
Modeling the Linux page cache for accurate
simulation of data-intensive applications

Hoang-Dung Do∗, Valérie Hayot-Sasson∗, Rafael Ferreira da Silva‡, Christopher Steele§, Henri Casanova†, Tristan Glatard∗

∗Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
†Department of Information and Computer Sciences, University of Hawai‘i at Mānoa, USA
‡Information Sciences Institute, University of Southern California, Marina Del Rey, CA, USA

§Department of Psychology, Concordia University, Montreal, Canada

Abstract—The emergence of Big Data in recent years has
resulted in a growing need for efficient data processing solu-
tions. While infrastructures with sufficient compute power are
available, the I/O bottleneck remains. The Linux page cache is an
efficient approach to reduce I/O overheads, but few experimental
studies of its interactions with Big Data applications exist, partly
due to limitations of real-world experiments. Simulation is a
popular approach to address these issues, however, existing
simulation frameworks do not simulate page caching fully, or
even at all. As a result, simulation-based performance studies of
data-intensive applications lead to inaccurate results.

In this paper, we propose an I/O simulation model that
includes the key features of the Linux page cache. We have
implemented this model as part of the WRENCH workflow
simulation framework, which itself builds on the popular Sim-
Grid distributed systems simulation framework. Our model
and its implementation enable the simulation of both single-
threaded and multithreaded applications, and of both writeback
and writethrough caches for local or network-based filesystems.
We evaluate the accuracy of our model in different conditions,
including sequential and concurrent applications, as well as local
and remote I/Os. We find that our page cache model reduces the
simulation error by up to an order of magnitude when compared
to state-of-the-art, cacheless simulations.

I. INTRODUCTION

The Linux page cache plays an important role in reducing
filesystem data transfer times. With the page cache, previously
read data can be re-read directly from memory, and written
data can be written to memory before being asynchronously
flushed to disk, resulting in improved I/O performance on
slower storage devices. The performance improvements de-
pend on many factors including the total amount of memory,
the amount of data being written (i.e., dirty data), and the
amount of memory available for written data. All these factors
are important when determining the impact of I/O on applica-
tion performance, particularly in data-intensive applications.

The number of data-intensive applications has been steadily
rising as a result of open-data and data sharing initiatives. Due
to the sheer size of the data being processed, these applications
must be executed on large-scale infrastructures such as High
Performance Computing (HPC) clusters or the cloud. It is
thus crucial to quantify the performance of these applications
on these platforms. The goals include determining which

type of hardware/software stacks are best suited to different
application classes, as well as understanding the limitations of
current algorithms, designs and technologies. Unfortunately,
performance studies relying on real-world experiments on
compute platforms face several difficulties (high operational
costs, labor-intensive experimental setups, shared platforms
with dynamic loads that hinder reproducibility of results) and
shortcomings (experiments are limited to the available plat-
form/software configurations, which precludes the exploration
of hypothetical scenarios). Simulations address these concerns
by providing models and abstractions for the performance
of computer hardware, such as CPU, network and storage.
As a result, simulations provide a cost-effective, fast, easy
and reproducible way to evaluate application performance on
arbitrary platform configurations. It thus comes as no surprise
that a large number of simulation frameworks have been
developed and used for research and development [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13].

Page caching is an ubiquitous technique for mitigating
the I/O bottleneck. As such, it is necessary to model it
when simulating data-intensive applications. While existing
simulation frameworks of parallel and distributed computing
systems capture many relevant features of hardware/software
stacks, they lack the ability to simulate page cache with enough
details to capture key features such as dirty data and cache
eviction policies [5], [6]. Some simulators, such as the one
in [14], do capture such features, but are domain-specific.

In this work, we present WRENCH-cache, a page cache
simulation model implemented in WRENCH [13], a work-
flow simulation framework based on the popular SimGrid
distributed simulation toolkit [11]. Our contributions are:

• A page cache simulation model that supports both single-
threaded and multithreaded applications, and both write-
back and writethrough caches for local or network-based
filesystems;

• An implementation of this model in WRENCH;
• An evaluation of the accuracy and scalability of our

model, and of its implementation, for multiple applica-
tions, execution scenarios, and page cache configurations.

ar
X

iv
:2

10
1.

01
33

5v
1 

 [
cs

.D
C

] 
 5

 J
an

 2
02

1



II. RELATED WORK

A. Page cache

Page cache offsets the cost of disk I/O by enabling I/O to
occur directly from memory. When a file is first loaded into
memory, the file is read from disk and loaded into the page
cache as a series of pages. Subsequent reads to any of the file
pages located in memory will result in a cache hit, meaning
the I/O can occur directly from without disk involvement. Any
accessed page not loaded in memory results in a cache miss,
resulting in the page being read directly from disk.

Written pages can also contribute to future application cache
hits. When use of page cache is enabled for a given filesystem,
through the enabling of writeback or writethrough cache, all
written pages are written first to page cache, prior to being
written to disk. Accessing of these written pages may result
in cache hits, should the pages remain in memory.

The kernel may also provide improved write performance
if writeback cache is enabled. Unlike writethrough, where the
data is synchronously written from memory to disk, writeback
enables asynchronous writes. With writeback, the application
may proceed with execution once the data has been written to
memory, even if it has not yet been materialized to disk. The
writeback strategy is considered to outperform writethrough as
well as direct I/O (page cache bypassed for I/O) as it delays
disk writes to perform a bulk write at a later time [15].

