOGIES
From the beginning, Pegasus’ philosophy was to rely on

existing research in graph theory, databases (virtual data),
and compilers (data re-use) and to augment and adapt



JOURNAL OF COMPUTING IN SCIENCE & ENGINEERING, VOL. X, NO. X, 2019

Fig. 1. A sequence of data processing steps and resulting products for the LIGO pulsar search. Raw instrumental data is stored in an archive. Short
duration frames are cleaned/calibrated, combined into longer duration frames, and transposed to the time-frequency spectrum. Gravitational-wave
templates are compared to the time frequency image and potential gravitational-wave events are stored in a database.

that research to the concept of work ows and the target
cyberinfrastructure. Pegasus builds on the foundation of
abstractions of directed acyclic graphs (DAGs), fundamen-
tal constructs (recursion), and scalable algorithms (graph
traversals, graph node clustering).

Recognizing the importance of the separation of con-
cerns and the bene ts of re-use of robust software solutions,
Pegasus built on top of the HTCondor task management
system [34] and its DAGMan work ow engine, described
below. The collaboration with the HTCondor team has
lasted throughout the years, bringing mutual bene ts to the
two projects by addressing common challenges from differ-
ent points of view (planning and scheduling) and delivering
solutions that work well together for the scientists.

Initially, Pegasus had 3 main components: the mapper,
the work ow engine, and the job scheduler. With time, other
capabilities have been added. Fig. [Z shows the develop-
ment of key Pegasus capabilities over time and indicates
the main applications that have driven the development
of these Pegasus capabilities (LIGO and SCEC—a major
earthquake science project described in Section 7. In 2005,
we started developing the rst remote work ow execution
engine to support task clustering and in 2009, we started
developing web-based monitoring capabilities, augmenting
our command-line interfaces. This brought our main sys-
tem components to ve. They are illustrated in Fig 3[:}ind
described in greater detail in Section 4.

The main Pegasus components are:

1) Mapper: Generates an executable work ow based
on an abstract work ow. It nds the appropriate
software, data, and computational resources re-
quired for work ow execution. The Mapper may
restructure the work ow to improve performance
and adds data management and provenance cap-
ture jobs to the work ow. To support the mapping,
Pegasus uses two types of catalogs: a site catalog

to discover resources and their properties: and a

transformation catalog to discover the location and
resource needs of codes and a replica catalog to dis-
cover data location. These catalogs can be provided
by the user or the cyberinfrastructure.

Local Work ow Execution Engin¢provided by DAG-
Man [B5]): Submits and tracks the execution of the
jobs de ned in the executable work ow according

to their dependencies and constraints on number of
queued jobs.

Job Schedulefprovided by HTCondor sched[36]):
Manages individual jobs, supervises their execution
on local and remote resources, and provides task-
level reliability.

Remote Work ow Execution Enginévlanages the ex-
ecution of tasks, which can be structured as a sub-
work ow, on remote resources. The Remote Work-
ow Execution Engine is scheduled with the sub-
work ow to the remote resource.

Monitoring ComponentMonitors the progress of the
work ow, parses jobs and task logs, and populates
the jobs and task logs into a database. The database
stores both performance and provenance informa-
tion. It also sends noti cations back to the user
about events such as failure, success, and comple-
tion of tasks, jobs, and work ows, as well as user-
de ned events. The database provides information
to the dashboard, which displays real-time monitor-
ing information and helps with debugging.

2)

3)

4)

5)

3.1 Mapper and Data Reuse

To support the concept of virtual data, one of the earlier
capabilities that we developed was data reduction and reuse
that the Mapper applies when generating an executable
work ow from the abstract work ow. The information
about the input and output les used and generated by
tasks in the abstract work ow is coupled with the location
information of existing datasets discovered in data catalogs.



JOURNAL OF COMPUTING IN SCIENCE & ENGINEERING, VOL. X, NO. X, 2019

Fig. 2. Pegasus development and releases over time. The bottom rows indicate the key developments driven by the LIGO and SCEC applications.
Selected capabilities that were released at particular times are highlighted and their importance and relevance to the two key applications are

described below.

Fig. 3. Pegasus with its components in context of user interfaces and cyberinfrastructure.

Based on the existence of the les named in the work ow,
the Mapper reuses the existing data and reduces (prunes)
the work ow to compute only the necessary results. The
underlying algorithm [8] is similar to “make” functional-
ity while building software. It works bottom up for each
task whose output locations exist in the data catalog. If
the outputs exist, the task is removed and the operation
gets applied to task's immediate parents, marking them for
deletion (unless they are required to derive some other data
product in that work ow). In a degenerate case where the
nal outputs of a work ow already exist, all the compute
jobs in the work ow will be deleted. In that case, the
Mapper will only add the data movement nodes that copy
the nal outputs from their existing locations recorded in
the data catalog to the location the user requested.

This is a particularly powerful concept and has proved
useful for collaborating groups and for work ow-level
checkpointing. When intermediate results are saved and
a fatal failure occurs during execution, the user can re-
submit the abstract work ow and the system will reduce the
work ow to include only the remaining tasks and map only
those. In addition to abstract work ow-level checkpointing,

which provides fault tolerance at the mapper level, building
on top of HTCondor allowed us to leverage its resilience ca-
pabilities such as checkpointing at the level of the executable
work ow and job retries at the scheduler level.

4 PEGASUS THROUGH THE YEARS: USER-

DRIVEN DESIGN

Since its inception, Pegasus was designed based on the
user's needs. We worked closely with our collaborators
to understand their work ow needs and tried to abstract
their needs to general concepts and challenges that could
be solved using new algorithms and software solutions.
Some of the main concepts implemented over the years are
described below.

Since many of our users have access to a variety of
heterogeneous and distributed environments, Pegasus al-
lows scientists to submit locally and run globally Scientists
can deploy Pegasus in their local environment, requiring
no support from a site administrator and eliminating any
impact on the remote cyberinfrastructure. A collaboration
can deploy Pegasus on a sharedsubmit hostto send jobs






	Introduction
	From the Virtual Data Concepts to Scientific Workflows
	Building on Proven Abstractions and Technologies
	Mapper and Data Reuse

	Pegasus Through the Years: User-Driven Design
	Support for Replica Catalog: Automated Data Selection and Management
	Data Cleanup, Data Footprint Management
	Task Clustering
	Workflow Partitioning, Just-in-time Planning
	Pegasus MPI Cluster: A Remote Workflow Execution Engine
	Online Monitoring

	Software development processes
	Cross-Discipline Pollination
	Examples of Pegasus Applications
	Conclusions
	References
	Biographies
	Ewa Deelman
	Karan Vahi
	Mats Rynge
	Rajiv Mayani
	Rafael Ferreira da Silva
	George papadimitriou
	Miron Livny


