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Abstract—A significant amount of recent research in scientific
workflows aims to develop new techniques, algorithms and
systems that can overcome the challenges of efficient and robust
execution of ever larger workflows on increasingly complex
distributed infrastructures. Since the infrastructures, systems
and applications are complex, and their behavior is difficult to
reproduce using physical experiments, much of this research is
based on simulation. However, there exists a shortage of realistic
datasets and tools that can be used for such studies. In this
paper we describe a collection of tools and data that have
enabled research in new techniques, algorithms, and systems for
scientific workflows. These resources include: 1) execution traces
of real workflow applications from which workflow and system
characteristics such as resource usage and failure profiles can be
extracted, 2) a synthetic workflow generator that can produce
realistic synthetic workflows based on profiles extracted from
execution traces, and 3) a simulator framework that can simulate
the execution of synthetic workflows on realistic distributed
infrastructures. This paper describes how we have used these
resources to investigate new techniques for efficient and robust
workflow execution, as well as to provide improvements to the
Pegasus Workflow Management System or other workflow tools.
Our goal in describing these resources is to share them with
other researchers in the workflow research community. All of
the tools and data are freely available online for the community
at http://www.workflowarchive.org. These data have already been
leveraged for a number of studies.

Keywords—Scientific Workflows; Workload Profiling and Char-
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I. INTRODUCTION

In the last decade, scientific workflows have been used
extensively by the scientific research community to exploit
coarse-grained parallelism in applications running on dis-
tributed infrastructures such as clusters, grids, and clouds [1].
During that time, these infrastructures have become more com-
plex, heterogeneous, and prone to failures. At the same time,
scientific workflows have been growing in terms of the size
and complexity of data and computations. Therefore, several
techniques, heuristics, and mechanisms have been developed
to address these challenges aiming to optimize the workflow
execution.

Simulation enables experimentation under controlled con-
ditions. It is often more efficient at exploring large sets of
influential parameters and it can evaluate solutions in envi-
ronments that do not yet exist [2]–[5]. When studying the
execution of scientific workflows, simulation often requires
models (e.g. tasks inter-arrival time, system overheads, and

failure rates), and a set of workflow applications or benchmarks
to validate assumptions and methods. However, there is a
shortage of realistic datasets and tools that can be used for
such simulations.

In this work, we describe a collection of collaborative
tools and data that together have enabled research and the
development of the Pegasus Workflow Management System
(WMS) [6], [7]. Fig. 1 shows an overview of the research
process that integrates these community resources. Workflow
execution traces are collected and published in the Workflow
Gallery [8]. From these traces, workflow execution profiles
are built as the foundations for the development of work-
flow execution distributions. Execution traces, distributions,
and application metadata are freely available online for the
community. Execution distributions enable the development of
the Workflow Generator toolkit [9]. The toolkit generates
synthetic workflows, resembling those used by real world
scientific applications, to facilitate the evaluation of workflow
algorithms and systems under different configurations. Exter-
nal Models represent external characteristics not captured by
synthetic workflows as for example, execution overheads, task
and resource failures, or energy consumption. Models and syn-
thetic workflows are used as input to the WorkflowSim [10]
simulator framework. Finally, relevant research results are
implemented in the Pegasus WMS or other workflow tools.

This paper describes the following community resources:
• a collection of workflow analysis and evaluation tools

that can work independently or together;

Fig. 1: Overview of the community resources.
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• a workflow gallery that collects and publishes execution
traces of real scientific workflow applications;

• a synthetic workflow generator that can produce realistic
synthetic workflows based on profiles extracted from
execution traces;

• a research process to integrate these tools along a sim-
ulator framework that enables research in new methods
and systems for scientific workflow management.

