
Workflow fairness control on online and
non-clairvoyant distributed computing platforms

Rafael Ferreira da Silva1, Tristan Glatard1 and Frédéric Desprez2

1 University of Lyon, CNRS, INSERM, CREATIS, Villeurbanne, France
{rafael.silva,glatard}@creatis.insa-lyon.fr

2 INRIA, University of Lyon, LIP, ENS Lyon, Lyon, France
Frederic.Desprez@inria.fr

Abstract. Fairly allocating distributed computing resources among work-
flow executions is critical to multi-user platforms. However, this prob-
lem remains mostly studied in clairvoyant and offline conditions, where
task durations on resources are known, or the workload and available
resources do not vary along time. We consider a non-clairvoyant, online
fairness problem where the platform workload, task costs and resource
characteristics are unknown and not stationary. We propose a fairness
control loop which assigns task priorities based on the fraction of pend-
ing work in the workflows. Workflow characteristics and performance on
the target resources are estimated progressively, as information becomes
available during the execution. Our method is implemented and evalu-
ated on 4 different applications executed in production conditions on the
European Grid Infrastructure. Results show that our technique reduces
slowdown variability by 3 to 7 compared to first-come-first-served.

1 Introduction

The problem of fairly allocating computing resources to application workflows
rapidly arises on shared computing platforms such as grids or clouds. It must
be addressed whenever the demand for resources is higher than the offer, that
is, when some workflows are slowed down by concurrent executions. In some
cases, unfairness makes the platform totally unusable, for instance when very
short executions are launched concurrently with longer ones. We define fairness
as in [1,2,3], i.e. as the variability in a set of workflows of the slowdown Mmulti

Mown
,

where Mmulti is the makespan when concurrent executions are present, and
Mown is the makespan without concurrent executions.

We consider a software-as-a-service platform where users can, at any time,
launch application workflows that will compete for computing resources. Our
two main assumptions are (i) that the problem is online: new workflows can be
submitted at any time, and resources may also join or leave at any time, and (ii)
that the problem is non-clairvoyant : the execution time of a task on a given com-
puting resource is unknown. Non-clairvoyance comes from the lack of application
models in the platform and from the lack of information about the performance
of computing and network resources. We also assume a limited control on the
scheduler, i.e. that only task priorities can be changed to influence scheduling.



These conditions are representative of a large set of platforms, for instance the
Virtual Imaging Platform (VIP [4]) and other science gateways [5,6,7] deployed
on the European Grid Infrastructure (EGI3). These gateways offer applications
deployed as workflows on shared computing platforms, but they have no infor-
mation about when users will launch them and how long each task will last on
a given resource.

Fairness among workflow executions has been addressed in several studies
which, however, mostly assume clairvoyant conditions. For instance, the works
in [2,1,3,8,9,10] either directly minimize the slowdown (which assumes that
makespans can be predicted) or use heuristics assuming that task durations
and resources are known. A notable exception is found in [11], where a non-
clairvoyant algorithm is proposed: nevertheless, it is purely offline, assuming
that the tasks and resources are known and do not vary.

In this work, we propose an algorithm to control fairness on non-clairvoyant
online platforms. Based on a progressive discovery of applications’ character-
istics on the infrastructure, our method dynamically estimates the fraction of
pending work for each workflow. Task priorities are then adjusted to harmonize
this fraction among active workflows. This way, resources are allocated to appli-
cation workflows relatively to their amount of work to compute. The method is
implemented in VIP, and evaluated with different workflows, in production con-
ditions, on the EGI. We use the slowdown as a post-mortem metric, to evaluate
our method once execution times are known. Contributions of this paper are:
1. A new instantiation of our control loop [12] to handle unfairness, consisting

of (i) an online, non-clairvoyant fairness metric, and (ii) a task prioritization
algorithm.

2. Experiments demonstrating that this method improves fairness compared
to a first-come-first-served approach, in production conditions, and using 4
different applications.

The next section details our fairness control process, and section 3 presents
experiments and results.

