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Summary

Scientific breakthroughs in biomolecular methods and improvements in hardware
technology have shifted from a long-running simulation to a large set of shorter sim-
ulations running simultaneously, called an ensemble. In an ensemble, simulations
are usually coupled with analyses of data produced by the simulations. In situ meth-
ods can be used to analyze large volumes of data generated by scientific simulations
at runtime (i.e., simulations and analyses are performed concurrently). In this work,
we study the execution of ensemble-based simulations paired with in situ analyses
using in-memory staging methods. Using an ensemble of molecular dynamics in situ
workflows with multiple simulations and analyses, we first show that collecting tradi-
tional metrics such as makespan, instructions per cycle, memory usage, or cachemiss
ratio is not sufficient to characterize complex behaviors of ensembles. We propose a
method to evaluate the performance of ensembles of workflows that captures mul-
tiple resource usage aspects: resource efficiency, resource allocation, and resource
provisioning. Experimental results demonstrate that the proposed method can effec-
tively distinguish the performance of different component placements in an ensemble
with up to 32 ensemble members. By evaluating different co-location scenarios, our
proposed performance indicators demonstrate benefits of co-locating simulation and
coupled analyses within a compute node.
KEYWORDS:
Scientific workflow, Ensemble workflow, In situ model, Molecular dynamics, High-performance comput-
ing

1 INTRODUCTION

Many simulations across scientific domains organize their computations into ensembles of workflows, the results of which are
combined and analyzed, often using statistical analysis in order to gain insights and knowledge. Ensembles of workflows are com-
posed of several inter-related workflows. These workflows typically have a similar structure, but they differ in their input data,
number of tasks, and individual task sizes1. Workflow ensembles are used in molecular dynamics (MD) simulations, which com-
pute the atomic states of a molecular system evolving over time by observing microscopic atomic interactions between atoms.
For instance, studying the folding process of complex molecules (i.e., conformational transition) requires running large-scale
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simulations with hundred of thousands of jobs to thoroughly explore feasible solutions in the configuration space. Such simu-
lations require considerable computing time and resources that may grow exponentially with the size of the molecular system.
These simulations are run in a concurrent fashion on high-performance computing (HPC) systems 2. Ensemble-based simu-
lation approaches may lead to more efficient sampling of the solution space. For instance, multiple-walker3 employs multiple
replicas of a molecular system, known as walkers, where each walker simultaneously explores the same free energy landscape
to improve sampling performance. Generalized ensembles4 allow sampling of a broader configuration space by partitioning
simulation states into ensembles with optimal weights to perform a random walk in potential energy spaces.
Traditionally, MD simulations and the data analysis of their outputs (e.g., the molecular trajectories and energies across a sim-

ulation) are loosely coupled, where the analysis starts upon simulation completion. The coupling between the two components is
typically done via the file system. However, because of the growing disparity between storage and computing capabilities in cur-
rent leadership computers5, post-processing of potentially large volumes of simulation data results in I/O bottlenecks6 – writing
data to storage during a simulation results into substantial slowdowns of the simulation itself, which experiences waiting for I/O.
Furthermore, post-processing analysis does not allow runtime steering of the simulation to explore more promising configura-
tions. In situ processing has emerged as an alternative paradigm to overcome such limitations7. Rather than post-processing data
upon simulation completion, in situ methods allow scientists to process data during the runtime of the simulation by leveraging
in-memory staging solutions such as DIMES8, or fast local storage such as burst buffers9 and performing the analysis concur-
rently. MD simulations, like many scientific simulations from diverse scientific domains, exhibit an iterative pattern that can
benefit from the in situ paradigm (i.e., data generation and analysis can occur in concert). In this paper, we propose a solution to
the efficient in situ processing problem in which simulations are coupled with analyses by staging simulation data into memory.
When running ensembles of in situ workflows, simulations and analyses can share the same resources, so that the data flowing

between them can be efficiently communicated. However, resource sharing can lead to contentions and performance degradation
due to interference10. In this paper, we present a method to characterize the execution of the workflow ensemble and to decide
how the workflow components need to be placed within a system in order to optimize the overall workflow ensemble perfor-
mance. To this end, we introduce a set of performance metrics that quantify the benefits of the co-location between components
sharing the same computing allocation. We formalize the behavior of workflow ensembles into a theoretical framework and,
then based on this framework we propose a method to evaluate resource usage, resource allocation, and resource provisioning
for workflow ensembles. In addition to preliminary results from a recently published study11, we validate the applicability of
our proposed method on large-scale workflow ensembles, which have many simulations and in situ analyses coupled together
using a variety of resource settings. Our contributions are as follows:

1. We introduce a set of comprehensive metrics that can characterize the overall workflow ensemble behavior at different
levels of the application (task, workflow, and ensemble).

2. We propose a formal execution model to characterize in situ execution, which is then used to compute the efficiency of
coupled components – this model lays out the foundation for our workflow ensemble performance framework.

3. We introduce novel performance indicators that allow us to assess the expected efficiency of a given configuration of a
workflow ensemble in multiple resource perspectives.

4. We validate our proposed indicators using a realistic MD application executing on a leadership class system and empiri-
cally demonstrate the feasibility of using our methods in: (i) comparing the efficiency of various co-location scenarios with
different resource configurations; and (ii) interpreting the performance of workflow ensembles that have a large number
of simulations and analyses running in situ.

2 Workflow ensemble

In this section, we conduct several experiments using a realistic use case of molecular dynamics ensembles executing on a
large-scale HPC platform. We characterize the behavior of the ensemble use case using traditional metrics and discuss their
limitations. The analysis of the obtained results demonstrates the need for new metrics that can accurately capture performance
behaviors of ensemble-based computations. Based on these results, we develop new metrics that can accurately capture the
ensemble behavior.
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2.1 Definitions
A workflow ensemble is a collection of inter-related ensemble members/workflows executing in parallel. Each ensemble member
may be comprised of multiple ensemble components – a component can be a simulation or an analysis as is the case in our
MD example (Figure 1). Note that even though a workflow ensemble can be comprised of parallel and sequential workflows,
we can always group workflows (ensemble members) running in parallel into a workflow ensemble. We focus on the set of
ensemble members running concurrently and starting their executions at the same time, to mimic how multiple MD simulations
are executed simultaneously in ensemble methods3,4. In this work, we restrict ourselves to a single simulation per ensemble
member. This simulation is coupled with at least one analysis component. We assume that ensemble members do not exchange
information and are independent of each other (i.e., the analysis component of a given ensemble member only requires data
generated by the simulation of that ensemble member12). The type of coupling is defined by the ensemble components. In our
MD application, the simulation periodically writes out the data, which is read synchronously by the analyses. Although the
simulation can compute while the analyses are reading the data, the simulation does not write any new data until the data from
the previous iteration is fully consumed.
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FIGURE 1 Ensemble of in situ workflows.
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FIGURE 2 Overview of the proposed framework.