The paper is organized as follows. In Section II, we de-
scribe the Pegasus WMS and its main subsystems. Section III
presents the Workflow Gallery and how workflow execution
profiles and characterizations are built. In Section IV, we
introduce the Workflow Generator toolkit, and in Section V we
describe our simulator framework, and show use cases about
how these tools and data have contributed to advance computer
science research. Section VI presents the related work, and
Section VII concludes the paper and presents possible future
work.

II. THE PEGASUS WORKFLOW MANAGEMENT SYSTEM

Simulations and data-analysis of complex systems often re-
quire the execution of large sets of computational tasks, as well
as the coordination of large-scale data movement on distributed
computational resources such as campus clusters, grids, and
clouds. Pegasus WMS can manage workflows comprised of
millions of tasks, all the while recording information about
the task execution and the intermediate result generation so
that the provenance of the final result is clear. The Pegasus
WMS approach is to bridge the scientific domain and the
execution environment by mapping a scientist-provided high-
level workflow description, an abstract workflow (does not
contain resource information, or the physical locations of data
and executables), to an executable workflow description of
the computation. Workflows are described as directed acyclic
graphs (DAGs), where nodes represent individual computa-
tional tasks and the edges represent data and control de-
pendencies between tasks. In Pegasus, the abstract workflow
description is represented as a DAX (DAG in XML), which
captures all the computational tasks, the execution order of
these tasks, and for each task the required inputs, expected
outputs, and the arguments with which the task should be
invoked.

A workflow is submitted to Pegasus WMS that resides
on a user-facing machine named the submit host. The target
execution environment can be a local machine, like the submit
host, a remote physical cluster or grid, or a virtual system
such as the cloud. In our model, it is the workflow management
system’s responsibility to not only translate tasks into jobs and
execute them, but also to manage data, monitor the execution,
and handle failures. A job is an atomic unit seen by the
execution system. A job may contain multiple tasks to be
executed in sequence or in parallel if applicable. Data man-
agement includes tracking, staging, and acting on workflow
inputs, intermediate products (data sent between tasks in the
workflow), and the output products requested by the scientist.
These actions are performed by the following major Pegasus
subsystems:

Mapper: Generates an executable workflow based on an ab-
stract workflow provided by the user or a workflow composi-
tion system. It finds the appropriate software, data, and compu-
tational resources required for the execution. The Mapper can
also restructure the workflow in order to optimize performance,
and adds transformations for data management and provenance
information generation.
Local Execution Engine: Submits the jobs defined by the
workflow in order of their dependencies. It manages the jobs
by tracking their state and determining when jobs are ready to
run. It then submits jobs to the local scheduling queue.
Job Scheduler: Manages individual jobs present in the local
scheduling queue; supervises their execution on local and
remote resources.
Remote Execution Engine: Manages the execution of one or
more tasks, possibly structured as a sub-workflow, on one or
more remote compute nodes.
Monitoring Component: A runtime monitoring daemon
launched when the workflows start executing. It monitors the
running workflow, parses the workflow job logs, and populates
them into a workflow database. The database stores both
performance and provenance information. It also notifies the
user about events such as failures, success, and completion of
jobs and workflows.

Fig. 2 shows an overview of the Pegasus WMS architecture
illustrating how scientists interface with Pegasus and sub-
systems to execute workflows in distributed execution envi-
ronments. Scientists can interact with Pegasus via command
line and API interfaces, portals and infrastructure hubs [11],
and high-level, or application-specific composition tools. The
system maps the abstract workflow onto the execution environ-
ment, by transforming the abstract workflow into an executable
workflow, which includes computation invocation on the target
resources, the necessary data transfers, and data registration.
The monitoring component captures job execution information
that are used to build profiles and characterizations of workflow
executions. Details on how the data is captured, and on
how profiles and characterizations are built, are presented
afterwards in Section III-A.