2 Fairness control process

Workflows are directed graphs of activities spawning sequential tasks for which
the executable and input data are known, but the computational cost and pro-
duced data volume are not. Workflow graphs may include conditional and loop
operators . Algorithm 1 summarizes our fairness control process. Fairness is con-
trolled by allocating resources to workflows according to their fraction of pending
work. It is done by re-prioritising tasks in workflows where the unfairness de-
gree ηu is greater than a threshold τu. This section describes how ηu and τu are
computed, and details the re-prioritization algorithm.

Measuring unfairness: ηu. Let m be the number of workflows with an active
activity; a workflow activity is active if it has at least one waiting (queued) or

3 http://www.egi.eu

http://www.egi.eu


Algorithm 1 Main loop for fairness control
1: input: m workflow executions
2: while there is an active workflow do
3: wait for timeout or task status change in any workflow
4: determine unfairness degree ηu
5: if ηu >τu then
6: re-prioritize tasks using Algorithm 2
7: end if
8: end while

running task. The unfairness degree ηu is the maximum difference between the
fractions of pending work:

ηu = Wmax −Wmin, (1)

with Wmin = min{Wi, i ∈ [1,m]} and Wmax = max{Wi, i ∈ [1,m]}. All Wi are
in [0, 1]. For ηu = 0, we consider that resources are fairly distributed among all
workflows; otherwise, some workflows consume more resources than they should.
The fraction of pending work Wi of a workflow i ∈ [1,m] is defined from the
fraction of pending work wi,j of its ni active activities:

Wi = max
j∈[1,ni]

(wi,j) (2)

All wi,j are between 0 and 1. A high wi,j value indicates that the activity has a
lot of pending work compared to the others. We define wi,j as:

wi,j =
Qi,j

Qi,j +Ri,jPi,j
· T̂i,j , (3)

where Qi,j is the number of waiting tasks in the activity, Ri,j is the number of

running tasks in the activity, Pi,j is the performance of the activity, and T̂i,j is

its relative observed duration. T̂i,j is defined as the ratio between the median
duration t̃i,j of the completed tasks in activity j and the maximum median task
duration among all active activities of all running workflows:

T̂i,j =
t̃i,j

maxv∈[1,m],w∈[1,n∗i ](t̃v,w)
(4)

Tasks of an activity all consist of the following successive phases: setup, inputs
download, application execution and outputs upload; t̃i,j is computed as

t̃i,j = t̃setupi,j + t̃inputi,j + t̃execi,j + t̃outputi,j . Medians are progressively estimated as

tasks complete. At the beginning of the execution, T̂i,j is initialized to 1 and all
medians are undefined; when two tasks of activity j complete, t̃i,j is updated

and T̂i,j is computed with equation 4. In this equation, the max operator is
computed only on n∗i ≤ ni activities with at least 2 completed tasks, i.e. for
which t̃i,j can be determined. We are aware that using the median may be
inaccurate. However, without a model of the applications’ execution time, we
must rely on observed task durations. Using the whole time distribution (or at
least its few first moments) may be more accurate but it would complexify the
method.



In Eq. 3, the performance Pi,j of an activity varies between 0 and 1. A low
Pi,j indicates that resources allocated to the activity have bad performance for
the activity; in this case, the contribution of running tasks is reduced and wi,j
increases. Conversely, a high Pi,j increases the contribution of running tasks,
therefore decreases wi,j . For an activity j with kj active tasks, we define Pi,j as:

Pi,j = 2

(
1− max

u∈[1,kj ]

{
tu

t̃i,j + tu

})
, (5)

where tu = tsetupu + tinputu + texecu + toutputu is the sum of the estimated durations
of task u’s phases. Estimated task phase durations are computed as the max
between the current elapsed time in the task phase (0 if the task phase has not
started) and the median duration of the task phase. Pi,j is initialized to 1, and
updated using Eq. 5 only when at least 2 tasks of activity j are completed.