2.2 Experimental Setup
In situ processing, combined with in-memory computing, has emerged as a solution to overcome I/O bottlenecks in large-scale
systems, because moving data in memory rather than via the file system provides enhanced performance. However, using in situ
processing often implies that the communicating components need to share a node on an HPC system (in case of a distributed
memory architecture). This co-location can also lead to resource contention and thus reduce the benefit of in situ commu-
nications. In the context of workflow ensembles, a large number of components sharing resources may exacerbate resource
contention. To measure the impact of resource contention, we monitor a set of traditional metrics (see Table 1) that are classified
into three levels of granularity: (i) ensemble component, (ii) ensemble member/workflow, and (iii) workflow ensemble.

Metric Description
Ensemble Component

Execution time Time spent in one component (e.g., simulation or analyses)
LLC miss ratio Number of LLC misses / Number of LLC references
Memory intensity Number of LLC misses / Number of instructions
Instructions per cycle Number of instructions / Number of cycles

Ensemble Member
Member makespan Timespan between simulation start time and the latest analysis end time

Workflow Ensemble
Ensemble makespan Maximum makespan among all ensemble members in the workflow

TABLE 1 Set of metrics. (LLC stands for Last-level cache.)
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At the ensemble component level, cache miss ratio and memory intensity13 indicate the degree of resource contention;
instructions per cycle shows the raw performance of the ensemble component. At the ensemble member level, we calculate the
turnaround time (makespan) of each member, by computing the difference between the completion time of the latest analysis
and the simulation start time. The ensemble makespan is defined as the maximum makespan among all ensemble members.
(Recall that all members run concurrently and all simulations start simultaneously.)
Application. In this experiment, an ensemble member is comprised of a MD simulation coupled with analysis kernels using
in situ processing. Specifically, the simulation simulates a medium-scale all-atom system containing the GltPh transporter
protein14. Molecular interactions are implemented with GROMACS15, with standard simulation settings at a time-step of 2
femtoseconds. The simulation periodically sends in-memory generated frames, i.e. atomic positions, to the analyses coupled
with it. In our application, the analysis computes the largest eigenvalue of bipartite matrices16,17 as a collective variable18 of the
frames. This captures molecular motions of the system. The frequency at which data is sent for analysis is determined by the
stride, which represents the number of simulation steps computed before a frame is generated.
Workflow ensemble runtime. For our experiments, we developed a runtime system (Figure 2) that manages the execution of
workflow ensembles on a target HPC platform. This runtime includes two main components: (i) a data transport layer (DTL),
and (ii) a DTL plugin. The former represents a variety of storage tiers, including in-memory8, burst-buffers9, or parallel file
systems. In this paper, we target in-memory DTL. The latter acts as a middle layer between the ensemble components (simula-
tions/analyses) and the underlying DTL and is responsible for data handling. The simulation uses the DTL plugin to write out
data abstracted into a chunk, which is the base data representation managed within the entire runtime. This abstraction allows
the system to be adaptable to a variety of simulations and eases the burden of developing special-purpose code to pair with
diverse simulation types. The chunk also defines a unique data type standard for the analysis kernels, though each of them may
perform different computations. The DTL plugin performs data marshaling to support various DTL implementations. Specifi-
cally, the abstract chunk is serialized to a buffer of bytes, which is easy to manage for most DTL. The DTL plugin interfaces also
hide the complexities of managing different I/O staging protocols in the DTL. To optimize the in situ data processing, coupled
components in an ensemble member are synchronized as they progress concurrently over time. For example, in an ensemble of
simulations, analysis steps can only execute upon completion of the current simulation step.
Experimental platform.Our execution platform is Cori19, a Cray XC40 supercomputer located at the National Energy Research
Scientific Computing Center (NERSC). Each compute node is equipped with two Intel Xeon E5-2698 v3 (16 cores each) sharing
128 GB of DRAM, which are connected through a Cray Aries dragonfly topology. To test the impact of co-locating the analyses
and the simulation, we set the simulation to a predefined stride and choose the settings for the analysis that satisfy two conditions:
(i) a simulation step takes longer than an analysis step so that the analysis does not slow down the simulation; (ii) the idle time
in the analysis (waiting for simulations’ chunks) is minimized, so that we maximize the time that the analyses and simulations
are running at the same time. Section 3.4.1 provides more details about the approach. For our experiments, the two constraints
are satisfied by the following resource allocations: every simulation runs on 16 physical cores of a computing node with a stride
equal to 2, 000 and 30, 000 simulation steps, and each analysis uses 8 physical cores. We leverage DIMES8 to deploy the in-
memory staging area for the DTL. DIMES is an in situ implementation in which data is kept locally in the node memory on
which the simulation is running and distributed over network to nodes upon request. We use TAU20 to collect execution times,
performance counters, and memory footprints. Measurements are averaged over five trials.
Workflow configurations. In this work, we experiment with workflow ensembles instantiated with different configurations (e.g.,
number of ensemble members, component placements) to study co-location behaviors. Table 2 shows the 7 configurations used
in our experiments. These configurations include the number of ensemblemembers, number of computing nodes allocated for the
entire workflow ensemble , and node indexes in the allocation on which each ensemble component is running. Every ensemble
member is comprised of one simulation coupled with one analysis. Cf and Cc are two elementary configurations in which each
configuration has a single ensemble member. Cf describes a co-location-free placement, i.e. the simulation and the analysis are
located on two separate nodes.Cc co-locates the simulation and the analysis on a single compute node. The configurations for two
ensemble members explore several co-location scenarios of ensemble components. In C1.1, the two analyses run on the same
node and each simulation on a dedicated node; in C1.2, both simulations share a node and analyses run on dedicated nodes. In
C1.3, the simulation and the analysis of the first ensemble member share the same node, while the other ensemble member has
the simulation and the analysis running on two different nodes. In C1.4, the two simulations share a node and the two analyses
share another node. Finally, C1.5 represents the setup where each simulation shares a node with its corresponding analysis.
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Config-
uration

Number of
computing
nodes

Number of
ensemble
members

Node indexes
Ensemble member 1 Ensemble member 2

Simulation 1 Analysis 1 Simulation 2 Analysis 2
Cf 2 1 n0 n1 - -
Cc 1 1 n0 n0 - -
C1.1 3 2 n0 n2 n1 n2C1.2 3 2 n0 n1 n0 n2C1.3 3 2 n0 n0 n1 n2C1.4 2 2 n0 n1 n0 n1C1.5 2 2 n0 n0 n1 n1

TABLE 2 Experimental scenarios configuration settings.