III. THE WORKFLOW TRACES ARCHIVE

Workload traces have been widely used to profile and
characterize workflow executions, and to build distributions
of workflow execution behaviors, which are used to eval-
uate methods and techniques in simulation or in real con-
ditions. In this section, we introduce the tool used to col-
lect, summarize, and publish execution traces from Pegasus
workflow executions. In addition, we present methods and
techniques we use to profile and characterize these executions.
Traces, profile data, and characterizations are freely avail-
able online for the community through the Workflow Gallery
(http://www.workflowarchive.org) [8].

The execution profile data and characterizations are used to
build distributions of workflow applications. Distributions are
used to generate synthetic workflows (see Section IV) and may
include task runtime and data sizes, and the number of tasks
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Fig. 2: Overview of the Pegasus WMS architecture.

in a workflow. Moreover, profile data and characterizations
can be used by task runtime estimation methods to predict
workload needs that will inform resource provisioning and
task scheduling decisions. As estimates of task runtimes can
vary over time (based on new data being collected), we have
developed an online estimation process of task runtime and
resource needs for scientific workflow applications.

A. Workflow Profiling and Characterization

We have developed the Kickstart [12] profiling tool to collect
and summarize performance metrics for workflow applications.
Kickstart wraps workflow tasks to monitor and record task
execution information. It captures profiling data such as pro-
cess I/O, runtime, memory usage, and CPU utilization (utime
and stime) by using query mechanisms and low overhead
notifications. Fine-grained information can also be gathered by
using interpositions and events for detecting when processes
start and stop; or by using full system calls or function
interposition for detailed measurements of files accessed and
I/O operations. However, this approach may add a significant
overhead to the workflow execution.

Table I shows an example of the execution profile of an 8
degrees square Montage [13] workflow executed on Amazon
EC2. For some task types, resource utilization is very low,
which suggests that I/O operations dominate the runtime.
Thus, these tasks are characterized as data-intensive tasks. This
assumption is supported by the large amount of data consumed
by these tasks. On the other hand, high CPU utilization
suggests compute-intensive tasks. Similarly, this assumption
is supported by the small amount of data consumed by these
tasks. Profile data and detailed characterization of several real
scientific workflow applications are available in [14], [15].

Capturing workflow task execution information allows us to
automatically estimate the resource needs of future tasks. We

assume that task needs such as runtime, I/O write, and memory
peak, can be estimated based on the I/O read parameter. Thus,
our characterization method [16] looks for correlations be-
tween the input data and selected parameters. If no correlation
is detected, execution datasets are divided into sub-datasets
by a density clustering technique. Smaller datasets may have
a higher correlation coefficient, or a lower standard deviation
from the mean.

Table II shows an example of the use of the automatic char-
acterization method to determine correlation (ρ) and standard
deviation values (σ) for the Montage workflow. Datasets with
high correlation values are not clustered. For datasets with
low correlation values, we cluster the datasets. The goal of
clustering is to find sub-sets (clusters) of the datasets with
a higher correlation, or smaller standard deviation values.
In clusters, where the correlation is null and the standard
deviation is negligible, the data is seen as a constant value.

B. Estimation of Workflow Task Needs

Task characteristics such as runtime, disk space, and mem-
ory consumption, are commonly used by scheduling algorithms
and resource provisioning techniques to provide successful and
efficient workflow executions. These methods often assume
that accurate estimates are available, but in production systems
it is hard to pre-compute such estimates with good accuracy.
Therefore, we use an online estimation process [16] based on
the MAPE-K loop (Monitoring, Analysis, Planning, Execution,
and Knowledge), where task executions are constantly mon-
itored. Upon task completion, estimated values for the task
are updated with the real values, and based on these values
a new prediction is done for subsequent tasks (tasks that are
data-dependent of the current task). Parameter predictions (e.g.
runtime) are based on regression trees. First, tasks are classified
by application, then by task type. The next step decides
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Task Type Count Runtime I/O Read I/O Write Memory Peak CPU Utilization
Mean (s) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (%) Std. Dev.