If all tasks perform as the median, i.e. tu = t̃i,j , then maxu∈[1,kj ]

{
tu

t̃i,j+tu

}
=

0.5 and Pi,j = 1. Conversely, if a task in the activity is much longer than the

median, i.e. tu � t̃i,j , then maxu∈[1,kj ]

{
tu

t̃i,j+tu

}
≈ 1 and Pi,j ≈ 0. This def-

inition of Pi,j , considers that bad performance results in a few tasks blocking
the activity. Indeed, we assume that the scheduler doesn’t deliberately favor any
activity and that performance discrepancies are manifested by a few “unlucky”
tasks slowed down by bad resources. Performance, in this case, has a relative
definition: depending on the activity profile, it can correspond to CPU, RAM,
network bandwidth, latency, or a combination of those. We admit that this def-
inition of Pi,j is a bit rough. However, under our non-clairvoyance assumption,
estimating resource performance for the activity more accurately is hardly pos-
sible because (i) we have no model of the application, therefore task durations
cannot be predicted from CPU, RAM or network characteristics, and (ii) net-
work characteristics and even available RAM are shared among concurrent tasks
running on the infrastructure, which makes them hardly measurable.

Thresholding unfairness: τu. Task prioritisation is triggered when the unfair-
ness degree is considered critical, i.e ηu > τu. Thresholding consists in clustering
platform configurations in two groups: one for which unfairness is considered
acceptable, and one for which task re-prioritization is needed. We determine τu
from execution traces, for which different thresholding approaches can be used.
For instance, we could consider that x% of the platform configurations are un-
fair while the rest are acceptable. The choice of x, however, would be arbitrary.
Instead, we inspect the modes of the distribution of ηu to determine a threshold
with a practical justification: values of ηu in the highest mode of the distribution,
i.e. which are clearly separated from the others, will be considered unfair.

In this work, the distribution of ηu is measured from traces collected in VIP
between January 2011 and April 2012 [13]. The data set contains 680, 988 tasks
(including resubmissions and replications) of 2, 941 workflow executions executed
by 112 users; task average queueing time is about 36 min. Applications deployed
in VIP are described as GWENDIA workflows [14] executed using the MOTEUR
workflow engine [15]. Resource provisioning and task scheduling are provided by



0

10

20

30

40

50

UK France
Italy

Germany

Netherlands
Greece

Spain
Portugal

Croatia
Poland

Bulgaria
Turkey

Brazil
FYROM

Other (1 site)

F
re

qu
en

cy

Batch queues
Sites

ηu

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
6e

+
04

Fig. 1. Distribution of sites and batch queues per country in the biomed VO (January
2013) (left) and histogram of the unfairness degree ηu sampled in bins of 0.05 (right).

DIRAC [16]. Resources are provisioned online with no advance reservations.
Tasks are executed on the biomed virtual organization (VO) of the European
Grid Infrastructure (EGI) which has access to some 150 computing sites world-
wide and to 120 storage sites providing approximately 4 PB of storage. Fig. 1
(left) shows the distribution of sites per country supporting the biomed VO.

The unfairness degree ηu was computed after each event found in the data
set. Fig. 1 (right) shows the histogram of these values, where only ηu 6= 0 values
are represented. This histogram is clearly bi-modal, which is a good property
since it reduces the influence of τu. From this histogram, we choose τu = 0.2.
For ηu > 0.2, task prioritization is triggered.

Task prioritization. The action taken to cope with unfairness is to increase the
priority of ∆i,j waiting tasks for all activities j of workflow i where wi,j−Wmin >
τu. Running tasks cannot be pre-empted. Task priority is an integer initialized
to 1. ∆i,j is determined so that w̃i,j = Wmin + τu, where w̃i,j is the estimated
value of wi,j after ∆i,j tasks are prioritized. We approximate w̃i,j as:

w̃i,j =
Qi,j −∆i,j

Qi,j +Ri,jPi,j
T̂i,j ,

which assumes that ∆i,j tasks will move from status queued to running, and
that the performance of new resources will be maximal. It gives:

∆i,j = Qi,j −

⌊
(τu +Wmin)(Qi,j +Ri,jPi,j)

T̂i,j

⌋
, (6)

where bc rounds a decimal down to the nearest integer value.
Algorithm 2 describes our task re-prioritization. maxPriority is the maximal

priority value in all workflows. The priority of ∆i,j waiting tasks is set to maxPri-
ority+1 in all activities j of workflows i where wi,j −Wmin > τu. Note that this
algorithm takes into account scatter among Wi although ηu ignores it (see Eq. 1).
Indeed, tasks are re-prioritized in any workflow i for which Wi −Wmin > τu.

