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Abstract. Archives of distributed workloads acquired at the infrastruc-
ture level reputably lack information about users and application-level
middleware. Science gateways provide consistent access points to the in-
frastructure, and therefore are an interesting information source to cope
with this issue. In this paper, we describe a workload archive acquired
at the science-gateway level, and we show its added value on several case
studies related to user accounting, pilot jobs, fine-grained task analysis,
bag of tasks, and workflows. Results show that science-gateway workload
archives can detect workload wrapped in pilot jobs, improve user iden-
tification, give information on distributions of data transfer times, make
bag-of-task detection accurate, and retrieve characteristics of workflow
executions. Some limits are also identified.

1 Introduction

Grid workload archives [1–5] are widely used for research on distributed systems,
to validate assumptions, to model computational activity [6, 7], and to evaluate
methods in simulation or in experimental conditions. Available workload archives
are acquired at the infrastructure level, by computing sites or by central mon-
itoring and bookkeeping services. However, user communities often access the
infrastructure through stacks of application-level middleware such as workflow
engines, application wrappers, pilot-job systems, and portals. As a result, work-
load archives lack critical information about dependencies among tasks, about
task sub-steps, about artifacts introduced by application-level scheduling, and
about users. Methods have been proposed to recover this information. For in-
stance, [8] detects bags of tasks as tasks submitted by a single user in a given
time interval. In other cases, information can hardly be recovered: [2] reports
that there is currently no study of a pilot-job workload, and workflow studies
such as [5] are mostly limited to test runs conducted by developers.

Meanwhile, science gateways are emerging as user-level platforms to access
distributed infrastructures. They combine a set of authentication, data transfer,
and workload management tools to deliver computing power as transparently as
possible. They are used by groups of users over time, and therefore gather rich
information about workload patterns. The Virtual Imaging Platform (VIP) [9],



Fig. 1. Considered science-gateway architecture. Tools in brackets are used here.

for instance, is an open web platform for medical simulation. Other examples
include e-bioinfra [10], the P-Grade portal [11], the Science-Gateway framework
in [12], MediGRID [13], and CBRAIN1.

This paper describes a science-gateway workload archive, and illustrates its
added value to archives acquired at the infrastructure level. The model is pre-
sented in Section 2 and used in 5 case studies in Section 3: Section 3.1 studies
pilot jobs, Section 3.2 compares user accounting to data acquired by the infras-
tructure, Section 3.3 performs fine-grained task analysis, Section 3.4 evaluates
the accuracy of bag of task detection from infrastructure-level traces, and Sec-
tion 3.5 analyzes workflows in production. Section 4 concludes the paper.

2 A Science-Gateway Workload Archive

Science gateways usually involve a subset or all the entities shown on Fig. 1,
which describes the VIP architecture used here. Users authenticate to a web
portal with login and password, and they are then mapped to X.509 robot creden-
tials. From the portal, users mainly transfer data and launch workflows executed
by an engine. The engine has an application wrapper which generates tasks from
application descriptions and submits them to a pilot-job scheduler. In a pilot-job
model [14–16], generic pilot jobs are submitted to the infrastructure instead of
application tasks. When these jobs reach a computing site, they fetch tasks from
the pilot manager. Tasks then download input files, execute, and upload their
results. To increase reliability and performance, tasks can also be replicated as
described in [17]. Task replicas may also be aborted to limit resource waste. This
science gateway model totally applies to e-bioinfra, and partly to the P-Grade
portal, the Science-Gateway framework in [12], medigrid-DE, and CBRAIN.

Our science-gateway archive model adopts the schema on Fig. 2. Task con-
tains information such as final status, exit code, timestamps of internal steps,
application and workflow activity name. Each task is associated to a Pilot Job.
Workflow Execution gathers all the activities and tasks of a workflow execu-
tion, Site connects pilots and tasks to a grid site, and File provides the list of

1 http://cbrain.mcgill.ca
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Fig. 2. Science-gateway archive model.

files associated to a task and workflow execution. In this work we focus on Task,
Workflow Execution and Pilot Job.

The science-gateway archive is extracted from VIP. Task, Site and Workflow

Execution information are acquired from databases populated by the workflow
engine at runtime. File and Pilot Job information are extracted from the
parsing of task standard output and error files.

Studies presented in the following Sections are based on the workload of
the VIP from January 2011 to April 2012. It consists of 2,941 workflow execu-
tions, 112 users, 339,545 pilot jobs, 680,988 tasks where 338,989 are completed
tasks, 138,480 error tasks, 105,488 aborted tasks, 15,576 aborted task replicas,
48,293 stalled tasks and 34,162 submitted or queued tasks. Stalled tasks are
tasks which lost communication with the pilot manager, e.g. because they were
killed by computing sites due to quota violation. Tasks ran on the biomed vir-
tual organization of the European Grid Infrastructure (EGI2). Traces used in
this work are available to the community in the Grid Observatory3.