mProjectPP 2102 1.73 0.09 2.05 0.07 8.09 0.31 11.81 0.32 86.96 0.03
mDiffFit 6172 0.66 0.56 16.56 0.53 0.64 0.46 5.76 0.67 28.39 0.16
mConcatFit 1 143.26 0.00 1.95 0.00 1.22 0.00 8.13 0.00 53.17 0.00
mBgModel 1 384.49 0.00 1.56 0.00 0.10 0.00 13.64 0.00 99.89 0.00
mBackground 2102 1.72 0.65 8.36 0.34 8.09 0.31 16.19 0.32 8.46 0.10
mImgtbl 17 2.78 1.37 1.55 0.38 0.12 0.03 8.06 0.34 3.48 0.03
mAdd 17 282.37 137.93 1102.57 302.84 775.45 196.44 16.04 1.75 8.48 0.11
mShrink 16 66.10 46.37 411.50 7.09 0.49 0.01 4.62 0.03 2.30 0.03
mJPEG 1 0.64 0.00 25.33 0.00 0.39 0.00 3.96 0.00 77.14 0.00

TABLE I: Execution profile of the Montage workflow execution for a 8 degrees square region of the sky.

Task Runtime I/O Write Memory Peak
c ρ σ c ρ σ c ρ σ

mProjectPP 1 0.00 0.68 1 0.88 0.19 1 0.88 0.40
2 0.00 0.54
3 0.00 0.28

mDiffFit 1 0.04 1.08 1 0.01 1.17 1 0.01 1.03
2 0.05 0.84 2 0.00 0.00 2 0.00 0.00
3 0.07 0.61

mConcatFit 1 0.00 5.27 1 0.00 0.01 1 0.00 0.01
mBgModel 1 -0.99 88.50 1 1.00 0.00 1 0.96 0.01
mBackground 1 -0.02 1.46 1 0.99 6.44 1 0.99 5.78

2 0.00 0.00
3 -0.09 0.66

mImgtbl 1 0.00 0.17 1 0.92 0.05 1 0.88 0.13
2 0.28 1.85

mAdd 1 0.84 14.03 1 0.98 383.86 1 0.97 3.40
mShrink 1 0.00 2.25 1 1.00 0.00 1 0.00 0.01

2 0.00 1.58
mJPEG 1 0.00 0.07 1 0.00 0.00 1 0.98 0.01

TABLE II: Characterization of the Montage workflow: cluster
number (c), correlation (ρ), and standard deviation (σ) values.

whether runtime, I/O write, or memory parameters should
be estimated based on the input data size. If the parameter
is strongly correlated to the input data, values are estimated
according to the ratio parameter/input data size. Otherwise,
values are estimated as the mean. Fig. 3 summarizes the online
estimation process. Experimental results show that our online
estimation process provides more accurate estimates than an
offline method, where the resource usage for all workflow tasks
is estimated a priori.

Offline Estimation

Monitoring

Tasks 
submission

Analysis

Task 
completion

Correct 
estimation?

yes

New Estimation

no

Execution

Replanning

Online Estimation Process

Fig. 3: Online task estimation process.

IV. THE WORKFLOW GENERATOR TOOLKIT

Workflow execution traces are also commonly used to
evaluate novel algorithms and systems. However, current trace

archives do not have a collection of scientific workflow runs
that include a large number of possible application configura-
tions. On the other hand, synthetic workflows can produce a
large number of workflow instances, resembling those used by
real world scientific applications, based on parameters derived
from real workflow traces and user-specified parameters.

We have developed a Workflow Generator toolkit [9], which
can generate a set of synthetic workflows with a variety of
characteristics. The toolkit uses randomization and parameter
sweeps to create many different synthetic workflows using the
same set of input parameters. The generation process includes
the identification of individual tasks and their composition,
followed by the annotation of the workflow with information
about task’s runtime and memory usage, and input and output
data sizes. The resulting workflows are represented in the DAX
format (used by the Pegasus WMS, but easily readable by other
systems).