The method also accommodates online conditions. If a new workflow i is sub-
mitted, then Ri,j = 0 for all its activities and T̂i,j is initialized to 1. This leads
to Wmax = Wi = 1, which increases ηu. If ηu goes beyond τu, then ∆i,j tasks of
activity j of workflow i have their priorities increased to restore fairness. Simi-
larly, if new resources arrive, then Ri,j increase and ηu is updated accordingly.
Table 1 illustrates the method on a simple example.

3 Experiments and results

Experiments are performed on a production grid platform to ensure realistic
conditions. Evaluating fairness in production by measuring the slowdown is not



Algorithm 2 Task re-prioritization
1: input: W1 to Wm //fractions of pending works
2: maxPriority = max task priority in all workflows
3: for i=1 to m do
4: if Wi −Wmin > τu then
5: for j=1 to ai do
6: //ai is the number of active activities in workflow i
7: if wi,j −Wmin > τu then
8: Compute ∆i,j from equation 6
9: for p=1 to ∆i,j do

10: if ∃ waiting task q in activity j with priority ≤ maxPriority then
11: q.priority = maxPriority + 1
12: end if
13: end for
14: end if
15: end for
16: end if
17: end for

straightforward because Mown (see definition in the introduction) cannot be di-
rectly measured. As described in Section 3.1, we estimate the slowdown from
task durations, but this estimation may be challenged. Thus, Experiment 1 eval-
uates our method on a set of identical workflows, where the variability of the
measured makespan can be used as a fairness metric. In Experiment 2, we add
a very short workflow to this set of identical workflow, which was one of the
configurations motivating this study. Finally, Experiment 3 considers the more
general case of 4 different workflows with heterogeneous durations.

3.1 Experiment conditions

Fairness control was implemented as a MOTEUR plugin receiving notifications
about task and workflow status changes. Each workflow plugin forwards task
status changes and t̃i,j values to a service centralizing information about all the
active workflows. This service then re-prioritizes tasks according to Algorithms 1
and 2. As no online task modification is possible in DIRAC, we implemented task
prioritization by canceling and resubmitting queued tasks to DIRAC with new
priorities. This implementation decision adds an overhead to task executions.
Therefore, the timeout value used in Algorithm 1 is set to 3 minutes.

The computing platform for these experiments is the biomed VO used to
determine τu in Section 2. To ensure resource limitation without flooding the
production system, experiments are performed only on 3 sites of different coun-
tries (France, Spain and Netherlands). Four real medical simulation workflows
are considered: GATE [17], SimuBloch, FIELD-II [18], and PET-Sorteo [19]; their
main characteristics are summarized on Table 2.

Three experiments are conducted. Experiment 1 tests whether unfairness
among identical workflows is properly addressed. It consists of three GATE work-
flows sequentially submitted, as users usually do in the platform. Experiment 2
tests if the performance of very short workflow executions is improved by the
fairness mechanism. Its workflow set has three GATE workflows launched sequen-
tially, followed by a SimuBloch workflow. Experiment 3 tests whether unfair-
ness among different workflows is detected and properly handled. Its workflow



Let’s consider two identical workflows composed of one activity with 6 tasks,
and assume the following values at time t:

i Qi,1 Ri,1 t̃i,1 Pi,1 T̂i,1 Wi = wi,1
1 1 3 10 0.9 1.0 0.27
2 6 0 - 1.0 1.0 1.00

Values unknown at time t are noted ’-’. Workflow 1 has 2 completed and 3 running tasks
with the following phase durations (in arbitrary time units):

u tsetupu tinputu texecu toutputu tu
1 2 2 4 1 9
2 1 2 3 2 8
3 2 3 5 - -
4 2 2 - - -
5 1 - - - -

,
We have t̃setup1,1 = 2, t̃input1,1 = 2, t̃exec1,1 =

4 and t̃output1,1 = 2. Therefore, t̃1,1 = 10.

The configuration is clearly unfair since workflow 2 has not started tasks.
Eq. 1 gives ηu = 0.73. As ηu > τu = 0.2, the platform is considered unfair and task
re-prioritization is triggered.