2.3 Analyzing workflow ensemble co-location
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FIGURE 3Metrics at ensemble component level.
Figures 3 to 5 show measurements obtained with the set of traditional metrics (Table 1) for the various configuration settings

(Table 2). Higher LLC miss ratios in Figure 3 (compared to co-location-free configuration Cf ) capture the cache misses in Cc ,
and C1.1 to C1.5 due to resource contention from the co-located ensemble components. In our application, analyses are more
memory-intensive than the simulations, thus co-locations of the analyses, i.e. C1.1 and C1.4, result in higher cache misses than
the co-location of the simulations, i.e. C1.2. The co-location of heterogeneous tasks (the simulation and the analysis) lead to
higher miss rates in C1.3 and C1.5 compared to C1.1, C1.2, and C1.4. That said, C1.5 yields the shortest member makespan
among all configurations (Figures 4 and 5). We argue that co-locating coupled components within an ensemble member leads
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to execution efficiency despite the elevated degree of LLC interference. However, only simulation and analyses that exchange
data should be co-located.
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FIGURE 4 Ensemble member makespan.
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FIGURE 5Workflow ensemble makespan.

The overall conclusion is that evaluating each set of metrics exclusively does not guarantee a thorough understanding of the
workflow ensemble performance.Metrics at the component level yield insights into the characteristics of individual components,
but fail to capture the overall workflow ensemble behavior. For example, in our case, analyses are more memory-intensive than
simulations, which leads to increased cache miss ratio or higher memory interference. As a result, resource contention may arise
due to co-located analyses, thereby not only leading to increased execution time of these components, but also increased ensem-
ble member makespan (recall the simulation and analyses execute synchronously). Consequently, the overall workflow ensemble
makespan may be harmed due to slow ensemble members. Therefore, in order to identify stragglers among the members one
would need to diligently inspect and relate the independent measurements to draw conclusions of the workflow ensemble per-
formance. We argue then that there is a need to develop a method that captures the performance within a workflow ensemble at
multiple levels of granularity. To this end, in the next section, we present an efficiency metric that indicates effective computa-
tion during the execution of an ensemble member. We then consolidate measurements collected at the ensemble member level
into an indicator of overall workflow ensemble efficiency.

3 EFFICIENCY MODEL

To assess the performance of the workflow ensembles, we first address the demand of execution characterization at the level of
ensemble members. In this section, we present an in situ execution model for a single ensemble member. Based on this model, we
propose an indicator to estimate the computational efficiency for an ensemble member.We expanded the single simulation/single
analysis model presented in21,22 to include multiple analysis components coupled to a single simulation (Figure 1). We then
leverage this efficiency indicator as one of the prerequisites to synthesize the performance of workflow ensembles in Section 4.

3.1 Application Model
In our model, every simulation step is divided into three fine-grained stages: (i) a simulation stage S, (ii) an idle stage IS ,
and (iii) a writing stageW in order, i.e. S occurs before IS , IS happens beforeW . The simulation performs the computation
during S, waits for the time when data are ready to stage in IS , and then sends data to the analysis duringW . Similarly, every
analysis step is comprised of: (i) a reading stage R, (ii) an analyzing stage A, and (iii) an idle stage IA, executed in that order.
The analysis reads data sent by the simulation in R, performs certain analyses during A, and then waits until the next chunk of
data is available for processing during IA. These fine-grained stages can be organized into three sub-groups: (i) computational
stages (S,A), (ii) I/O stages (W ,R), and (iii) idle stages (IS , IA).
The synchronous communication pattern discussed in Section 2 enforces the coordination among I/O stages such thatWi of

step i occurs before Ri, and Ri happens before Wi+1 of the next iteration (Figure 6) so that the simulation does not overwrite
data, which have not been read yet (i.e., we assume no buffering of the simulation output, in conformity with21). Thanks to
the iterative relationship between simulations and analyses, their executions, after a few warm-up steps, reach a steady-state
where each stage has a similar execution time as measure over many steps. As a result, rather than considering a particular step
i for a given stage (e.g., Wi), we use a star symbol to denote steady-state stages. Then, S∗, IS∗ ,W∗, R∗, A∗, and IA∗ denote the
steady-state stages of S, IS ,W ,R,A, and IA respectively.



Do ET AL. 7

5�5� $�

:�

LQ�VLWX�VWHS

LQ�VLWX�VWHS

6�:� 6�

5�

:�

$� 5�

6�

$�

6� :� 6�

5� $�

:�

5� $� 5� $� 5� $� 5� $� 5� $�

QRQ�RYHUODSSHG

,GOH�6LPXODWLRQ ,GOH�$QDO\]HU ,GOH�VWDJHV ,�2�VWDJHV &RPSXWDWLRQ�VWDJHV

6LPXODWLRQ

$QDO\VLV��

$QDO\VLV��

,6

,$
$�

6� :�

$�5�

6�

FIGURE 6 Fine-grained execution steps for one ensemble member.
3.2 In Situ Step
A given ensemble member is composed of a single simulation Sim coupled with K analyses Ana1, Ana2,… , AnaK . An in situ
step is defined as the duration between the beginning of the stage S in the simulation and the end of the stage IA that finishes
last among theK analyses. We characterize the execution of a coupled simulation-analysis into two scenarios (Figure 6): (i) Idle
Simulation – a given analysis step runs longer than the corresponding simulation step; (ii) Idle Analyzer – a given analysis step
runs faster than the associated simulation step. In Idle Simulation, the simulation step waits for the completion of the analysis
step. In contrast, in Idle Analyzer the analysis step waits for data available from the corresponding simulation step. For example,
in Figure 6, the coupling of the simulation and the analysis 1 falls into the Idle Simulation scenario, while the simulation and
the analysis 2 are paired under the Idle Analyzer scenario.
An ensemble member with one simulation and K analyses has K different couplings {(Sim,Ana1),… , (Sim,AnaK )} short-

ened in this work as (Sim,Anai) with 1 ≤ i ≤ K . (Each of these couplings can be categorized as either Idle Simulation or Idle
Analyzer scenarios.) Note that multiple in situ steps may overlap due to concurrent executions. Thus, computing the makespan
of an ensemble member should also account for this behavior – by simply expressing the makespan as the aggregation of in situ
steps execution times, its value is likely to be overestimated. As a result, we define an “actual" in situ step as the non-overlapped
segment �∗ (Figure 6).
Intuitively, the non-overlapped segment �∗ of a given in situ step is the section between two consecutive simulation stages S