The structure of a synthetic workflow depends on the
targeted workflow application. The generator uses distributions
derived from execution profiles and characterizations provided
by the Workflow Gallery, and user-specified parameters such
as the number of inputs and the number of tasks, to build
synthetic workflows that are proportional to the real workflow.
Pipeline structures commonly reflect the same structure as
that in the real workflow. Data distribution, aggregation, or
redistribution structures may vary according to the number
of input data file or jobs. For instance, synthetic Montage
workflows can be generated based on the degree square of the
final image, where the generator will estimate the number of
input files according to patterns observed in execution profiles;
or based on the number of input images.

Workflow task runtimes and data sizes are also generated
according to patterns observed in execution profiles. For in-
stance, a specific job type may have the same input data size
regardless of the number of jobs or input parameters; or the
data size may be a function of the scale of the output data (e.g.
the size of the final mosaic for the Montage workflow). When
these values cannot be defined deterministically, the toolkit
generates variations in the estimated values using truncated
normal distributions. Users can specify whether a synthetic
workflow will be compute- or data-intensive by tuning the
approximate size of the input data or the factor to scale
runtimes parameters.

Currently, the Workflow Generator toolkit is able to generate
20 types of synthetic workflows from different domains includ-
ing astronomy, earth sciences, bioinformatics, weather, and
ocean modeling. These synthetic workflows have been used
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Application Jobs Avg. Execution Time Avg. Data Size
LIGO 166 75.60s ∼258 MB
Montage 158 11.60s ∼4 MB
CyberShake 1675940 460840.60s ∼132 MB
Epigenomics 590 84.01s ∼408 MB
SIPHT 28 27.05s ∼1 MB

TABLE III: Characteristics of the workflow applications.

in several research studies as presented in Section V-C. We
also published a large collection of toolkit-generated synthetic
workflow samples [9], which have been used as benchmarks.
This collection includes 5 workflow applications and 2,840
workflow instances with different parameter sets derived from
our trace analysis (see Section III-A). Table III summarizes
the main characteristics of these workflow applications, and
below we briefly introduce them:

LIGO: Laser Interferometer Gravitational Wave Observatory
(LIGO) [17] workflows are used to search for gravitational
wave signatures in data collected by large-scale interferom-
eters. The observatories’ mission is to detect and measure
gravitational waves predicted by general relativity (Einstein’s
theory of gravity), in which gravity is described as due to the
curvature of the fabric of time and space.

Montage: Montage [13] is an astronomy application that is
used to construct large image mosaics of the sky. Input images
are reprojected onto a sphere and overlap is calculated for each
input image. The application re-projects input images to the
correct orientation while keeping background emission level
constant in all images. The images are added by rectifying
them to a common flux scale and background level. Finally
the reprojected images are co-added into a final mosaic.

Cybershake: CyberShake [18] is a seismology application that
calculates Probabilistic Seismic Hazard curves for geographic
sites in the Southern California region. It identifies all ruptures
within 200km of the site of interest and converts rupture defini-
tion into multiple rupture variations with differing hypocenter
locations and slip distributions. It then calculates synthetic
seismograms extracting the peak intensity measures to produce
probabilistic seismic hazard curves for the site.

Epigenomics: The Epigenomics workflow [19] is a CPU-
intensive workflow application. Initial data is acquired from
the Illumina-Solexa Genetic Analyzer in the form of DNA se-
quence lanes. Each Solexa machine can generate multiple lanes
of DNA sequences. The mapping software maps short DNA
reads from the sequence data onto a reference genome, which
displays the number of times a certain sequence expresses itself
on a particular location on the reference genome.

SIPHT: The SIPHT workflow [20] conducts a wide search
for small untranslated RNAs (sRNAs) that regulates several
processes such as secretion or virulence in bacteria. The
kingdom-wide prediction and annotation of sRNA encoding
genes involves a variety of individual programs that are exe-
cuted in the proper order using Pegasus WMS. These involve
the prediction of ρ-independent transcriptional terminators and
comparison of the inter genetic regions of different replicons
and the annotations of any sRNAs that are found.

