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Abstract

Distributed computing infrastructures are commonly used through scientific gate-
ways, but operating these gateways requires important human intervention to handle
operational incidents. This paper presents a self-healing process that quantifies incident
degrees of workflow activities from metrics measuring long-tail effect, application effi-
ciency, data transfer issues, and site-specific problems. These metrics are simple enough
to be computed online and they make little assumptions on the application or resource
characteristics. From their degree, incidents are classified in levels and associated to
sets of healing actions that are selected based on association rules modeling correlations
between incident levels. We specifically study the long-tail effect issue, and propose a
new algorithm to control task replication. The healing process is parametrized on real
application traces acquired in production on the European Grid Infrastructure. Experi-
mental results obtained in the Virtual Imaging Platform show that the proposed method
speeds up execution up to a factor of 4, consumes up to 26% less resource time than a
control execution and properly detects unrecoverable errors.

Keywords: error detection and handling, workflow execution, production distributed
systems

1. Introduction

Distributed computing infrastructures (DCI) are becoming daily instruments of sci-
entific research, in particular through scientific gateways [1] developed to allow scientists
to transparently run their analyses on large sets of computing resources. While these
platforms provide important amounts of resources in an almost seamless way, their large
scale and the number of middleware systems involved lead to many errors and faults.
Easy-to-use interfaces provided by these gateways exacerbate the need for properly solv-
ing operational incidents encountered on DCIs since end users expect high reliability and
performance with no extra monitoring or parametrization from their side. In practice,
such services are often backed by substantial support staff who monitors running exper-
iments by performing simple yet crucial actions such as rescheduling tasks, restarting
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services, killing misbehaving runs or replicating data files to reliable storage facilities.
Fair QoS can then be delivered, yet with important human intervention.

For instance, the long-tail effect [2] is a common frustration for users who have to
wait for a long time to retrieve the last few pieces of their computations. Operators may
be able to address it by rescheduling tasks that are considered late (e.g. due to execution
on a slow machine, low network throughput or just loss of contact) but detection is very
time consuming and still approximate.

Automating such operations is challenging for two reasons. First, the problem is
online by nature because no reliable user activity prediction can be assumed, and new
workloads may arrive at any time. Therefore, the considered metrics, decisions and
actions have to remain simple and to yield results while the application is still execut-
ing. Second, it is non-clairvoyant due to the lack of information about applications and
resources in production conditions. Computing resources are usually dynamically provi-
sioned from heterogeneous clusters, clouds or desktop grids without any reliable estimate
of their availability and characteristics. Models of application execution times are hardly
available either, in particular on heterogeneous computing resources.

A scientific gateway is considered here as a platform where users can process their
own data with predefined applications workflows. Workflows are compositions of activ-
ities defined independently from the processed data and that only consist of a program
description. At runtime, activities receive data and spawn invocations from their input
parameter sets. Invocations are assumed independent from each other (bag of tasks) and
executed on the DCI as single-core tasks which can be resubmitted in case of failures.
This model fits several existing gateways such as e-bioinfra [3], P-Grade [4], and the
Virtual Imaging Platform [5]. We also consider that files involved in workflow executions
are accessed through a single file catalog but that storage is distributed. Files may be
replicated to improve availability and reduce load on servers.

The gateway may take decisions on file replication, resource provisioning, and task
scheduling on behalf of the user. Performance optimization is a target but the main point
is to ensure that correctly-defined executions complete, that performance is acceptable,
and that misbehaving runs (e.g. failures coming from user errors or unrecoverable infras-
tructure downtimes) are quickly detected and stopped before they consume too many
resources.

Our ultimate goal is to reach a general model of such a scientific gateway that could
autonomously detect and handle operational incidents. In this work, we propose a heal-
ing process for workflow activities only. Activities are modeled as Fuzzy Finite State
Machines (FuSM) [6] where state degrees of membership are determined by an external
healing process. Degrees of membership are computed from metrics assuming that inci-
dents have outlier performance, e.g. a site or a particular invocation behaves differently
than the others. Based on incident degrees, the healing process identifies incident levels
using thresholds determined from platform history. A specific set of actions is then se-
lected from association rules among incident levels. We specifically study the long-tail
effect issue, and propose a new algorithm to control task replication.

Section 2 presents related work. Our approach is described in section 3 (general
healing process), section 4 (metrics used to quantify incident degrees), section 5 (iden-
tification of incident levels), and section 6 (actions). Experimental results are presented
in section 7 in production conditions.
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2. Related Work

Managing systems with limited intervention of system administrators is the goal of
autonomic computing [7], which has been used to address various problems related to self-
healing, self-configuration, self-optimization, and self-protection of distributed systems.
For instance, provisioning of virtual machines is studied by Nguyen et al. [8] and an
approach to tackle service overload, queue starvation, “black hole” effect and job failures
is sketched by Collet et al. [9].