Cache eviction and flushing strategies are integral to proper
page cache functioning. Whenever space in memory becomes
limited, either as a result of application memory or page cache
use, page cache data may be evicted. Only data that has been
persisted to storage (clean pages) can be flagged for eviction
and removed from memory. Written data that has not yet been
persisted to disk (dirty data) must first be copied (flushed) to
storage prior to eviction. When sufficient memory is being
occupied, the flushing process is synchronous. However, even
when there is sufficient available memory, written data will
be flushed to disk at a predefined interval through a process
known as periodical flushing. Periodical flushing only flushes
expired dirty pages, which remain dirty in page cache longer
than an expiration time configured in the kernel. Different
cache eviction algorithms have also been proposed [16].

The Linux kernel uses a two-list strategy to flag pages for
eviction. The two-list strategy is based on a least recently
used (LRU) policy and uses an active and inactive list in its
implementation. If accessed pages are not in the page cache,
they are added to the inactive list. Should pages located on the
inactive list be accessed, they will be moved from the inactive
to the active list. The lists are also kept balanced by moving
pages from the active list to the inactive list when the active
list grows too large. Thus, the active list only contains pages
which are accessed more than once and not evictable, while the
inactive list includes pages accessed once only, or pages that
have been accessed more than once but moved from the active
list. Both lists operate using LRU eviction policies, meaning
that data that has not be accessed recently will be moved first.

B. Simulation

Many simulation frameworks have been developed to enable
the simulation of parallel and distributed applications [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. These
frameworks implement simulation models and abstractions to
aid the development of simulators for studying the functional
and performance behaviors of application workloads executed
on various hardware/software infrastructures.

The two main concerns for simulation are accuracy, the
ability to faithfully reproduce real-world executions, and scal-
ability, the ability to simulate large/long real-world executions
quickly and with low RAM footprint. The above frameworks
achieve different compromises between the two. At one ex-
treme are discrete-event models that capture “microscopic”
behaviors of hardware/software systems (e.g., packet-level net-
work simulation, block-level disk simulation, cycle-accurate
CPU simulation), which favor accuracy over speed. At the
other extreme are analytical models that capture “macro-
scopic” behaviors via mathematical models. While these mod-
els lead to fast simulation, they must be developed carefully
if high levels of accuracy are to be achieved [17].

In this work, we use the SimGrid and WRENCH simulation
frameworks. The years of research and development invested
in the popular SimGrid simulation framework [11], have
culminated in a set of state-of-the-art macroscopic simula-
tion models that yield high accuracy, as demonstrated by
(in)validation studies and comparisons to competing frame-
works [18], [17], [19], [20], [21], [22], [23], [24], [25], [26].
But one significant drawback of SimGrid is that its simulation
abstractions are low-level, meaning that implementing a simu-
lator of complex systems can be labor-intensive [27]. To rem-
edy this problem, the WRENCH simulation framework [13]
builds on top of SimGrid to provide higher-level simulation
abstractions, so that simulators of complex applications and
systems can be implemented with a few hundred lines.

Although the Linux page cache has a large impact on
I/O performance, and thus on the execution of data-intensive
applications, its simulation is rarely considered in the above
frameworks. Most frameworks merely simulate I/O operations
based on storage bandwidths and capacities. The SIMCAN
framework does models page caching by storing data accessed
on disk in a block cache [5]. Page cache is also modeled
in iCanCloud through a component that manages memory
accesses and cached data [6]. However, the scalability of the
iCanCloud simulator is limited as it uses microscopic models.
Besides, none of these simulators provide any writeback
cache simulator nor cache eviction policies through LRU
lists. Although cache replacement policies are applied in [14]
to simulate in-memory caching, this simulator is specific to
energy consumption of multi-tier heterogeneous networks.

In this study, we implement a page cache simulation model
in the WRENCH framework. We targeted WRENCH because
it is a recent, actively developed framework that provides
convenient simulation abstractions, because it is extensible,
and because it reuses SimGrid’s scalable and accurate models.



I/O Controller

MemoryManager

Disks

Application

Page cache LRU lists

User

Kernel

Storage 
devices

Memory

Background thread

Main thread

Periodical flushing

+ fileRead
+ fileWrite

+ readFromCache
+ readToCache
+ writeToCache

+ flush
+ evict

+ read
+ write

+ read
+ write

(write-through)

Fig. 1: Overview of the page cache simulator. Applications
send file read or write requests to the I/O Controller that
orchestrates flushing, eviction, cache and disk accesses with
the Memory Manager. Concurrent accesses to storage devices
(memory and disk) are simulated using existing models.

III. METHODS

We separate our simulation model in two components, the
I/O Controller and the Memory Manager, which together
simulate file reads and writes (Figure 1). To read or write
a file chunk, a simulated application sends a request to the
I/O Controller. The I/O Controller interacts as needed with the
Memory Manager to free memory through flushing or eviction,
and to read or write cached data. The Memory Manager
implements these operations, simulates periodical flushing and
eviction, and reads or writes to disk when necessary. In case
the writethrough strategy is used, the I/O Controller directly
writes to disk, cache is flushed if needed and written data is
added to page cache.

A. Memory Manager

The Memory Manager simulates two parallel threads: the
main one implements flushing, eviction, and cached I/Os
synchronously, whereas the second one, which operates in
the background, periodically searches for expired dirty data
in LRU lists and flushes this data to disk. We use existing
storage simulation models [21] to simulate disk and mem-
ory, characterized by their storage capacity, read and write
bandwidths, and latency. These models account for bandwidth
sharing between concurrent memory or disk accesses.