V. THE WORKFLOW SIMULATOR FRAMEWORK

Simulation frameworks are often used to evaluate methods
and assumptions in controlled environments, and to understand
details and configurations that are hard to model analytically.
WorkflowSim [10] is an open-source workflow simulator frame-
work that extends the CloudSim [3] simulator framework for
Clouds by adding support for workflow execution simulations.
The simulator implements several of the most popular dynamic
and static workflow scheduling algorithms (e.g. HEFT [21],
Min-Min). In addition, the simulator provides an extended
model of resource and task execution failures, and a model
of execution overheads intrinsic to the execution of scientific
workflows in distributed environments [22].

In this section, we introduce the main components and
capabilitiesof the WorkflowSim framework, and describe how
the simulator has been used to investigate new techniques for
efficient and robust workflow execution.

A. Components Overview
WorkflowSim is built on the top of the task scheduling layer

of CloudSim. It also provides application and resource failure
models. The simulator design includes the main categories
of a WMS for scientific applications: composition, mapping,
execution, and provenance [23]. The main components and
their interactions are summarized in Fig. 4, and are described
as follows:

Workflow Mapper: Imports DAX (DAG in XML) files and
workflow execution metadata (e.g. data size); and creates a set
of tasks, and assigns them to an execution site. Commonly,
DAXes are synthetic workflows generated by the Workflow
Generator toolkit, or traces gathered from workflow executions
available in the Workflow Gallery.
Workflow Engine: Manages task state and dependencies de-
termining when tasks are ready to run. Tasks are released to
the Clustering Engine once all parent tasks are successfully
completed.
Clustering Engine: Merges tasks into jobs to reduce the
scheduling overhead [24]. Note that a job may contain multiple
tasks. Task re-clustering can also be performed in a faulty
environment that has transient failures.
Workflow Scheduler: Matches jobs to worker nodes based on
the user-specified criteria. WorkflowSim relies on CloudSim

Fig. 4: Overview of the WorkflowSim architecture.
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to provide an accurate and reliable job-level execution model,
such as a time-shared model and a space-shared model. In ad-
dition, WorkflowSim has introduced different types of system
overheads, and application and system failures [22] to improve
the realism of the simulations.
Failure Generator: Injects task/job faults during the sim-
ulation. Failures are randomly generated following a given
probability distribution and an average failure rate specified
by the user.
Failure Monitor: Collects failure records (e.g. resource, job,
and task identifiers). These can be used by dynamic scheduling
strategies to improve the workflow execution.

B. Functionalities and External Models
WorkflowSim supports the common features exposed by

workflow management systems, and includes the major op-
timization methods described in the literature. In addition,
WorkflowSim is been constantly extended by its open-source
research community with new methods and techniques. Below
we summarize the main functionalities and methods available
in the framework:

File Systems: In addition to the local filesystem provided
by CloudSim, our simulator framework also provides shared
and distributed filesystem models. The shared filesystem is a
centralized filesystem in which data storage is shared among all
the execution nodes within a data-center. The communication
cost is thereby considered in the task execution time. As a
result, scheduling algorithms do not consider the time elapsed
during data movement operations. In a distributed filesystem,
data storage is modeled as separate local data storages. In
this context, data movement operations may have increased
communication costs. Data-aware scheduling algorithms may
have an opportunity to optimize data-locality, and therefore the
overall application runtime. A replica catalog is used to keep
track of the data locations.
Dynamic Scheduling: In static scheduling, jobs are assigned
to an execution site at the workflow planning stage, preventing
any further modifications to the schedule. In contrast, task
assignment in dynamic scheduling is performed at runtime,
i.e. whenever an execution node is available. We extended
CloudSim to support dynamic scheduling algorithms to pro-
pose new options for researchers to evaluate dynamic methods.
Task Clustering: The poor performance of fine-grained tasks
within a workflow is a common problem in distributed plat-
forms, where the scheduling overheads and queuing times
are high. As mentioned above, task clustering is a runtime
optimization technique that merges multiple short tasks into
a coarse-grained job to reduce these overheads [24]. Work-
flowSim provides task granularity control through the tuning
of the granularity size parameter specified by the user.