(recall an in situ step starts with the stage S). There are two possible scenarios: (i) the simulation and the write stage run longer
(Idle Analyzer scenario), then the non-overlapped segment is equals to S∗ +W∗; or (ii) one of the K analysis, Anai, has the
longest execution time (Idle Simulation scenario) then, the non-overlapped step is equals to Ri∗ + Ai∗. Hence,

�∗ = max(S∗ +W∗, R
1
∗ + A

1
∗,… , RK∗ + AK∗ ). (1)

Given the non-overlapped segment of in situ steps, we compute the execution time of one ensemble member (also known as
the makespan) as MAKESPAN = nsteps × �∗ , where nsteps is the total number of in situ steps. As MAKESPAN is first-order
approximation, we can omit the remaining portion of the last in situ step. This approximation holds when nsteps is large enough21.

3.3 Computational Efficiency
To characterize the execution of an ensemble member, in this section, we propose an indicator to capture the efficiency of the
execution of an ensemble member from a computational standpoint, where we want to minimize the idle time while increasing
resource usage. To compute the idle time per in situ step, we use Equation (1) to derive the duration of the idle stage on the
simulation component: IS∗ = �∗ − (S∗ +W∗) and, the duration of the idle stage for the analysis i as IAi∗ = �∗ − (Ai∗ + Ri∗).For each coupling (Sim,Anai), the portion of effective computation, i.e. not sitting idle, of an actual in situ step is defined
as �∗ − (IS∗ + IAi∗ ). Since the computational efficiency of an ensemble member depends on the amount of time the ensemble
components are idle, we compute a computational efficiency E as the average time of effective computation over the actual
in situ step of K couplings in the ensemble member:

E = 1
K

K
∑

i=1

(

1 −
IS∗ + IAi∗

�∗

)

=
S∗ +W∗

�∗
+

∑K
i=1(A

i
∗ + R

i
∗)

K �∗
− 1. (2)
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This indicator is derived from �∗, hence maximizing E implies minimizing the idle time and thereby the makespan.

3.4 Discussion
3.4.1 Choice of Settings
In this section, we use our efficiency model to substantiate the choice of settings (i.e., number of cores) used to run the exper-
iments shown in Section 2.2. Recall that for that set of experiments, we consider one MD simulation coupled with one in situ
analysis. The parameter space is intractable as we can vary the number of cores per component, their respective placements,
and the stride of the simulation. Thus, an exhaustive search is out of reach. However, we can define a heuristic that seeks for
parameters that minimize the makespan and maximize the computational efficiency of an ensemble member. In this context, we
make the following assumptions:

• The simulation settings are considered as an input of the problem and are provided by the user. In most cases, scientists
have a rough estimate of the best settings for their simulations, but not for the analyses.

• Although our theoretical framework supports coupling to different types of analyses simultaneously, we limit our
experiments to only identical analyses.

We first consider the scenario without co-location, and we argue that settings provisioned to the simulation and the analysis
within that context act as a baseline when contrasting to scenarios with co-location. In this experiment, to ensure that there is
no co-location, we consider a simple coupling of a single MD simulation coupled with one analysis executed on one dedicated
compute node. Based on our first assumption, we arbitrarily set the settings of the simulation as follows: 8 cores and a stride
of 2000. We then vary the number of cores allocated to the analysis to determine for which number of cores the makespan is
minimized and the computational efficiencyE is maximized in that configuration (recall that our execution platform has compute
nodes embedding 32 cores).
We know that minimizing the makespan is equivalent to minimizing �∗ (see Section 3.2). Thus, given an ensemble member

with a certain simulation and a predefined configuration coupled with in situ analyses, in order to minimize the makespan, we
need to assign a number of cores to the analysis such that: Ri∗ +Ai∗ ≤ S∗ +W∗ ,∀i ∈ {1, 2,… , K}. This inequality implies that
each of the K coupling (Sim,Anai) falls into the Idle Analyzer scenario so that the analysis steps are hidden by the simulation
steps to not slow down the makespan. Figure 7 shows the impact, when the number of cores assigned to the analysis ranges
from 1 to 32, on the in situ step �∗, the simulation component S∗+W∗, the analysis component R∗+A∗, and the computational
efficiency E. The analysis step when using 1 and 2 cores takes longer than the simulation step, i.e. R∗ + A∗ > S∗ +W∗, thus
�∗ = R∗ + A∗. The inequality is satisfied once the analysis uses between 4 and 32 cores, which minimizes �∗ = S∗ + W∗,
thereby minimizing the member makespan. Among executions whose makespan are minimized, we optimize the computation
efficiency by selecting the configuration that leads to max(E). Hence, we decide to assign 4 cores to each analysis, which results
in the highest computational efficiency, i.e. the smallest amount of idle time.
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FIGURE 7 Execution time of the in situ step and computational efficiency when varying the number of cores assigned to the
analysis with a fixed simulation setting.
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3.4.2 Impact of Co-location
In this section, we estimate the impact of co-locating ensemble components within a workflow ensemble by conducting exe-
cutions of workflow ensembles with two members on three configurations described in Table 3 (each configuration uses two
compute nodes). Ccolocated co-locates the simulation and the analyses of an ensemble member on the same compute node.
Cdedicated co-locates two simulations on the same node while all the analyses are co-located on the second dedicated node.
Finally, in Cℎybrid the analyses are placed on the node on which the simulation of the other ensemble member is running. A
compute node has 32 cores and, for all configurations, every simulation is assigned 8 cores and every analysis 4 cores. Recall
from Section 3.4.1 this setting minimizes idle time when there is no co-location between simulation and analyses for ensembles
with one simulation coupled with one analysis. In this experiment, we increase the number of analyses per ensemble member
to observe the impact of co-location among ensemble components.

Configuration
Number of
computing
nodes (N)

Number of
ensemble
members

Node indexes
Ensemble member 1 Ensemble member 2

Simulation 1 Analyses 1.x Simulation 2 Analyses 2.x
Ccolocated 2 2 n0 n0,… , n0 n1 n1,… , n1
Cdedicated 2 2 n0 n1,… , n1 n0 n1,… , n1
Cℎybrid 2 2 n0 n1,… , n1 n1 n0,… , n0

TABLE 3 Experimental configurations with two ensemble members, each ensemble member has two analyses per simulation.