3 Case studies

3.1 Pilot jobs

Pilot jobs are increasingly used to improve scheduling and reliability on produc-
tion grids [14–16]. This type of workload, however, is difficult to analyze from
infrastructure traces as a single pilot can wrap several tasks, which remains
unknown to the infrastructure. In our case, pilots are discarded after 5 task ex-
ecutions, if the remaining walltime allowed on the site cannot be obtained, if
they are idle for more than 10 minutes, or if one of their tasks fails. Pilots can
execute any task submitted by the science gateway, regardless of the workflow
execution and user.

Fig. 3 shows the number of tasks and users per pilot in the archive. Out of
the 646,826 executed tasks in the archive, only those for which a standard output
containing the pilot id could be retrieved are represented. This corresponds to

2 http://www.egi.eu
3 http://www.grid-observatory.org
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Fig. 3. Histogram of tasks per pilot (left) and users per pilot (right).

453,547 tasks, i.e. 70% of the complete task set. Most pilots (83%) execute only
1 task due to walltime limits or other discards. These 83% execute 282,331
tasks, which represents 62% of the considered tasks. Workload acquired at the
infrastructure level would usually assimilate pilot jobs to tasks. Our data shows
that this hypothesis is only true for 62% of the tasks. The distribution of users
per pilots has a similar decrease: 95% of the pilots execute tasks of a single user.

3.2 Accounting

On a production platform like EGI, accounting data consists of the list of active
users and their number of submitted jobs, consumed CPU time, and wall-clock
time. Here, we compare data provided by the infrastructure-level accounting
services of EGI4 to data obtained from the science-gateway archive.

Fig. 4 compares the number of users reported by EGI and the scientific
gateway. It shows a dramatic discrepancy between the two sources of information,
explained by the use of a robot certificate in the gateway. Robot certificates are
regular X.509 user certificates that are used for all grid operations performed
by a science gateway, namely data transfers and task submission. From an EGI
point of view, all VIP users are accounted as a single user regardless of their real
identity. EGI reports more than one user for months 12, 13, 15 and 16 due to
updates of the VIP certificate. The adoption of robot certificates totally discards
the accounting of user names at the infrastructure level. Studies such as presented
on Fig. 17 in [18] or on Fig. 1 in [2], cannot be considered reliable in this context.
Robot certificates are not an exception: a survey available online5 shows that 80
of such certificates are known on EGI. By avoiding the need for users to request
personal certificates, they simplify the access to the infrastructure to a point
that their very large adoption in science gateways seems unavoidable.

Fig. 5 compares the number of submitted jobs, consumed CPU time, and
consumed wall-clock time obtained by the EGI infrastructure and by VIP. The
number of jobs reported by EGI is almost twice as important as in VIP. This huge
discrepancy is explained by the fact that many pilot jobs do not register to the
pilot system due to some technical issues, or do not execute any task due to the

4 http://accounting.egi.eu
5 https://wiki.egi.eu/wiki/EGI robot certificate users
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Fig. 5. Number of submitted pilot jobs (left), and consumed CPU and wall-clock time
(right) by the infrastructure (EGI) and the science gateway (VIP).

absence of workload, or execute tasks for which no standard output containing
the pilot id could be retrieved. These pilots cannot be identified from the task
logs. While this highlights serious potential improvements in the pilot manager,
it also reveals that a significant fraction of the workload measured by EGI does
not come from applications but from artifacts introduced by pilot managers.
This should be taken into account when conducting studies on application-level
schedulers from workload acquired at the infrastructure level.

About 60 walltime years are missing from the science gateway archive, com-
pared to the infrastructure. This is due to the pilot setup time (a few minutes
per pilot), and to the computing time of lost tasks, for which no standard output
containing monitoring data could be retrieved. Tasks are lost (a.k.a stalled) in
case of technical issues such as network interruption or deliberate kill from sites
due to quota violation. Better investigating this missing information is part of
our future work.

3.3 Task analysis

Traces acquired at the science-gateway level provide fine-grained information
about tasks, which is usually not possible at the infrastructure level. Fig. 6
shows the distributions of download, upload and execution times for successfully
completed tasks. Distributions show a substantial amount of very long steps.

Error causes can also be investigated from science-gateway archives. Fig. 7
(left) shows the occurrence of 6 task-level errors. These error codes are application-
specific and not accessible to infrastructure level archives, see e.g. [19] (Table 3)
and [3].
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Fig. 7. Task error causes (left) and number of replicas per task (right).

A common strategy to cope with recoverable errors is to replicate tasks [20],
which is usually not known to the infrastructure. Fig. 7 (right) shows the occur-
rence of task replication in the science-gateway archive.