1) Page cache LRU lists: In the Linux kernel, page cache
LRU lists contain file pages. However, due to the large number
of file pages, simulating lists of pages induces substantial
overhead. Therefore, we introduce the concept of a data block
as a unit to represent data cached in memory. A data block is

file: f1
size: 100MB
entry time: 81
last access: 210
dirty: 0

file: f2
size: 300MB
entry time: 95
last access: 180
dirty: 0

file: f5
size: 100MB
entry time: 50
last access:150
dirty: 0

file: f6
size: 80MB
entry time: 110
last access:110
dirty: 1

file: f5
size: 100MB
entry time: 50
last access: 50
dirty: 0

file: f3
size: 250MB
entry time: 90
last access: 270
dirty: 0

file: f1
size: 200MB
entry time: 110
last access: 210
dirty: 1

file: f4
size: 120MB

 entry time: 70
last access: 200
dirty: 0

file: f2
size: 90MB
entry time: 96
last access: 180
dirty: 1

file: f5
size: 200MB
entry time: 50
last access: 150
dirty: 0

Inactive list

Active list

Fig. 2: Model of page cache LRU lists with data blocks.

a subset of file pages stored in page cache that were accessed
in the same I/O operation. A data block stores the file name,
block size, last access time, a dirty flag that represents whether
the data is clean (0) or dirty (1), and an entry (creation) time.
Blocks can have different sizes and a given file can have
multiple data blocks in page cache. In addition, a data block
can be split into an arbitrary number of smaller blocks.

We model page cache LRU lists as two lists of data blocks,
an active list and an inactive list, both ordered by last access
time (earliest first, Figure 2). As in the kernel, our simulator
limits the size of the active list to twice the size of the inactive
list, by moving least recently used data blocks from the active
list to the inactive list [28], [15].

At any given time, a file can be partially cached, completely
cached, or not cached at all. A cached data block can only
reside in one of two LRU lists. The first time they are accessed,
blocks are added to the inactive list. On subsequent accesses,
blocks of the inactive list are moved to the top of the active
list. Blocks written to cache are marked dirty until flushed.

2) Reads and writes: Our simulation model supports
chunk-by-chunk file accesses with a user-defined chunk size.
However, for simplicity, we assume that file pages are accessed
in a round-robin fashion rather than fully randomly. Therefore,
when a file is read, cached data is read only after all uncached
data was read, and data from the inactive list is read before
data from the active list (data reads occur from left to right
in Figure 3). When a chunk of uncached data is read, a new
clean block is created and appended to the inactive list. When a
chunk of cached data is read, one or more existing data blocks
in the LRU lists are accessed. If these blocks are clean, we
merge them together, update the access time and size of the
resulting block, and append it to the active list. If the blocks
are dirty, we move them independently to the active list, to
preserve their entry time. Because the chunk and block sizes
may be different, there are situations where a block is not
entirely read. In this case, the block is split in two smaller
blocks and one of them is re-accessed.

For file writes, we assume that all data to be written is
uncached. Thus, each time a chunk is written, we create a
block of dirty data and append it to the inactive list.

3) Flushing and eviction: The main simulated thread in the
Memory Manager can flush or evict data from the memory



uncached inactive list active list

cached dataread data

File data

Fig. 3: File data read order. Data is read from left to right:
uncached data is read first, followed by data from the inactive
list, and finally data from the active list.

cache. The data flushing simulation function takes the amount
of data to flush as parameter. While this amount is not reached
and dirty blocks remain in cache, this function traverses the
sorted inactive list, then the sorted active list, and writes the
least recently used dirty block to disk, having set its dirty flag
to 0. In case the amount of data to flush requires that a block
be partially flushed, the block is split in two blocks, one that
is flushed and one that remains dirty. The time needed to flush
data to disk is simulated by the storage model.

The cache eviction simulation also runs in the main thread.
It frees up the page cache by traversing and deleting least
recently used clean data blocks in the inactive list. The amount
of data to evict is passed as a parameter and data blocks are
deleted from the inactive list until the evicted data reaches
the required amount, or until there is no clean block left in
the list. If the last evicted block does not have to be entirely
evicted, the block is split in two blocks, and only one of them
is evicted. The overhead of the cache eviction algorithm is
not part of the simulated time since cache eviction time is
negligible in real systems.

Periodical flushing is simulated in the Memory Manager
background thread. As in the Linux kernel, a dirty block in
our model is considered expired if the duration since its entry
time is longer than a predefined expiration time. Periodical
flushing is simulated as an infinite loop in which the Memory
Manager searches for dirty blocks and flushes them to disk
(Algorithm 1). Because periodical flushing is simulated as a

Algorithm 1 Periodical flush simulation in Memory Manager
1: Input
2: in page cache inactive list
3: ac page cache active list
4: t predefined flushing time interval
5: exp predefined expiration time
6: sm storage simulation model
7: while host is on do
8: blocks = expired blocks(exp, in) + expired blocks(exp, ac)
9: flushing time = 0

10: for blk in blocks do
11: blk.dirty = 0
12: flushing time = flushing time + sm.write(blocks)
13: end for
14: if flushing time < t then
15: sleep(t - flushing time)
16: end if
17: end while

background thread, it can happen concurrently with disk I/O
initiated by the main thread. This is taken into account by the
storage model and reflected in simulated I/O time.