Figure 8 shows the computational efficiency corresponding to the three configurations when the number of analyses per
ensemble member ranges from 1 to 4, each data point is the result of 5 trials. Overall, we observe higher efficiencies in Ccolocated
and Cℎybrid than Cdedicated at small number of analyses per ensemble member (1 and 2). Several studies have demonstrated
the benefits of co-locating compute-intensive with memory-intensive applications23,24. Our findings confirm the benefits of
co-locating heterogeneous applications, i.e. compute-intensive simulation and memory-intensive analyses, that triggers less
resource contention (recall from Section 2.3, the analysis is memory-intensive while the simulation is compute-intensive).
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FIGURE 8 Computational efficiency when varying the number of analyses per ensemble member. Note that the missing values
in the Cdedicated configuration when running with 4 analyses per ensemble member is due to out of memory errors on the node.

Executions with 3 analyses per ensemble member result on unexpectedly high efficiency values for Cdedicated , which is due to
the dramatically slowing down of the analyses once co-locating with large enough number of memory-intensive analyses (6 anal-
yses in total for 2 ensemble members) on a single node. This increase in efficiency for Cdedicated indicates a small amount of time
sitting idle during the execution, however, when compared to the other two configurations, it also implies fewer idle resources
remaining to accommodate more analyses. The good efficiency demonstrated by Cdedicated when running with 3 analyses is due
to co-locating three memory-intensive applications together, which leads to performance degradation due to competitions for
the shared resources, thus the analysis side is slowing down and getting closer to the simulation execution time, hence leading
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to an overall smaller idle time and efficiency, that can be seen as a “negative improvement". Inappropriate co-location strate-
gies can lead to poor performance of in situ workflow ensembles, but, even more dramatic, looking at efficiency solely can lead
to poor choices of placement strategies. These findings require broader considerations, beside computational efficiency, when
designing workflow ensemble placement strategies to avoid such negative improvements which are misleading.
Computational efficiency is not sufficient without considering the resource specification of a given configuration that reflects

how efficiently the underlying resources are utilized. Without considering resource aspects, i.e., number of cores assigned to
each ensemble components, total number of nodes, or the placement of ensemble components, the executions of two work-
flow ensembles are not comparable. As demonstrated in Figure 8, different ensemble members exhibit different computational
efficiencies, thus synthesizing the overall performance of workflow ensembles with many ensemble members requires sum-
marizing a large number of efficiency values, which is not straightforward. We acknowledge these limitations and, in the next
section, we introduce the concept of performance indicators that aims to address these limitations.

4 PERFORMANCE INDICATORS

Traditionally, scientists running on HPC machines want to optimize applications performance while using as few resources as
possible.When considering multiple concurrent components like workflow ensembles, defining the notion of resource usage and
its perimeter is already challenging (e.g., each ensemble member can use different numbers of cores, ensemble components can
have various mapping onto allocated resources). In addition, since ensemble members are executed simultaneously, one needs
to consider their local resource usages and performance but also define a method to aggregate local knowledge into a coherent
global analysis. As detailed in Section 3.4.2, efficiency by itself is not sufficient to describe such complex concurrent executions
and does not consider the underlying resource usage.

4.1 Framework Definition
In this section, we define a framework, denoted as performance indicators, that provides us with a method to aggregate resource
usage of different members within a workflow ensemble.We augment the notion of efficiency previously described with resource
context under the form of a multi-stage framework that aims to capture the efficiency of every ensemble member under multiple
resource constraints. Each stage of the framework adds a layer of information to the performance indicator that characterizes a
certain resource feature, such as number of resources used and resource mapping.
More formally, given a workflow ensemble with 1 ≤ i ≤ N ensemble members {EM1,… , EMN}, let Ei be the computa-

tional efficiency of EMi (as defined in Equation (2)). We first define Ri, a given resource constraint affecting member EMi, for
example we could define Ri as the number of cores allocated to EMi. Then, we can formulate the problem of optimizing the
global efficiency of a workflow ensemble under possibly several resource constraints Ri as follows:

maximize Ei ,∀i = 1,… , N
subject to minimize/maximize Ri.

(3)
The idea is to maximize efficiency of all ensemble members but under multiple predefined constraints. These constraints can be
arbitrarily chosen by users (e.g., number of cores, network links capacity). For convenience, the efficiency Ei of each ensemble
member EMi and the constraint Ri are combined and rewritten as a performance indicator Pi, which can be seen as a function
of Ei. More precisely, Pi = Ei×Ri if the constraint is to maximizeRi, otherwise Pi = Ei∕Ri if the constraint is to minimizeRi.
For example, let ci be the number of cores allocated toEMi to be minimized, then to design a performance indicator considering
the number of cores, we would define Ri = ci and Pi = Ei∕ci (recall we maximize efficiency while minimizing the resource
indicator, so we have to divide in that situation). With these performance indicators, Equation (3) can be simply rewritten as:

maximize Pi ,∀i = 1,… , N. (4)
Now that we have a framework to evaluate executions of workflow ensembles, we need a method to aggregate information from
each performance indicator into one coherent measure. To synthesize the performance of a workflow ensemble with potentially
many members, we propose a method that accumulates performance indicators Pi of every ensemble member using an objective
function F (defined in Section 4.6). Therefore, the problem stated in Equation (4) can be transformed into its final form:

maximize F (P1,… , PN ). (5)
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The goal of this whole process is to provide a methodology to assess the impact of each layer of resource information Ri and
obtain an overall indicator that can characterize the performance of the entire workflow ensemble. We discuss the procedure
for calculating performance indicators and generating the objective function to aggregate them in the following sections. First,
we define a set of notations (Table 4) used to define the indicators. Then, we present three resource indicators RU, RA, RP
corresponding, respectively, to resource usage (U), resource allocation (A), and resource provisioning (P).

4.2 Notations
The ensemble memberEMi contains a simulation Simi coupled withKi analyses,Ana1i ,… , AnaKi

i , thusEMi hasKi couplings
(Simi, Ana

j
i ), where j ∈ {1,… , Ki}. Let csi be the number of cores used bySimi, these cores belong to nodes whose indexes are

listed in set si. Similarly, the analysis Anaji uses caji cores of nodes whose indexes are defined in set aji . For example, in Table 2,
C1.1 has s1 = {0}, a11 = {2}, s2 = {1}, a12 = {2}. Let ci denote the total number of cores assigned to all ensemble components,
i.e. simulation Simi and Ki analyses Anaji , in a given ensemble member EMi. We have ci = csi +

∑Ki
j=1 ca

j
i . Let di be the

number of computing nodes allocated to the ensemble member EMi. Then, the number of compute nodes di allocated to the
ensemble member EMi is calculated by di = |

|

|

si ∪
⋃Ki
j=1 a

j
i
|

|

|

. If the simulation and some analyses share compute nodes, we have
di ≤ |si|+

∑Ki
j=1 |a

j
i |. (Note that this inequality becomes an equality if each component runs on dedicated nodes.) LetM be the

total number of computing nodes used by the entire workflow ofN ensemble members. Similarly, we haveM ≤
∑N
i=1 di. In theabsence of resource sharing (i.e, each ensemble member runs on dedicated nodes), we haveM =

∑N
i=1 di.