An autonomic manager can be described as a so-called MAPE-K loop which consists
of monitoring (M), analysis (A), planning (P), execution (E) and knowledge (K). Generic
software frameworks were built to wrap legacy applications in such loops with limited
intrusiveness. For instance, Broto et al. [10] demonstrate the wrapping of DIET grid
services for autonomic deployment and configuration. We consider here that the target
gateway can be instrumented to report appropriate events and to perform predefined
actions.

Monitoring is broadly studied in distributed systems, both at coarse (traces, archives)
and fine time scales (active monitoring, probing). Many workload archives are available.
In particular, the grid observatory [11] has been collecting traces for a few years on several
grids. However, as noted by Iosup and Epema [12], most existing traces remain at the
task level and lack information about workflows and activities. Application patterns
can be retrieved from logs (e.g. bag of tasks) but precise information about workflow
activities is bound to be missing. Studies on task errors and their distributions are also
available [13, 14], but they do not consider operational issues encountered by the gateways
submitting these tasks. Besides, active monitoring using tools such as Nagios [15] cannot
be the only monitoring source when substantial workloads are involved. Therefore, we
rely on traces of the target gateway, as detailed in section 5. One issue in this case is to
determine the timespan where system behavior can be considered steady-state. Although
this issue was recently investigated [16], it remains difficult to identify non-stationarities
in an online process and we adopt a stationary model here.

Analysis consists in computing metrics (a.k.a. utility functions) from monitoring data
to characterize the state of the system. System state usually distinguishes two regimes:
properly functioning and misfunctioning. Zhang et al. [17] assume that incidents lead
to non-stationarity of the workload statistics and use the Page-Hinkely test to detect
them. Stehle et al. [18] present a method where the convex hull is used instead of hyper-
rectangles to classify system states. As described in section 5, we use multiple threshold
values for a given metric to use more than two levels to characterize incidents.

Planning and actions considered in this work deal with task scheduling and file repli-
cation. Most scheduling approaches are clairvoyant, meaning that resource, task, error
rate and workload characteristics are precisely known [19, 20]. The heuristics designed
by Casanova et al. [21] for the case where only data transfer costs are known are an
exception, on an offline problem though. Quintin and Wagner [22] also propose an on-
line task scheduling algorithm where only some characteristics of the application DAG
are known. Camarasu-Pop et al. [23] propose a non-clairvoyant load-balancing strategy
to remove the long-tail effect in production heterogeneous systems, but it is limited to
Monte-Carlo simulations.

The general task scheduling problem is out of our scope. We assume that a scheduler
is already in place, and we only aim at performing actions when it does not deliver
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expected performance. In particular, we focus on site blacklisting and on dynamic task
replication [24] to avoid the long-tail effect.

Task replication, a.k.a. redundant requests is commonly used to address non-clairvoyant
problems [2], but it should be used sparingly, to avoid overloading the middleware and
degrading fairness among users [25]. In this work, task replication is considered only
when activities are detected blocked according to the metric presented in section 4. An
important aspect to be evaluated is the resource waste, a.k.a. the cost of task replication.
Cirne et al. [2] evaluate the waste of resources by measuring the percentage of wasted
cycles among all the cycles required to execute the application.

File replication strategies also often assume clairvoyance on the size of produced data,
file access pattern and infrastructure parameters [26, 27]. In practice, production systems
mostly remain limited to manual replication strategies [28].

3. General Healing Process

An activity is modeled as an FuSM with 13 states shown on Figure 1. The activity is
initialized in Submitting Invocations where all the tasks are generated and submitted.
Tasks consist of 4 successive phases: initialization, inputs download, application execu-
tion and output upload. They are all assumed independent, but with similar execution
times (bag of tasks). Running is a state where no particular issue is detected; no action
is taken and the activity is assumed to behave normally. Completed (resp. Failed) is
a terminal state used when all the invocations are successfully completed (resp. at least
one invocation failed). These 4 states are crisp (not fuzzy) and exclusive. Their degree
can only be 0 or 1 and if 1 then all the other states have a degree of 0. The 9 other states
are fuzzy states corresponding to detected incidents.

The healing process sets the degree of FuSM states from incident detection metrics
and invocation statuses. Then, it determines actions to address the incidents. If no
action is required then the process waits until an event occurs (task status change) or a
timeout is reached.

Let I = {xi, i = 1, . . . , n} be the set of possible incidents (9 in this work) and
η = (η1, . . . , ηn) ∈ [0, 1]n their degrees in the FuSM. Incident xi can occur at mi different
levels {xi,j , j = 1, . . . ,mi} delimited by threshold values τi = {τi,j , j = 1, . . . ,mi}. The
level of incident i is determined by j such that τi,j ≤ ηi < τi,j+1. A set of actions ai(j)
is available to address xi,j :

ai : [1,mi]→ ℘(A)

j 7→ ai(j) (1)

where A is the set of possible actions taken by the healing process and ℘(A) is the power
set of A.