B. I/O Controller

Algorithm 2 File chunk read simulation in I/O Controller
1: Input
2: cs chunk size
3: fn file name
4: fs file size (assumed to fit in memory)
5: mm MemoryManager object
6: sm storage simulation model
7: disk read = min(cs, fs - mm.cached(fn)) . To be read from disk
8: cache read = cs - disk read . To be read from cache
9: required mem = cs + disk read

10: mm.flush(required mem - mm.free mem - mm.evictable, fn)
11: mm.evict(required mem - mm.free mem, fn)
12: if disk read > 0 then . Read uncached data
13: sm.read(disk read)
14: mm.add to cache(disk read, fn)
15: end if
16: if cache read > 0 then . Read cached
17: mm.cache read(cache read)
18: end if
19: mm.use anonymous mem(cs)

As mentioned previously, our model reads and writes
file chunks in a round-robin fashion. To read a file chunk,
simulated applications send chunk read requests to the I/O
Controller which processes them using Algorithm 2. First, we
calculate the amount of uncached data that needs to be read
from disk, and the remaining amount is read from cache (line
7-8). The amount of memory required to read the chunk is
calculated, corresponding to a copy of the chunk in anonymous
memory and a copy of the chunk in cache (line 9). If there
is not enough available memory, the Memory Manager is
called to flush dirty data (line 10). If necessary, flushing is
complemented by eviction (line 11). Note that, when called
with negative arguments, functions flush and evict simply
return and do not do anything. Then, if the block requires
uncached data, the memory manager is called to read data
from disk and to add this data to cache (line 14). If cached
data needs to be read, the Memory Manager is called to
simulate a cache read and update the corresponding data
blocks accordingly (line 17). Finally, the memory manager is
called to deallocate the amount of anonymous memory used
by the application (line 19).

Algorithm 3 describes our simulation of chunk writes in
the I/O Controller. Our algorithm initially checks the amount
of dirty data that can be written given the dirty ratio (line
5). If this amount is greater than 0, the Memory Manager is
requested to evict data from cache if necessary (line 7). After
eviction, the amount of data that can be written to page cache
is calculated (line 8), and a cache write is simulated (line 9).
If the dirty threshold is reached and there is still data to write,
the remaining data is written to cache in a loop where we
repeatedly flush and evict from the cache (line 12-18).



Algorithm 3 File chunk write simulation in I/O Controller
1: Input
2: cs chunk size
3: fn file name
4: mm MemoryManager object
5: remain dirty = dirty ratio * mm.avail mem - mm.dirty
6: if remain dirty > 0 then . Write to memory
7: mm.evict(min(cs, remain dirty) - mm.free mem)
8: mem amt = min(cs, mm.free mem)
9: mm.write to cache(fn, mem amt)

10: end if
11: remaining = cs - mem amt
12: while remaining > 0 do . Flush to disk, then write to cache
13: mm.flush(cs - mem amt)
14: mm.evict(cs - mem amt - mm.free mem)
15: to cache = min(remaining, mm.free mem)
16: mm.write to cache(fn, to cache)
17: remaining = remaining - to cache
18: end while

The above model describes page cache in writeback mode.
Our model also includes a write function in writethrough
mode, which simply simulates a disk write with the amount
of data passed in, then evicts cache if needed and adds the
written data to the cache.

C. Implementation

We first created a standalone prototype simulator to evaluate
the accuracy and correctness of our model in a simple scenario
before integrating it in the more complex WRENCH frame-
work. The prototype uses the following basic storage model
for both memory and disk:

tr = D/br

tw = D/bw

where:
• tr is the data read time
• tw is the data write time
• D is the amount of data to read or write
• br is the read bandwidth of the device
• bw is the write bandwidth of the device
This prototype does not simulate bandwidth sharing and

thus does not support concurrency: it is limited to single-
threaded applications running on systems with a single-
core CPU. We used this prototype for a first validation
of our simulation model against a real sequential appli-
cation running on a real system. The Python 3.7 source
code is available at https://github.com/big-data-lab-team/
paper-io-simulation/tree/master/exp/pysim.

We also implemented our model as part of WRENCH,
enhancing its internal implementation and APIs with a page
cache abstraction, and allowing users to activate the feature via
a command-line argument. We used SimGrid’s locking mech-
anism to handle concurrent accesses to page cache LRU lists
by the two Memory Manager threads. For the experiments, we
used WRENCH 1.6 at commit 6718537433, which uses Sim-
Grid 3.25, available at https://framagit.org/simgrid/simgrid.

Our implementation is now part of WRENCH’s master branch
and will be available to users with the upcoming 1.8 release.
WRENCH provides a full SimGrid-based simulation environ-
ment that supports, among other features, concurrent accesses
to storage devices, applications distributed on multiple hosts,
network transfers, and multi-threading.

D. Experiments

Our experiments compared real executions with our Python
prototype, with the original WRENCH simulator, and with
our WRENCH-cache extension. Executions included single-
threaded and multi-threaded applications, accessing data on
local and network file systems. We used two applications: a
synthetic one, created to evaluate the simulation model, and a
real one, representative of neuroimaging data processing.

Experiments were run on a dedicated cluster at Concordia
University, with one login node, 9 compute nodes, and 4
storage nodes connected with a 25 Gbps network. Each
compute node had 2 × 16-core Intel(R) Xeon(R) Gold 6130
CPU @ 2.10GHz, 250 GiB of RAM, 6 × SSDs of 450 GiB
each with the XFS file system, 378 GiB of tmpfs, 126 GiB
of devtmpfs file system, CentOS 8.1 and NFS version 4. We
used the atop and collectl tools to monitor and collect
memory status and disk throughput. We cleared the page cache
before each application run to ensure comparable conditions.