3.4 Bag of tasks

In this section, we evaluate the accuracy of the method presented in [8] to detect
bag of tasks (BoT). This method considers that two tasks successively submitted
by a user belong to the same BoT if the time interval between their submission
times is lower or equal to a time ∆. The value of ∆ is set to 120s as described
in [8]. Fig. 8 presents the impact of ∆ on BoT sizes (a.k.a. batch sizes) for
∆ = 10s, 30s, 60s and 120s.

Fig. 9 presents the comparison of BoT characteristics obtained from the
described method for ∆ = 120s and from VIP. BoTs in VIP were extracted
as the tasks generated by the same activity in a workflow execution. Thus,
they can be considered as ground truth and are named Real Non-Batch for
single-task BoTs and Real Batch for others. Analogously, we name Non-Batch

and Batch BoTs determined by the method. Batch has about 90% of its BoT
sizes ranging from 2 to 10 while these batches represent about 50% of Real

Batch. This discrepancy has a direct impact on the BoT duration (makespan),
inter-arrival time and consumed CPU time. The duration of Non-Batch are
overestimated up to 400%, inter-arrival times for both Batch and Non-Batch

are underestimated by about 30% in almost all intervals, and consumed CPU
times are underestimated of 25% for Non-Batch and of about 20% for Batch.
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This data shows that detecting bag of tasks based on infrastructure-level traces
is very inaccurate. Such inaccuracy may have important consequences on works
based on such detection, e.g. [21].
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Fig. 9. CDFs of characteristics of batched and non-batched submissions: BoT sizes,
duration per BoT, inter-arrival time and consumed CPU time (∆ = 120s).

3.5 Workflows

Few works study the characterization of grid workflow executions. In [5], the
authors present the characterization of 2 workloads that are mostly test runs
conducted by developers. To the best of our knowledge, there is no work on the
characterization of grid workflows in production.



Fig. 10 presents characteristics of the workflow executions extracted from
our science-gateway archive. They could be used to build workload generators
for the evaluation of scheduling algorithms. Let N be the number of tasks in
a workflow execution; we redefine the 3 classes presented in [5] to small for
N ≤ 100, medium for 100 < N ≤ 500 and large for N > 500. From Fig. 10
(top left), we observe that the workload is composed by 52%, 31% and 17% of
small, medium and large executions respectively. In Fig.10 (top right), 90% of
small, 66% of medium and 54% of large executions have a makespan lower
than 14 hours. Speedup values presented in Fig. 10 (bottom left) show that
execution speed-up increases with the size of the workflow, which indicates good
parallelization. Critical path lengths are mostly up to 2 levels for small and
large executions and up to 3 for medium executions (bottom right of Fig. 10).
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Fig. 10. Characteristics of workflow executions: number of tasks (top left), CPU time
and makespan (top right), speedup (bottom left) and critical path length (bottom right).

4 Conclusion

We presented a science-gateway model of workload archive containing detailed
information about users, pilot jobs, task sub-steps, bag of tasks and workflow ex-
ecutions. We illustrated the added value of science-gateway workloads compared
to infrastructure-level traces using information collected by the Virtual Imaging
Platform in 2011/2012, which consist of 2, 941 workflow executions, 339,545 pilot
jobs, 680,988 tasks and 112 users that consumed about 76 CPU years.

Several conclusions demonstrate the added-value of a science-gateway ap-
proach to workload archives. First, it can exactly identify tasks and users, while



infrastructure-level traces cannot identify 38% of the tasks due to their bundling
in pilot jobs, and cannot properly identify users when robot certificates are
used. Infrastructure archives are also hampered by additional workload artifacts
coming from pilot-job schedulers, which can be distinguished from application
workload using science-gateway archives. More detailed information about tasks
is also available from science-gateway traces, such as distributions of download,
upload and execution times, and information about replication. Besides, the de-
tection of bag of tasks from infrastructure traces is inaccurate, while a science-
gateway contains ground truth. Finally, we reported a few parameters on work-
flow executions, which could not be extracted from infrastructure-level traces.
Limits of science-gateway workloads still exist. In particular, it is very common
that a significant fraction of lost tasks do not report complete information.

Traces acquired by the Virtual Imaging Platform will be regularly made avail-
able to the community in the Grid Observatory. We hope that other science-
gateway providers could also start publishing their traces so that computer-
science studies can better investigate production conditions. Information pro-
vided by such science-gateway archives can be used, to elaborate benchmarks,
to simulate applications and algorithms targeting production systems, or to feed
algorithms with historical information [17].

Studies presented in this work only show a partial overview of the potential
of science-gateway traces. In particular, information about file access pattern,
about the number and location of computing sites used per workflow or bag-of-
task execution, and about task resubmission is available in the archive.
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