Notation Description
Workflow Ensemble

N Number of ensemble members
M Number of compute nodes used by the workflow ensemble

Ensemble Member
EMi Ensemble member i
Ri Resource constraint affecting EMi
Pi Performance indicator of EMi
Ki Number of couplings in EMi
ci Total number of cores used by components of EMi
di Number of nodes allocated to EMiEnsemble Component
Simi Simulation of EMi (one simulation per member)
Anaji Analysis j of EMi (Ki analysis for each EMi)
csi Number of cores used by Simi of EMi
caji Number of cores used by Anaji from EMi
si Set of node indexes on which Simi from EMi is executed
aji Set of node indexes on which Anaji from EMi is executed

TABLE 4 Notations.

4.3 Member Resource Usage (U)
The first performance indicator PU

i considers underlying computing units, i.e. cores, to model the efficiency of an ensemble
member in terms of resource usage. Our goal is to build an indicator that can compare different executions of workflow ensem-
bles using different numbers of resources (e.g., number of cores). Precisely, PU

i maximizes computational efficiency Ei of an
ensemble member EMi such that the total number of cores ci used by EMi is minimized. We then define the resource usage
indicator RU

i = ci. To minimize RU
i , PU

i is computed as follows:
PU
i =

Ei
RU
i

=
Ei
ci

(6)

PU
i represents the smallest unit of efficiency in terms of single core usage. Recall that maximizingEi is equivalent to minimizing

the idle time and the makespan (Section 3.3). High values of PU
i indicate that a large portion of the execution on assigned

resources is spent on computing (in contrast to idling), thus the ensemble member makespan is reduced.
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4.4 Member Resource Allocation (A)
Since an ensemble member can have concurrent execution of multiple components, the component can be co-located on the same
node or distributed across nodes. Finding an optimal placement among the numerous placement configurations is challenging.
Therefore, we propose the second stage PA

i to quantify the level of data locality of a certain placement.
Lets consider the coupling (Simi, Ana

j
i ) part of the ensemble member EMi, then Simi is co-located with Anaji if and only

if |si| = |si ∪ a
j
i |. Otherwise, if |si| < |si ∪ a

j
i |, then they are assigned to different nodes. Based on this observation, we define

a placement indicator obtained from the ratio 0 < |si|
|si∪a

j
i |
≤ 1 to represent a placement of a workflow ensemble. Let CPi be the

placement indicator for the ensemble member EMi:

CPi =
1
Ki

(
|si|

|si ∪ a1i |
+⋯ +

|si|

|si ∪ a
Ki
i |

) =
|si|
Ki

Ki
∑

j=1

1
|si ∪ a

j
i |
. (7)

Intuitively, CPi describes the placement of EMi. It decreases with the number of computing nodes used for a given coupling.
CPi = 1 indicates that the EMi components are all co-located, and a CPi value near 0 indicates that more dedicated resources
are used and that the components of EMi are distributed across them. Maximizing the placement indicator for each ensemble
member results in prioritizing placements that minimize the number of computing resources used by that ensemble member. As
a result, the placement indicator not only reflects placement characteristics but also the number of resources used at the ensemble
member level.
To evaluate the efficiency of a placement (i.e., a mapping between ensemble members and available resources), we include

the proposed placement indicator as the resource indicator RA in the next stage of the performance indicator. Specifically, we
multiply the first stage of our performance indicator by RA

i = CPi as follows:

PA
i = Ei × RA

i = Ei × CPi = Ei
|si|
Ki

Ki
∑

j=1

1
|si ∪ a

j
i |
. (8)

Based to the insight derived from the placement indicator, maximizing the performance indicator at this stage favors the resource
configuration that occupies a small number of compute nodes while maximizing the effectiveness of the execution.

4.5 Ensemble Resource Provisioning (P)
Finally, by just considering the execution features at the ensemble member level might not be sufficient to capture the overall
performance of the entire workflow ensemble. To that end, we extend the performance indicator with the number of resources
provisioned for the entire workflow ensemble, i.e. the number of computing nodes the workflow ensemble resides on. When
comparing two executions using different number of computing nodes, the run using the smaller number of nodes should yield
better efficiency in two settings with the same performance. Therefore, to obtain the last stage P P

i , we weigh the efficiency
indicator by RP

i =M , whereM is the total number of compute nodes, so that the number of compute nodes provisioned for the
entire workflow ensemble is minimized while P P

i is maximized:
P P
i =

Ei
RP
i

=
Ei
M
. (9)

Finally, depending on the resource aspects of interest, the performance indicator Pi can either represent a single-stage indicator
PU
i , P

A
i , P

P
i , or a multi-stage indicator PU,A

i , PU,P
i , PA,P

i , PU,A,P
i . For example, PU,A,P

i = Ei×RA
i

RU
i ×R

P
i
.

4.6 Objective Function
In this section, we propose a method for aggregating indicator values from individual ensemble members into a global indicator
at the workflow ensemble level. In order to compute a global indicator, we synthesize performance indicators of every ensemble
member. A simple approach could consider the average values for all Pi. However, the large variation between these values
may lead to an inaccurate assessment of the overall performance. To minimize the variability in performance among ensemble
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members, we consider the mean performance P from which we subtract the standard deviation:

F (Pi) = P −

√

√

√

√
1
N

N
∑

i=1
(Pi − P )2 where P = 1

N

N
∑

i=1
Pi. (10)

The intuition behind Equation (10) is to favor workflow ensemble’s configurations with good makespan, i.e. configurations
with low variability between workflow ensemble members (recall that the makespan of a workflow ensemble is defined as the
maximum completion time among its members). The goal of an efficient configuration, as defined in this work, is to maximize
the objective function F . The higher the value of the objective function, the better the performance of the entire workflow
regarding efficiency, makespan, resource usage, and component placement.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the ability of the proposed performance indicators to characterize the execution performance of
workflow ensembles. We extend our previous experimental configuration settings (Section 2.2) with scenarios in which multiple
analyses are coupled with the simulation.