The synthetic application, implemented in C, consisted of
three single-core, sequential tasks where each task read the
file produced by the previous task, incremented every byte of
this file to emulate real processing, and wrote the resulting
data to disk. Files were numbered by ascending access times
(File 1 was the file read by Task 1, etc). The anonymous
memory used by the application was released after each
task, which we also simulated in the Python prototype and
in WRENCH-cache. As our focus was on I/O rather than
compute, we measured application task CPU times on a cluster
node (Table I), and used these durations in our simulations.
For the Python prototype, we injected CPU times directly
in the simulation. For WRENCH and WRENCH-cache, we
determined the corresponding number of flops on a 1 Gflops
CPU and used these values in the simulation. The simulated
platform and application are available at commit ec6b43561b.

We used the synthetic application in three experiments. In
the first one (Exp 1), we ran a single instance of the application
on a single cluster node, with different input file sizes (20 GB,
50 GB, 75 GB, 100 GB), and with all I/Os directed to the same
local disk. In the second experiment (Exp 2), we ran concurrent
instances of the application on a single node, all application

Input size (GB) CPU time (s)

3 4.4
20 28
50 75
75 110
100 155

TABLE I: Synthetic application parameters

https://github.com/big-data-lab-team/paper-io-simulation/tree/master/exp/pysim
https://github.com/big-data-lab-team/paper-io-simulation/tree/master/exp/pysim
https://github.com/wrench-project/wrench/tree/67185374330d2c4bf274fce222c937e838df5b03
https://framagit.org/simgrid/simgrid
https://github.com/wrench-project/wrench/tree/ec6b43561b95977002258c0fe37a4ecad8f1d33f/examples/basic-examples/io-pagecache


Workflow step Input size Output size CPU time
(MB) (MB) (s)

Skull stripping 295 393 137
Tissue classification 197 1376 614
Region extraction 1376 885 76
Cortical reconstruction 393 786 272

TABLE II: Nighres application parameters

instances operating on different files of size 3 GB stored in
the same local disk. We varied the number of concurrent
application instances from 1 to 32 since cluster nodes had 32
CPU cores. In the third experiment (Exp 3), we used the same
configuration as the previous one, albeit reading and writing on
a 50-GiB NFS-mounted partition of a 450-GiB remote disk of
another compute node. As is commonly configured in HPC
environments to avoid data loss, there was no client write
cache and the server cache was configured as writethrough
instead of writeback. NFS client and server read caches were
enabled. Therefore, all the writes happened at disk bandwidth,
but reads could benefit from cache hits.

The real application was a workflow of the Nighres tool-
box [29], implementing cortical reconstruction from brain
images in four steps: skull stripping, tissue classification,
region extraction, and cortical reconstruction. Each step read
files produced by the previous step, and wrote files that were
or were not read by the subsequent step. More information
on this application is available in the Nighres documenta-
tion at https://nighres.readthedocs.io/en/latest/auto examples/
example 02 cortical depth estimation.html. The application
is implemented as a Python script that calls Java image-
processing routines. We used Python 3.6, Java 8, and Nighres
1.3.0. We patched the application to remove lazy data loading
and data compression, which made CPU time difficult to
separate from I/O time, and to capture task CPU times to
inject them in the simulation. The patched code is available at
https://github.com/dohoangdzung/nighres.

We used the real application in the fourth experiment
(Exp 4), run on a single cluster node using a single local disk.
We processed data from participant 0027430 in the dataset
of the Max Planck Institute for Human Cognitive and Brain
Sciences available at http://dx.doi.org/10.15387/fcp indi.corr.

Bandwidths Cluster (real) Python
prototype

WRENCH
simulator

Memory read 6860 4812 4812
write 2764 4812 4812

Local disk read 510 465 465
write 420 465 465

Remote disk read 515 - 445
write 375 - 445

Network 3000 - 3000

TABLE III: Bandwidth benchmarks (MBps) and simulator
configurations. The bandwidths used in the simulations were
the average of the measured read and write bandwidths.
Network accesses were not simulated in the Python prototype.

mpg1, leading to the parameters in Table II.
To parameterize the simulators, we benchmarked the mem-

ory, local disk, remote disk (NFS), and network bandwidths
(Table III). Since SimGrid, and thus WRENCH, currently only
supports symmetrical bandwidths, we use the mean of the read
and write bandwidth values in our experiments.

IV. RESULTS

A. Single-threaded execution (Exp 1)

The page cache simulation model drastically reduced I/O
simulation errors in each application task (Figure 4a). The
first read was not impacted as it only involved uncached
data. Errors were reduced from an average of 345% in the
original WRENCH to 46% in the Python prototype and 39%
in WRENCH-cache. Unsurprisingly, the original WRENCH
simulator significantly overestimated read and write times,
due to the lack of page cache simulation. Results with files
of 50 GB and 75 GB showed similar behaviors and are not
reported for brevity.

WRENCH simulation errors were substantially lower with
100 GB files than with 20 GB files, due to the fact that part
of the 100 GB file needed to be read and written to disk,
the only storage device in WRENCH, as it did not fit in
cache. Conversely, simulation errors of the Python prototype
and WRENCH-cache were higher with 100 GB files than with
20 GB files, due to idiosyncrasies in the kernel flushing and
eviction strategies that could not be easily modeled.