∆2,1 tasks from workflow 2 should be prioritized. According to Eq. 6:

∆2,1 = Q2,1 −
⌊

(τu+W1)(Q2,1+R2,1P2,1)

T̂2,1

⌋
= 6−

⌊
(0.2+0.27)(6+0·1.0)

1.0

⌋
= 4

At time t′ > t:
i Qi,1 Ri,1 t̃i,1 Pi,1 T̂i,1 Wi = wi,1
1 1 3 10 0.8 1.0 0.29
2 2 4 - 1.0 1.0 0.33

.

Now, ηu = 0.04 < τu. The platform is considered fair and no action is performed.

Table 1. Example

set consists of a GATE, a FIELD-II, a PET-Sorteo and a SimuBloch workflow
launched sequentially.

For each experiment, a workflow set using our fairness mechanism (Fairness
– F) is compared to a control workflow set (No-Fairness – NF). No method
from the literature could be included in the comparison because, as mentioned
in the introduction, they are either non-clairvoyant or offline. Fairness and
No-Fairness are launched simultaneously to ensure similar grid conditions.
For each task priority increase in the Fairness workflow set, a task in the
No-Fairness workflow set task queue is also prioritized to ensure equal race
conditions for resource allocation. Experiment results are not influenced by the
re-submission process overhead since both Fairness and No-Fairness experi-
ence the same overhead. Four repetitions of each experiment are done, along a
time period of four weeks to cover different grid conditions. Grid conditions vary
among repetitions because computing, storage and network resources are shared
with other users . We use MOTEUR 0.9.21, configured to resubmit failed tasks
up to 5 times, and with the task replication mechanism described in [12] acti-
vated. We use the DIRAC v6r5p1 instance provided by France-Grilles4, with a

4 https://dirac.france-grilles.fr

Workflow #Tasks CPU time Input Output
GATE (CPU-intensive) 100 few minutes to one hour ∼115 MB ∼40 MB
SimuBloch (data-intensive) 25 few seconds ∼15 MB < 5 MB
FIELD-II (data-intensive) 122 few seconds to 15 minutes ∼208 MB ∼40 KB
PET-Sorteo (CPU-intensive) 1→80→1→80→1→1 ∼10 minutes ∼20 MB ∼50 MB

Table 2. Workflow characteristics (→ indicate task dependencies).

https://dirac.france-grilles.fr


first-come, first-served policy imposed by submitting workflows with decreasing
priority values.

Two different fairness metrics are used. The unfairness µ is the area under
the curve ηu during the execution:

µ =

M∑
i=2

ηu(ti) · (ti − ti−1),

where M is the number of time samples until the makespan. This metric mea-
sures if the fairness process can indeed minimize its own criterion ηu. In addition,
the slowdown s of a completed workflow execution is defined by:

s =
Mmulti

Mown

where Mmulti is the makespan observed on the shared platform, and Mown is the
estimated makespan if it was executed alone on the platform. In our conditions,
Mown is estimated as:

Mown = max
p∈Ω

∑
u∈p

tu,

where Ω is the set of task paths in the workflow, and tu is the measured duration
of task u. This assumes that concurrent executions only impact task waiting time,
not performance. For instance, network congestion or changes in performance
distribution resulting from concurrent executions are ignored. We use σs, the
standard deviation of the slowdown to quantify the unfairness. In Experiment 1,
the standard deviation of the makespan (σm) is also used.

3.2 Results and discussion

Experiment 1 (identical workflows): Fig. 2 shows the makespan, unfairness de-
gree ηu, makespan standard deviation σm, slowdown standard deviation σs and
unfairness µ for the 4 repetitions. The difference among makespans and unfair-
ness degree values are significantly reduced in all repetitions of Fairness. Both
Fairness and No-Fairness behave similarly until ηu reaches the threshold value
τu = 0.2. Unfairness is then detected and the mechanism triggers task prioritiza-
tion. Paradoxically, the first effect of task prioritization is a slight increase of ηu.
Indeed, Pi,j and T̂i,j , that are initialized to 1, start changing earlier in Fairness

than in No-Fairness due to the availability of task duration values to compute
t̃i,j . Note that ηu reaches similar maximal values in both cases, but reaches them
faster in Fairness. The fairness mechanism then manages to decrease ηu back
under 0.2 much faster than it happens in No-Fairness when tasks progressively
complete. Finally, slight increases of ηu are sporadically observed towards the
end of the execution. This is due to task replications performed by MOTEUR:
when new tasks are created, the fraction of pending work W increases, which
has an effect on ηu. Quantitatively, the fairness mechanism reduces σm up to a
factor of 15, σs up to a factor of 7, and µ by about 2.