5.1 Configuration Exploration

Configuration
Number of
computing
nodes (N)

Number of
ensemble
members

Node indexes
Ensemble member 1 Ensemble member 2

Simulation 1 Analysis 1.1 Analysis 1.2 Simulation 2 Analysis 2.1 Analysis 2.2
C2.1 3 2 n0 n2 n2 n1 n2 n2C2.2 3 2 n0 n1 n1 n0 n2 n2C2.3 3 2 n0 n1 n2 n0 n1 n2C2.4 3 2 n0 n0 n2 n1 n1 n2C2.5 3 2 n0 n1 n2 n1 n0 n2C2.6 2 2 n0 n1 n1 n0 n1 n1C2.7 2 2 n0 n0 n1 n1 n0 n1C2.8 2 2 n0 n0 n0 n1 n1 n1

TABLE 5 Experimental configurations with two ensemble members, each ensemble member has two analyses per simulation.

Workflow ensemble configurations. In this work, we apply our multi-stage performance indicators to two sets of configurations,
each of these sets specifies the number of ensemble members and the node assignment for each ensemble component. In this
paper, we consider only workflow ensembles comprised of 2 ensemble members. The first set of configurations includes C1.1
to C1.5 (Table 2). For every configuration in this set, each ensemble member is a single coupling of a simulation and an in situ
analysis. The second set consists of configurations ranging from C2.1 to C2.8 (Table 5). For configurations in this set, the
simulation of each ensemble member is coupled with two analyses. For each configuration in both sets, every simulation runs on
16 cores while every analysis is assigned 8 cores, which is identified by following the similar procedure described in Section 3.4.1
to minimize idle time occurred in the coupling between them.With this setting, configurations of the second set leverage all cores
of each compute node, thus saturating the computing resources (recall that each compute node has 32 cores). Since we propose a
multi-stage method for evaluating the performance of an ensemble member as well as the entire workflow ensemble, we examine
the impact and the order of each stage on the quality of the performance indicator Pi by accumulating in the objective function
F (Pi) as the performance of the entire workflow ensemble. To this end, we explore two feasible paths that can be followed to
concatenate performance indicator stages: (1) PU

i → PU,P
i → PU,P,A

i ; or (2) PU
i → PU,A

i → PU,A,P
i . For path (1), PU,P

i = PU
i ∕M ,

whereM is the total number of nodes used by the workflow ensemble (see Table 4) and PU,P,A
i = PU,P

i ×CPi, where CPi is the
placement indicator defined in Section 4.4. Note that PU,P,A

i = PU,A,P
i . Specifically, we observe changes in F (Pi) when adding

a new stage (i.e., resource usage U, resource provisioning P, resource allocation A) to the performance indicator Pi, which can
be either PU

i , P
U,P
i , PU,A

i , PU,P,A
i , or PU,A,P

i .
Results. Figure 9 demonstrates the results of the objective performance function at each of the multiple stages of Pi over different
configurations in the first set. After the initial stage of PU

i ( Figure 9 left), a new layer is added, either P in the middle top figure
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FIGURE 9 F (Pi) on different Pi orders over configurations which have one analysis per simulation (the higher the better).
or A on the middle bottom to form the next stage. On the contrary, PU,A

i , PU,P
i is not able to differentiate the performance of

C1.4 from C1.5 as these two configurations both use 2 compute nodes. Recall that in C1.4 the two simulations share a node
while the two analyses share another node. As shown in Figures 3 and 4, C1.4 does not lead to small member makespan due
to the contention of co-location between two analyses. In PU,A,P

i , the performance of C1.4 is degraded to lower than C1.5, but
higher than C1.1, C1.2, and C1.3. Finally, our performance indicator confirms that C1.5 is the best choice, as demonstrated
by traditional metrics in Figures 4 and 5 that C1.5 has the smallest makespan. C1.5 outperforms other configurations, which
also validates the common intuition associated with in situ processing that simulations and analyses must be co-located when
possible. Since the in-memory staging mechanism in this work is implemented by DIMES8 (data resides on the memory of
the simulation node), co-locating the analysis with the simulation can benefit from data locality – the time for staging data is
significantly shortened.
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FIGURE 10 F (Pi) on different Pi orders over configurations which have two analyses per simulation (the higher the better).
By opposition to the first set of configurations, for the second set, we do not show the results of traditional metrics (described

in Table 1) due to the lack of space. However, experimental results of these metrics when using the second set of configurations
are not as straightforward as the first on inferring from the metrics monitored which configuration is the best. The increased
number of analyses involved in an ensemble member complicates the performance evaluation using traditional metrics. Utilizing
the whole cores of compute nodes in several configurations, e.g. C2.6, C2.7, C2.8, likely saturates the resources, which makes it
difficulty to compare them with other configurations where compute nodes are not entirely occupied by ensemble components.
This scenario motivates the need for a performance indicator able to elect the best potential configuration in terms of efficiency
of the workflow ensemble. Figure 10 shows the values taken by the objective function when instantiated with different config-
urations in the second set. In this case, PU,P

i separates the set of configurations in two groups defined by the number of compute
nodes used by the workflow ensemble (C2.6, C2.7 and C2.8 uses 2 nodes when the other configurations use 3 nodes). Then,
PU,P,A
i keeps this distinction but in addition indicates that configuration C2.8 should return better performance than the others.

On the other hand, when adding layer A, we first isolate C2.8 from the other configurations, and further differentiate C2.6, C2.7
from C2.1, C2.2, C2.4 at the last stage. Note that, similarly to conclusions reached in the previous setup, the chosen configura-
tion C2.8 is also the optimal configuration in terms of co-location (i.e, simulation is collocated with its analyses) which again
confirms the benefits of co-locating coupled components of an ensemble member.