Simulated memory profiles were highly consistent with the
real ones (Figure 4b). With 20 GB files, memory profiles
almost exactly matched the real ones, although dirty data
seemed to be flushing faster in real life than in simulation,
a behavior also observed with 100 GB files. With 100 GB
files, used memory reached total memory during the first
write, triggering dirty data flushing, and droped back to cached
memory when application tasks released anonymous memory.
Simulated cached memory was highly consistent with real
values, except toward the end of Read 3 where it slightly
increased in simulation but not in reality. This occurred due to
the fact that after Write 2, File 3 was only partially cached in
simulation whereas it was entirely cached in the real system. In
all cases, dirty data remained under the dirty ratio as expected.
The Python prototype and WRENCH-cache exhibited nearly
identical memory profiles, which reinforces the confidence in
our implementations.

The content of the simulated memory cache was also highly
consistent with reality (Figure 4c). With 20 GB files, the
simulated cache content exactly matched reality, since all files
fitted in page cache. With 100 GB files, a slight discrepancy
was observed after Write 2, which explains the simulation
error previously mentioned in Read 3. In the real execution
indeed, File 3 was entirely cached after Write 2, whereas in
the simulated execution, only a part of it was cached. This
was due to the fact that the Linux kernel tends to not evict
pages that belong to files being currently written (File 3 in
this case), which we could not easily reproduce in our model.

https://nighres.readthedocs.io/en/latest/auto_examples/example_02_cortical_depth_estimation.html
https://nighres.readthedocs.io/en/latest/auto_examples/example_02_cortical_depth_estimation.html
https://github.com/dohoangdzung/nighres
http://dx.doi.org/10.15387/fcp_indi.corr.mpg1
http://dx.doi.org/10.15387/fcp_indi.corr.mpg1


Read 1 Write 1 Read 2 Write 2 Read 3 Write 3
0

100

200

300

400

500

600

700

er
ro

r (
%

)

20 GB

Read 1 Write 1 Read 2 Write 2 Read 3 Write 3
0

100

200

300

400

500

600

700
100 GB

Python prototype WRENCH WRENCH-cache

(a) Absolute relative simulation errors

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

20 GB

0 200 400 600 800 1000 1200
0

50

100

150

200

250

100 GB

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

0 200 400 600 800 1000 1200
0

50

100

150

200

250

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

0 200 400 600 800 1000 1200
0

50

100

150

200

250

Total memory dirty_ratio Used memory Cache Dirty data Read Compute Write

time (s) time (s)

m
em

or
y 

(G
B)

Real execution
Python prototype

W
RENCH-cache

(b) Memory profiles

Read 1 Write 1 Read 2 Write 2 Read 3 Write 3
0

25

50

75

100

125

150

175

m
em

or
y 

(G
B)

20 GB

Read 1 Write 1 Read 2 Write 2 Read 3 Write 3
0

25

50

75

100

125

150

175
100 GB

Real execution WRENCH-cache file 1 file 2 file 3 file 4

(c) Cache contents after application I/O operations

Fig. 4: Single-threaded results (Exp 1)



0 5 10 15 20 25 30
Concurrent applications

0

200

400

600

800

1000

1200

1400

tim
e 

(s
)

Read time

0 5 10 15 20 25 30
Concurrent applications

0

200

400

600

800

1000

1200

1400

Write time
Real execution mean WRENCH WRENCH-cache Real execution min-max interval (5 repetitions)

Fig. 5: Concurrent results with 3 GB files (Exp 2)

B. Concurrent applications (Exp 2)

The page cache model notably reduced WRENCH’s simula-
tion error for concurrent applications executed with local I/Os
(Figure 5). For reads, WRENCH-cache slightly overestimated
runtime, due to the discrepancy between simulated and real
read bandwidths mentioned before. For writes, WRENCH-
cache retrieved a plateau similar to the one observed in the
real execution, marking the limit beyond which the page cache
was saturated with dirty data and needed flushing.

C. Remote storage (Exp 3)

Page cache simulation importantly reduced simulation error
on NFS storage as well (Figure 7). This manifested only for
reads, as the NFS server used writethrough rather than write-
back cache. Both WRENCH and WRENCH-cache underesti-
mated write times due to the discrepancy between simulated
and real bandwidths mentioned previously. For reads, this
discrepancy only impacted the results beyond 22 applications
since before this threshold, most reads resulted in cache hits.

Read 1 Write 1 Read 2 Write 2 Read 3 Write 3 Read 4 Write 4
0

100

200

300

400

500

600

er
ro

r (
%

)

WRENCH WRENCH-cache

Fig. 6: Real application results (Exp 4)

D. Real application (Exp 4)

Similar to the synthetic application, simulation errors were
substantially reduced by the WRENCH-cache simulator com-
pared to WRENCH (Figure 6). On average, errors were
reduced from 337 % in WRENCH to 47 % in WRENCH-
cache. The first read happened entirely from disk and was
therefore very accurately simulated by both WRENCH and
WRENCH-cache.

E. Simulation time

As is the case for WRENCH, simulation time with
WRENCH-cache scales linearly with the number of concurrent
applications (Figure 8, p <10−24). However, the page cache
model substantially increases simulation time by application,
as can be seen by comparing regression slopes in Figure 8.
Interestingly, WRENCH-cache is faster with NFS I/Os than
with local I/Os, most likely due to the use of writethrough
cache in NFS, which bypasses flushing operations.

V. CONCLUSION

We designed a model of the Linux page cache and imple-
mented it in the SimGrid-based WRENCH simulation frame-
work to simulate the execution of distributed applications.
Evaluation results show that our model improves simulation
accuracy substantially, reducing absolute relative simulation
errors by up to 9× (see results of the single-threaded exper-
iment). The availability of asymmetrical disk bandwidths in
the forthcoming SimGrid release will further improve these
results. Our page cache model is publicly available in the
WRENCH GitHub repository.