Experiment 2 (very short execution): Fig. 3 shows the makespan, unfair-
ness degree ηu, unfairness µ and slowdown standard deviation. In all cases, the



Repetition 1 Repetition 2 Repetition 3 Repetition 4

0

10000

20000

30000

Fairness No−Fairness Fairness No−Fairness Fairness No−Fairness Fairness No−Fairness

M
ak

es
pa

n 
(s

)

Gate 1

Gate 2

Gate 3

Repetition 1 Repetition 2 Repetition 3 Repetition 4

0.00

0.25

0.50

0.75

1.00

0 10000 20000 300000 5000 10000 15000 200000 10000 20000 30000 0 500010000150002000025000
Time (s)

η f Fairness

No−Fairness

Repetition 1
σm(s) σs µ(s)

NF 4666 1.03 8758
F 1884 0.40 5292

Repetition 2
σm(s) σs µ(s)

NF 2541 0.50 4154
F 167 0.07 2367

Repetition 3
σm(s) σs µ(s)

NF 5791 2.10 13392
F 2007 0.84 7243

Repetition 4
σm(s) σs µ(s)

NF 1567 0.87 12283
F 706 0.24 6070

Fig. 2. Experiment 1 (identical workflows). Top: comparison of the makespans; middle:
unfairness degree ηu; bottom: makespan standard deviation σm, slowdown standard
deviation σs and unfairness µ.

makespan of the very short SimuBloch executions is significantly reduced for
Fairness. The evolution of ηu is coherent with Experiment 1: a common ini-
tialization phase followed by an anticipated growth and decrease for Fairness.
Fairness reduces σs up to a factor of 5.9 and unfairness up to a factor of 1.9.

Table 3 shows the execution makespan (m), average wait time (w̄) and slow-
down (s) values for the SimuBloch execution launched after the 3 GATE. As it
is a non-clairvoyant scenario where no information about task execution time
and future task submission is known, the fairness mechanism is not able to give
higher priorities to SimuBloch tasks in advance. Despite that, the fairness mech-
anism speeds up SimuBloch executions up to a factor of 2.9, reduces task average
wait time up to factor of 4.4 and reduces slowdown up to a factor of 5.9.

Experiment 3 (different workflows): Fig. 4 shows slowdown, unfairness de-
gree, unfairness µ and slowdown standard deviation σs for the 4 repetitions.
Fairness slows down GATE while it speeds up all other workflows. This is be-
cause GATE is the longest and the first to be submitted; in No-Fairness, it is
favored by resource allocation to the detriment of other workflows. The evolution
of ηu is similar to Experiments 1 and 2. σs is reduced up to a factor of 3.8 and
unfairness up to a factor of 1.9.

In all 3 experiments, fairness optimization takes time to begin because the
method needs to acquire information about the applications which are totally
unknown when a workflow is launched. We could think of reducing the time
of this information-collecting phase, e.g. by designing initialization strategies
maximizing information discovery, but it couldn’t be totally removed. Currently,
the method works best for applications with a lot of short tasks because the first
few tasks can be used for initialization, and optimization can be exploited for the



Repetition 1 Repetition 2 Repetition 3 Repetition 4

0

20000

40000

60000

Fairness No−Fairness Fairness No−Fairness Fairness No−Fairness Fairness No−Fairness

M
ak

es
pa

n 
(s

)
Gate 1

Gate 2

Gate 3

SimuBloch

Repetition 1 Repetition 2 Repetition 3 Repetition 4

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000 0 10000200003000040000 0 10000 20000 0 20000 40000 60000
Time (s)

η f Fairness

No−Fairness

Repetition 1

σs µ(s)
NF 94.88 17269
F 15.95 9085

Repetition 2

σs µ(s)
NF 100.05 16048
F 42.94 12543

Repetition 3

σs µ(s)
NF 87.93 11331
F 57.62 7721

Repetition 4

σs µ(s)
NF 213.60 28190
F 76.69 21355

Fig. 3. Experiment 2 (very short execution). Top: comparison of the makespans; mid-
dle: unfairness degree ηu; bottom: unfairness µ and slowdown standard deviation.