5.2 Increased Number of Ensemble Members

Workflow ensemble configurations. In this section, we refine the three configurations described in Table 3 to scale up the number
of ensemble members. Our goal is to increase the load on compute nodes’ resources and increase network communications.
We pile up 4 ensemble members on 2 nodes and explore different component placements (see Table 6). Specifically, Ccolocated
co-locates ensemble components of every two ensemble members on the same node to guarantee data locality among ensemble



Do ET AL. 15

Configuration
Node indexes

Ensemble member 1 Ensemble member 2 Ensemble member 3 Ensemble member 4
Simulation 1 Analysis 1.1 Simulation 2 Analysis 2.1 Simulation 3 Analysis 3.1 Simulation 4 Analysis 4.1

Ccolocated n0 n0 n0 n0 n1 n1 n1 n1
Cdedicated n0 n1 n0 n1 n0 n1 n0 n1
Cℎybrid n0 n1 n0 n1 n1 n0 n1 n0

TABLE 6 Experimental configurations for the first 4 ensemble members allocated on 2 compute nodes, each ensemble member
has one simulation and one analysis. To increase the number of ensemble members, these settings can be replicated with a higher
number of nodes (e.g., 8 ensemble members on 4 compute nodes, 16 ensemble members on 8 compute nodes).

components of an ensemble member. On the other hand, Cdedicated co-locates simulations of every four ensemble members on
a single node while the corresponding analyses are placed on another dedicated node. With Cℎybrid configuration, ensemble
components from a two-ensemble member pair are interchangeably placed together, i.e. the analyses of the other two ensemble
members are co-located with the simulations of another two ensemblemembers. To accommodate sufficient cores for 4 ensemble
members on 2 compute nodes, we couple a simulation with one analysis per ensemble member, in which the simulation used 8
cores and the analysis 4 cores. To increase the number of ensemble members per workflow ensemble, we replicate the placement
described for 4 ensemble members. In this experiment, the number of ensemble members varies between 4 and 32.
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FIGURE 11 F (Pi) on different Pi orders over configurations which have one analysis per simulation (the higher the better).
Each configuration is measured over 5 trials.

Results. Figure 11 shows the values of the objective function for each performance indicator PU
i , P

U,A
i , PU,A,P

i . With Pi =
PU
i , since the number of cores used by every ensemble member is identical among configurations, PU

i indirectly reflects the
computational efficiency of each configuration. Recall from Section 3.4.2 that the computational efficiency of Ccolocated and
Cℎybrid are approximately comparable once there is only one simulation and one analysis co-located on a single node. We note
that Ccolocated surpasses Cℎybrid when a greater number of ensemble components competes for a certain amount of resources.
This observation highlights the significance of data locality for allocating ensemble components of a workflow ensemble on
shared resources. Overall,Cdedicated exhibits the lowest value of the objective function in most cases, which indicates an example
of poor placement. We also notice a decline of Ccolocated at high numbers of ensemble members which closes the gap from
the other two configurations. This may be due to the congestion of a high number of data requests to the staging server (recall
from Section 2.2, the in-memory staging area is implemented by DIMES) as there are numerous concurrent ensemble members
communicating data to each other at the same time. We leave the investigation of this behavior for future work. PU,A

i assists to
distinct Ccolocated from Cdedicated and Cℎybrid as it favors configurations with higher level of data locality. Finally, PU,A,P

i groups
executions by the number of compute nodes utilized, so that the performance evaluation considers the resource cost defining
by node count. The remark is consistent as Ccolocated still offers the highest objective value among configurations for a given
number of ensemble members.
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6 RELATEDWORK

Modern scientific workflows commonly feature multiple coupled components, which need to be monitored at the same time to
understand the global performance of the workflow. Recent monitoring systems for scientific workflows use system-level infor-
mation to extract insights into the execution of the workflows. LDMS25 developed distributed profiling services to periodically
sample resource utilization metrics of compute nodes running the workflow. SOS26 leverages conventional HPC monitoring
tools to build an online performance profile that can be run alongside the workflow execution to analyze workflow behav-
iors. However, traditional performance tools are not designed for modern workflows featuring in situ processing. They collect
potentially unnecessary data and may incur significant overhead during profiling.
Several works have addressed monitoring overhead by introducing their particular methods to evaluate a subset of desired

features of the workflows. Taufer et al.27 leveraged domain-specific metrics such as lost frames to characterize in situ analytic
tasks using various job mappings. Zacarias et al.28 estimated the performance degradation arising from co-located applications
using a machine learning model. SeeSAw29 maximized the performance of in situ analysis under power constraints using energy
management approaches. WOWMON30 implemented a runtime that provides a monitoring scheme for scientific workflows
composed of in situ tasks by collecting a set of proposed metrics, and a machine learning-based performance diagnosis to
validate if the collected metrics are necessary or redundant. While these works focused on in situ workflows, evaluating the
performance of the workflow ensembles is not a straightforward extension of evaluating individual workflows. Our work defines
the performance of ensembles of in situ workflows.
Ensemble-based methods3,4 recently gained attention in the computational science, mainly due to the growth of computing

power of large-scale systems allowing more simulations to run in parallel. Ensembles are an efficient approach for enhancing
sampling techniques, exploring broader configuration space and overcoming the local minima problem observed in scientific
simulations. Multiple-walker3 allowed faster convergence and better sampling by exploiting multiple replicas that simulta-
neously explore free-energy landscape in addition to transition coordinates of the system. Generalized ensembles4 explored
multiple states of a simulation in ensembles with a probability weight factor so that a random walk in a particular state can
escape the energy barrier.
Several recent efforts attempted to efficiently manage the execution of ensemble-based simulations combined with analysis

tasks. John et al.31 proposed a workflow management system that stores task provenances to enable adaptive ensemble sim-
ulation. EnTK12 is a general-purpose toolkit that abstracts components and tasks in an ensemble-based workflow to support
various scenarios in which the number of tasks or task dependencies can vary. These works build on RADICAL-Pilot as runtime
system32. However, these works focus on workflow ensembles with traditional data coupling among tasks and not on work-
flow ensembles of in situ tasks like the proposed work. A recent study33 has aimed to prepare the HPC software stack to sustain
concurrent execution of multiple simulations and in situ analyses.

7 CONCLUSION

In this paper, we characterize an ensemble of in situ workflows using multiple configurations and placements. Based on
the insights gained from this characterization, we introduce a theoretical framework that models the execution of work-
flow ensembles when multiple simulations are coupled with multiple analyses using in situ techniques. We define the notion of
computational efficiency for workflow ensembles at component level, and then extend this notion to member and ensemble levels
by designing several performance indicators. These indicators capture the performance of a workflow ensemble by aggregating
several metrics of the given workflow ensemble in terms of resource usage efficiency and resources allocated for components,
members, and the entire ensemble. By evaluating these indicators on a real molecular dynamic simulation use case, we show
the advantages of data locality when co-locating the simulation with the corresponding analyses in an ensemble member. This
finding allows us to schedule each ensemble member of the workflow ensemble individually on a distinct allocation, targeting
the co-location among ensemble components of each ensemble member.
Future work will consider leveraging the proposed indicators for scheduling in situ components of a workflow ensemble

under resource constraints. The performance indicators appear to be beneficial to assisting in the comparison between different
scheduling decisions to optimize scientific discovery. Another future work direction is adapting our performance framework to
more complex domain-specific use cases of workflow ensembles, e.g. adaptive sampling12 in which simulations are periodically
executed and restarted.
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