In addition to the aforementioned functionalities, Work-
flowSim has incorporated models of overheads, failures, and
energy consumption:
Overhead Modeling: The execution of scientific applications
in distributed environments, are subject to significant system

overheads that may adversely affect the application perfor-
mance [22]. In our simulator, we represent these overheads as
follows: Workflow Engine Delay, measures the time between
the task completion and the release of the subsequent task;
Queue Delay, defines the time between the job submission to
a local queue and the time the local scheduler sees the job
running; Data Transfer Delay, measures the data transfer time
between execution nodes; and Clustering Delay, measures the
elapsed time to extract tasks from clustered jobs.
Failure Modeling: WorkflowSim provides support for the
simulation of task and job failures. Task failures are often
caused by task execution errors such as unavailability of
input data or application execution errors, while job failures
arise during the preparation of a job. A job failure means
that all tasks within the job also fail. Failure rates follow
a probability distribution (e.g. Weibull, Uniform, Normal, or
Gamma) specified by the user.
Energy Consumption Modeling: The need to manage energy
consumption of compute, storage, and network systems has
received attention in the last few years. In this context, we
are adding energy consumption models [25] to WorkflowSim
so that we can analyze the energy consumption of scientific
workflows.

C. Use cases
We have extensively used WorkflowSim for our research in

a number of areas. Below we summarize some research results
obtained with WorkflowSim:
Balanced Task Clustering: Recently, we have used Work-
flowSim to investigate the dependency and runtime balance
problems when performing task clustering in scientific work-
flows [24], [26]. We extended the task clustering feature with
imbalance metrics in order to evaluate the impact of these
balance problems in the performance of workflow executions.
We then proposed balanced task clustering algorithms to ad-
dress these issues and thereby improve the overall performance
of scientific workflows. This study used synthetic workflows
generated by the Workflow Generator toolkit to perform the
experiments.
Fault-Tolerant Task Clustering: Many existing clustering
strategies ignore or underestimate the impact of the occurrence
of failures on system behavior, despite the increasing impact
of failures in large-scale distributed and high-performance
systems. We have used WorkflowSim to evaluate and pro-
pose fault-tolerant task clustering algorithms that dynamically
adjusts the task clustering strategy according to observed
failures [27]. At runtime, one strategy estimates the failure dis-
tribution among all the resources, and dynamically re-clusters
failed jobs to reduce the job failure probability. This study
relied on the generation of transient failures and clustering
techniques provided by the simulator framework. In addition,
synthetic workflows were also used to evaluate the algorithms.
Energy-Efficiency: We have used WorkflowSim to simulate a
controlled distributed environment for profiling and analyzing
energy-efficiency in data-intensive scientific workflows [25].
The goal of this study was to develop an energy consumption
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model to address real large-scale infrastructure conditions
(e.g. heterogeneity, resource unavailability, external loads), and
a multi-objective optimization approach to explore tradeoffs
among makespan, energy consumption, and reliability for
multi-objective workflow scheduling. This study also used
synthetic workflows to validate the assumptions and a post-
scheduling task management strategy.