0 5 10 15 20 25 30
Concurrent applications

0

200

400

600

800

1000

1200

1400

tim
e 

(s
)

Read time

0 5 10 15 20 25 30
Concurrent applications

0

200

400

600

800

1000

1200

1400

Write time

Real execution mean WRENCH WRENCH-cache Real execution min-max interval (5 repetitions)

Fig. 7: NFS results with 3 GB files (Exp 3)

0 5 10 15 20 25 30
Concurrent applications

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Si
m

ul
at

io
n 

tim
e 

(s
ec

on
ds

)

y=0.01x+0.02

y=0.05x-0.19

y=0.04x-0.13

no_pipeline
no_pipeline
no_pipeline
WRENCH (local)
WRENCH (NFS)
WRENCH-cache (local)
WRENCH-cache (NFS)

Fig. 8: Simulation time comparison. WRENCH-cache scales
linearly with the number of concurrent applications, albeit with
a higher overhead than WRENCH.

Page cache simulation can be instrumental in a number of
studies. For instance, it is now common for HPC clusters to run
applications in Linux control groups (cgroups), where resource
consumption is limited, including memory and therefore page
cache usage. Using our simulator, it would be possible to

study the interaction between memory allocation and I/O
performance, for instance to improve scheduling algorithms
or avoid page cache starvation [30]. Our simulator could also
be leveraged to evaluate solutions that reduce the impact of
network file transfers on distributed applications, such as burst
buffers [31], hierarchical file systems [32], active storage [33],
or specific hardware architectures [34].

Not all I/O behaviors are captured by currently available
simulation models, including the one developed in this work,
which could substantially limit the accuracy of simulations.
Relevant extensions to this work include more accurate de-
scriptions of anonymous memory usage in applications, which
strongly affects I/O times through writeback cache. File access
patterns might also be worth including in the simulation
models, as they directly affect page cache content.

VI. ACKNOWLEDGMENTS

The computing platform used in the experiments was ob-
tained with funding from the Canada Foundation for Inno-
vation. This work was partially supported by NSF contracts
#1923539 and #1923621.

REFERENCES

[1] W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger,
and F. Zini, “OptorSim - A Grid Simulator for Studying Dynamic Data
Replication Strategies,” IJHPCA, vol. 17, no. 4, pp. 403–416, 2003.

[2] R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling
and Simulation of Distributed Resource Management and Scheduling
for Grid Computing,” Concurrency and Computation: Practice and
Experience, vol. 14, no. 13-15, pp. 1175–1220, Dec. 2002.

[3] S. Ostermann, R. Prodan, and T. Fahringer, “Dynamic Cloud Provision-
ing for Scientific Grid Workflows,” in Proc. of the 11th ACM/IEEE Intl.
Conf. on Grid Computing (Grid), 2010, pp. 97–104.



[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning
Algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–
50, Jan. 2011.

[5] A. Núñez, J. Fernández, R. Filgueira, F. Garcı́a, and J. Carretero,
“SIMCAN: A flexible, scalable and expandable simulation platform
for modelling and simulating distributed architectures and applications,”
Simulation Modelling Practice and Theory, vol. 20, no. 1, pp. 12–32,
2012.

[6] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé,
J. Carretero, and I. M. Llorente, “iCanCloud: A flexible and scalable
cloud infrastructure simulator,” Journal of Grid Computing, vol. 10,
no. 1, pp. 185–209, 2012.

[7] S. Lim, B. Sharma, G. Nam, E. Kim, and C. Das, “MDCSim: A multi-
tier data center simulation platform,” in Intl. Conference on Cluster
Computing and Workshops (CLUSTER), 2009.

[8] G. Kecskemeti, “DISSECT-CF: A simulator to foster energy-aware
scheduling in infrastructure clouds,” Simulation Modelling Practice and
Theory, vol. 58, no. 2, 2015.

[9] A. W. Malik, K. Bilal, K. Aziz, D. Kliazovich, N. Ghani, S. U. Khan,
and R. Buyya, “CloudNetSim++: A toolkit for data center simulations
in OMNET++,” in 2014 11th Annual High Capacity Optical Networks
and Emerging/Enabling Technologies (Photonics for Energy), 2014, pp.
104–108.

[10] T. Qayyum, A. W. Malik, M. A. Khan Khattak, O. Khalid, and S. U.
Khan, “FogNetSim++: A Toolkit for Modeling and Simulation of
Distributed Fog Environment,” IEEE Access, vol. 6, pp. 63 570–63 583,
2018.

[11] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Ver-
satile, Scalable, and Accurate Simulation of Distributed Applications
and Platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, Jun. 2014.

[12] C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: A High-Performance,
Low Memory, Modular Time Warp System,” in Proc. of the 14th
ACM/IEEE/SCS Workshop of Parallel on Distributed Simulation, 2000,
pp. 53–60.

[13] H. Casanova, R. Ferreira da Silva, R. Tanaka, S. Pandey, G. Jethwani,
W. Koch, S. Albrecht, J. Oeth, and F. Suter, “Developing accurate and
scalable simulators of production workflow management systems with
WRENCH,” Future Generation Computer Systems, vol. 112, pp. 162–
175, 2020.

[14] J. Xu, K. Ota, and M. Dong, “Saving energy on the edge: In-memory
caching for multi-tier heterogeneous networks,” IEEE Communications
Magazine, vol. 56, no. 5, pp. 102–107, 2018.

[15] R. Love, Linux Kernel Development, 3rd ed. Addison-Wesley Profes-
sional, 2010.