Run Type m (secs) w̄ (secs) s

1
No-Fairness 27854 18983 196.15
Fairness 9531 4313 38.43

2
No-Fairness 27784 19105 210.48
Fairness 13761 10538 94.25

3
No-Fairness 14432 13579 182.68
Fairness 9902 8145 122.25

4
No-Fairness 51664 47591 445.38
Fairness 38630 27795 165.79

Table 3. Experiment 2: SimuBloch’s makespan, average wait time and slowdown.

remaining tasks. The worst-case scenario is a configuration where the number
of available resources stays constant and equal to the number of tasks in the
first submitted workflow: in this case, no action could be taken until the first
workflow completes, and the method would not do better than first-come-first-
served. Pre-emption of running tasks should be considered to address that.

4 Conclusion

We presented a method to address unfairness among workflow executions in an
online and non-clairvoyant environment. We defined a novel metric ηu quantify-
ing unfairness based on the fraction of pending work in a workflow. It compares
workflow activities based on their ratio of queuing tasks, their relative durations,
and the performance of resources where tasks are running. Performance is de-
fined from the variability of task duration in the activity: good performance is
assumed to lead to homogeneous task durations. To separate fair configurations
from unfair ones, a threshold on ηu was determined from platform traces. Unfair
configurations are handled by increasing the priority of pending tasks in the least



Repetition 1 Repetition 2 Repetition 3 Repetition 4

1

10

100

Fairness No−Fairness Fairness No−Fairness Fairness No−Fairness Fairness No−Fairness

S
lo

w
do

w
n FIELD−II

Gate

PET−Sorteo

SimuBloch

Repetition 1 Repetition 2 Repetition 3 Repetition 4

0.00

0.25

0.50

0.75

1.00

0 5000 100001500020000 0 10000 20000 0 20000 40000 0 5000100001500020000
Time (s)

η f Fairness

No−Fairness

Repetition 1

σs µ (s)
NF 40.29 4443
F 10.52 2689

Repetition 2

σs µ (s)
NF 192.58 4004
F 58.83 2653

Repetition 3

σs µ (s)
NF 81.81 25173
F 60.56 18537

Repetition 4

σs µ (s)
NF 11.61 6613
F 8.10 3303

Fig. 4. Experiment 3 (different workflows). Top: comparison of the slowdown; middle:
unfairness degree ηu; bottom: unfairness µ and slowdown standard deviation.

performing workflows. This is done by estimating the number of running tasks
that these workflows should have to bring ηu under the threshold value.

The method was implemented in the MOTEUR workflow engine and de-
ployed on EGI with the DIRAC resource manager. We tested it on four appli-
cations extracted from VIP, a science gateway for medical simulation used in
production. Three experiments were conducted, to evaluate the capability of the
method to improve fairness (i) on identical workflows, (ii) on workflow sets con-
taining a very short execution and (iii) on different workflows. In all cases, results
showed that our method can very significantly reduce the standard deviation of
the slowdown, and the average value of our metric ηu.

The work presented here is a step in our attempt to control computing plat-
forms where very little is known about applications and resources, and where
situations change over time. Our works in [12,20] consider similar platform con-
ditions but they target completely different problems, namely fault-tolerance
and granularity control. We believe that results of this paper are the first ones
presented to control fairness in such conditions which are often met in produc-
tion platforms. Future work could include task pre-emption in the method, and
a sensitivity analysis on the influence of the relative task duration (Ti,j) and of
the performance factor (Pi,j).