Since 2012, researchers outside our group have also used
and extended WorkflowSim:
Cloud Broker: Jrad et.al. [4] have developed a broker-based
framework for running workflows in a multi-Cloud envi-
ronment to exploit the economic benefits of clouds. They
extended WorkflowSim with a Cloud Service Broker to allow
an automatic selection of the target clouds with respect to user
service level agreements. A Replica Catalog was used to keep
a list of data replicas by mapping input/output filenames to
their current site locations. Data transfers were initiated by
tasks during their execution at the respective data-centers. The
Replica Catalog was managed by the Data Manager.
Scheduling Performance: WorkflowSim has also been used
to evaluate the performance of scheduling algorithms under
different scenarios. Kumari et. al. [28] used the framework to
evaluate the cost and makespan of running scientific workflows
on clouds. Prathibha et. al. [29] evaluated the cost benefit of
using task clustering in WorkflowSim. PowerWorkflowSim [5]
extends WorkflowSim with an energy simulation API to de-
velop scheduling algorithms for energy savings in computa-
tional clouds.

VI. RELATED WORK

Computing simulations have been widely used to derive
new methods, conduct comparative studies, and understand
and improve the behavior of workflow management systems.
Typically, these studies rely on historical execution data to
validate assumptions, to model computational activity, and
to evaluate methods under experimental conditions. Available
workload archives [30]–[32] mainly capture information about
task executions and resource utilization, but lack fine-grained
information about scientific workflows and their executions,
such as dependencies among tasks, and artifacts introduced by
application-level scheduling. Efforts in collecting and sharing
workflow experiments [33]–[35] enable the reuse and repeata-
bility of workflow executions by the scientific community.
However, the validation of a novel method, often requires
tuning of the execution parameters and workflow patterns.

Synthetic workflows enable scientists to evaluate their meth-
ods under a number of different configurations. Several studies
have used synthetic workflows to explore different workflow
structures varying the number of jobs, or jobs dependen-
cies [36], [37]. However, the workflows are often randomly
generated (i.e. not realistic). SDAG [38] is a toolkit that
generates synthetic workflows that are reasonably close/far
from the real workflow. The goal is to generate abstract
workflows that can be converted to executable workflows to
run on WMS. The toolkit provides several tunable parameters
such as the number of jobs, the level of parallelism, the
maximum job depth dependency-level, and the input data

size. However, some of the generated workflows may not
be realistic, since the toolkit allows arbitrary changes to the
workflow structure. In contrast, our generator toolkit enforces
that the generated synthetic workflows resemble those used by
real world scientific applications.

Several workflow simulator frameworks [2], [39] have been
developed to address a single characteristic of the WMS such
as workflow scheduling. CloudSim [3] is a general-purpose
framework for modeling and simulating cloud computing
infrastructures and services, however it only supports the
execution of single task workloads. Our framework extends
CloudSim to support workflow execution and it introduces the
concept of task/job execution where different clustering strate-
gies can be employed. DynamicCloudSim [40] also extends
CloudSim to support workflow executions, but the framework
is focused on the analysis of dynamic changes at runtime, as
well as on the failures occurring during execution (due to the
sharing of common resources with other VMs and users).

VII. CONCLUSIONS

In this work, we described a collection of tools and data
that have enabled research in new methods and systems for the
management of scientific workflows. These resources include:
execution traces of real workflow applications from which
workflow and system characteristics such as resource usage
and failure profiles can be extracted; a synthetic workflow
generator that can produce realistic synthetic workflows based
on profiles extracted from execution traces; and a simula-
tor framework that can simulate the execution of synthetic
workflows on realistic distributed infrastructures. Some of
the research results have been implemented in the Pegasus
WMS [7]. For instance, the balanced task clustering algorithms
have been incorporated to address cases when the task runtime
variance within the workflow is high and the level-based
clustering fails.

Although the collection of tools and data proposed in this
work are linked to Pegasus WMS, the research process used
to integrate the resources can be extended to any WMS. In
addition, these tools are not limited to the Pegasus community,
since DAGs are used by many other WMS.

In the future we plan to extend the Workflow Generator
toolkit to support resource characteristic annotations and task
memory usage. We also plan to collect and publish failure
traces from a large number of workflow executions.
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