[16] H. M. Owda, M. A. Shah, A. I. Musa, and M. I. Tamimy, “A compar-
ison of page replacement algorithms in Linux memory management,”
memory, vol. 1, p. 2, 2014.

[17] P. Velho, L. Mello Schnorr, H. Casanova, and A. Legrand, “On the
Validity of Flow-level TCP Network Models for Grid and Cloud Sim-
ulations,” ACM Transactions on Modeling and Computer Simulation,
vol. 23, no. 4, 2013.

[18] P. Bedaride, A. Degomme, S. Genaud, A. Legrand, G. Markomanolis,
M. Quinson, M. Stillwell, F. Suter, and B. Videau, “Toward Better
Simulation of MPI Applications on Ethernet/TCP Networks,” in Proc.
of the 4th Intl. Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems, 2013.

[19] P. Velho and A. Legrand, “Accuracy Study and Improvement of Network
Simulation in the SimGrid Framework,” in Proc. of the 2nd Intl. Conf.
on Simulation Tools and Techniques, 2009.

[20] K. Fujiwara and H. Casanova, “Speed and Accuracy of Network Sim-
ulation in the SimGrid Framework,” in Proc. of the 1st Intl. Workshop
on Network Simulation Tools, 2007.

[21] A. Lebre, A. Legrand, F. Suter, and P. Veyre, “Adding storage simulation
capacities to the SimGrid toolkit: Concepts, models, and API,” in
Proceedings of the 15th IEEE/ACM Symposium on Cluster, Cloud and
Grid Computing (CCGrid 2015). Shenzhen, China: IEEE/ACM, May
2015, pp. 251–260.

[22] L. Pouilloux, T. Hirofuchi, and A. Lebre, “SimGrid VM: Virtual
Machine Support for a Simulation Framework of Distributed Systems,”
IEEE transactions on cloud computing, Sep. 2015.

[23] A. Degomme, A. Legrand, G. Markomanolis, M. Quinson, M. Stillwell,
and F. Suter, “Simulating MPI applications: the SMPI approach,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, pp. 2387–
2400, 2017.

[24] A. S. M. Rizvi, T. R. Toha, M. M. R. Lunar, M. A. Adnan, and A. B.
M. A. A. Islam, “Cooling energy integration in SimGrid,” in 2017
International Conference on Networking, Systems and Security (NSysS),
2017, pp. 132–137.

[25] F. C. Heinrich, T. Cornebize, A. Degomme, A. Legrand, A. Carpen-
Amarie, S. Hunold, A. Orgerie, and M. Quinson, “Predicting the
energy-consumption of MPI applications at scale using only a single
node,” in 2017 IEEE International Conference on Cluster Computing
(CLUSTER), 2017, pp. 92–102.

[26] L. Stanisic, E. Agullo, A. Buttari, A. Guermouche, A. Legrand, F. Lopez,
and B. Videau, “Fast and accurate simulation of multithreaded sparse
linear algebra solvers,” in 2015 IEEE 21st International Conference on
Parallel and Distributed Systems (ICPADS), 2015, pp. 481–490.

[27] G. Kecskemeti, S. Ostermann, and R. Prodan, “Fostering Energy-
Awareness in Simulations Behind Scientific Workflow Management
Systems,” in Proc. of the 7th IEEE/ACM Intl. Conf. on Utility and
Cloud Computing, 2014, pp. 29–38.

[28] M. Gorman, Understanding the Linux virtual memory manager. Pren-
tice Hall Upper Saddle River, 2004.

[29] J. M. Huntenburg, C. J. Steele, and P.-L. Bazin, “Nighres: processing
tools for high-resolution neuroimaging,” GigaScience, vol. 7, no. 7, p.
giy082, 2018.

[30] Z. Zhuang, C. Tran, J. Weng, H. Ramachandra, and B. Sridharan,
“Taming memory related performance pitfalls in Linux cgroups,”
in 2017 International Conference on Computing, Networking and
Communications (ICNC). IEEE, 2017, pp. 531–535.

[31] R. Ferreira da Silva, S. Callaghan, T. M. A. Do, G. Papadimitriou, and
E. Deelman, “Measuring the impact of burst buffers on data-intensive
scientific workflows,” Future Generation Computer Systems, vol. 101,
pp. 208–220, 2019.

[32] N. S. Islam, X. Lu, M. Wasi-ur Rahman, D. Shankar, and D. K. Panda,
“Triple-H: A hybrid approach to accelerate HDFS on HPC clusters
with heterogeneous storage architecture,” in 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE,
2015, pp. 101–110.

[33] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisikyilmaz,
P. Kumar, W. Liao, and A. Choudhary, “Enabling active storage on
parallel I/O software stacks,” in 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), 2010, pp. 1–12.

[34] V. Hayot-Sasson, S. T. Brown, and T. Glatard, “Performance benefits
of Intel® Optane™ DC persistent memory for the parallel processing
of large neuroimaging data,” in 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID).
IEEE, 2020, pp. 509–518.


	I Introduction
	II Related Work
	II-A Page cache
	II-B Simulation

	III Methods
	III-A Memory Manager
	III-A1 Page cache LRU lists
	III-A2 Reads and writes
	III-A3 Flushing and eviction

	III-B I/O Controller
	III-C Implementation
	III-D Experiments

	IV Results
	IV-A Single-threaded execution (Exp 1)
	IV-B Concurrent applications (Exp 2)
	IV-C Remote storage (Exp 3)
	IV-D Real application (Exp 4)
	IV-E Simulation time

	V Conclusion
	VI Acknowledgments
	References