5 Acknowledgment

This work is funded by the French National Agency for Research under grant ANR-
09-COSI-03 “VIP”. The research leading to this publication has also received funding
from the EC FP7 Programme under grant agreement 312579 ER-flow = Building an
European Research Community through Interoperable Workflows and Data. Results
obtained in this paper were computed on the biomed virtual organization of the Eu-



ropean Grid Infrastructure (http://www.egi.eu). We thank the European Grid Infras-
tructure and its supporting National Grid Initiatives, in particular France-Grilles, for
providing the technical support, computing and storage facilities.

References

1. N’Takpe, T., Suter, F.: Concurrent scheduling of parallel task graphs on multi-
clusters using constrained resource allocations. IPDPS ’09 (2009) 1–8

2. Zhao, H., Sakellariou, R.: Scheduling multiple DAGs onto heterogeneous systems.
IPDPS’06 (2006) 159–159

3. Casanova, H., Desprez, F., Suter, F.: On cluster resource allocation for multiple
parallel task graphs. J. of Par. and Dist. Computing 70(12) (2010) 1193 – 1203

4. Glatard, T., et al.: A virtual imaging platform for multi-modality medical image
simulation. IEEE Trans Med Imaging 32 (2013) 110–118

5. Shahand, S., et al.: Front-ends to Biomedical Data Analysis on Grids. In: Pro-
ceedings of HealthGrid 2011, Bristol, UK (june 2011)

6. Kacsuk, P.: P-GRADE Portal Family for Grid Infrastructures. Concurrency and
Computation: Practice and Experience 23(3) (2011) 235–245

7. Barbera, R., et al.: Supporting e-science applications on e-infrastructures: Some
use cases from latin america. In: Grid Computing. (2011) 33–55

8. Hsu, C.C., Huang, K.C., Wang, F.J.: Online scheduling of workflow applications
in grid environments. Fut. Gen. Computer Systems 27(6) (2011) 860 – 870

9. Arabnejad, H., Barbosa, J.: Fairness resource sharing for dynamic workflow
scheduling on heterogeneous systems. In: ISPA’12. (july 2012) 633 –639

10. Sabin, G., Kochhar, G., Sadayappan, P.: Job fairness in non-preemptive job
scheduling. ICPP’04 (2004) 186–194

11. Hirales-Carbajal, A., et al: Multiple workflow scheduling strategies with user run
time estimates on a grid. Journal of Grid Computing 10 (2012) 325–346

12. Ferreira da Silva, R., Glatard, T., Desprez, F.: Self-healing of operational workflow
incidents on distributed computing infrastructures. CCGrid’12 (2012) 318–325

13. Ferreira da Silva, R., Glatard, T.: A Science-Gateway Workload Archive to Study
Pilot Jobs, User Activity, Bag of Tasks, Task Sub-Steps, and Workflow Executions.
In: CoreGRID/ERCIM Workshop on Grids, Clouds and P2P Computing. (2012)

14. Montagnat, J., et al.: A data-driven workflow language for grids based on array
programming principles. In: WORKS’09. , Portland, USA, ACM (2009) 1–10

15. Glatard, T., et al.: Flexible and Efficient Workflow Deployment of Data-Intensive
Applications on Grids with MOTEUR. IJHPCA 22(3) (August 2008) 347–360

16. Tsaregorodtsev, A., et al.: DIRAC3. The New Generation of the LHCb Grid
Software. Journal of Physics: Conference Series 219(6) (2009) 062029

17. Jan, S., et al.: Gate v6: a major enhancement of the gate simulation platform
enabling modelling of ct and radiotherapy. Phys. in Med. and Biol. 56(4) (2011)
881–901

18. Jensen, J., Svendsen, N.B.: Calculation of pressure fields from arbitrarily shaped,
apodized, and excited ultrasound transducers. IEEE UFFC 39(2) (1992) 262–267

19. Reilhac, A., et al.: PET-SORTEO: Validation and Development of Database of
Simulated PET Volumes. IEEE Trans. on Nuclear Science 52 (2005) 1321–1328

20. Ferreira da Silva, R., Glatard, T., Desprez, F.: On-line, non-clairvoyant optimisa-
tion of task granularity in distributed workflows. Euro-Par 2013, to appear (2013)


	Workflow fairness control on online and non-clairvoyant distributed computing platforms