In addition to the incidents themselves, incident causes are taken into account. As-
sociation rules [29] are used to identify relations between levels of different incidents.
Association rules to xi,j are defined as Ri,j = {ru,vi,j = (xu,v, xi,j , ρ

u,v
i,j )}. Rule ru,vi,j means

that when xu,v happens then xi,j also happens with confidence ρu,vi,j ∈ [0, 1]. The con-

fidence of a rule is an estimate of probability P (xi,j |xu,v). Note that ri,ji,j ∈ Ri,j and

ρi,ji,j = 1. We also define R =
⋃

i∈J1,nK,j∈J1,miKRi,j .
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Figure 1: Fuzzy Finite State Machine (FuSM) representing an activity.

Figure 2 presents the algorithm used at each iteration of the healing process. Incident
degrees are determined based on metrics presented in section 4 and incident levels j are
obtained from historical data as explained in section 5. A roulette wheel selection [30]
based on η is performed to select xi,j the incident level of interest for the iteration. In a
roulette wheel selection, incident xi is selected with a probability pi proportional to its
degree: p(xi) = ηi/

∑n
j=1 ηj . A potential cause xu,v for incident xi,j is then selected from

another roulette wheel selection on the association rules ru,vi,j , where xu is at level v. Rule
ru,vi,j is weighted ηu×ρu,vi,j in the roulette selection. Only first-order causes are considered
here but the approach could be extended to include more recursion levels. Note that
ri,ji,j participates in this selection so that a first-order cause is not systematically chosen.
Finally, actions in au(v) are performed.

Input: invocation statuses and history of η
Output: set of actions a

01. wait for event or timeout
02. determine incident degrees η based on metrics
03. determine incident levels j such that τi,j ≤ ηi < τi,j+1

04. select incident xi by roulette wheel selection based on η
05. select rule ru,v = (xu,v , xi,j , ρ

u,v
i,j ) ∈ Ri,j by roulette

wheel selection based on ηu × ρu,vi,j , where xu is at level v

06. a= au(v)
07. perform actions in a

Figure 2: One iteration of the healing process.
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Table 1 illustrates this mechanism on an example case where only 3 incidents are
considered, and Figure 3 shows it as a MAPE-K loop.

Step 02 and 03: incident degrees and levels are determined:
xi: incident name Degree ηi Level j
x1: activity blocked 0.8 2
x2: low efficiency 0.1 1

x3: input data does not exist 0.4 1

Step 04: x1,2 is selected with probability 0.8
0.8+0.4+0.1

.

Step 05: association rules r2,11,2 , r3,11,2 and r1,21,2 are considered:

Rule Confidence

r2,11,2 : x2,1 → x1,2 0.8

r3,11,2 : x3,1 → x1,2 0.2

r1,21,2 : x1,2 → x1,2 1

r2,11,2 is chosen with probability 0.8×0.4
0.8×0.4+0.2×0.1+0.8×1

.

Step 06: actions in a2(1) are performed.

Table 1: Example case.

0.61

0.30

0.07

Roulette wheel selection

Rule Confidence ( ) x

2 1 0.8 0.32

3 1 0.2 0.02

1 1 1.0 0.80

Association rules

for incident 1

0.37

0.16

0.66

Roulette wheel selection

based on association rules

Figure 3: Example case showed as a MAPE-K loop.

4. Incident Degrees

This section describes the metrics used to determine the degree of the 9 considered
incidents identified by human operators (step 02 on Figure 2).

4.1. Activity Blocked
This incident happens when an invocation is considered late compared to the others.

It is responsible for many operational issues, leading to substantial speed-up reductions.
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For instance, it occurs when one invocation of the activity requires more CPU cycles or
when the invocation faces longer waiting times, lost tasks or executes on resources with
poorer performance. We define the incident degree ηb of an activity from the max of the
performance coefficients pi of its n tasks, which relate the task phase durations (setup,
inputs download, application execution and outputs upload) to their medians:

ηb = 2.max

{
pi = p(ti, t̃) =

ti

t̃+ ti
, i ∈ [1, n]

}
− 1 (2)

where ti = ti setup + ti input + ti exec + ti output is the estimated duration of task i and
t̃ = t̃setup + t̃input + t̃exec + t̃output is the sum of the median durations of tasks 1 to n.
Note that max{pi, i ∈ [1, n]} ∈ [0.5, 1] so that ηb ∈ [0, 1]. Moreover, limti→+∞ pi = 1 and
max{pi, i ∈ [1, n]} = 0.5 when all the tasks behave like the median.

The estimated duration ti of a task is computed phase by phase, as follows: (i) for
completed task phases, the actual consumed resource time is used; (ii) for ongoing task
phases, the maximum value between the current consumed resource time and the median
consumed time is taken; and (iii) for unstarted task phases, the time slot is filled by the
median value. Figure 4 illustrates the estimation process of a task where the actual
durations are used for the two first completed phases (42s for setup and 300s for inputs
download), the application execution phase uses the maximum value between the
current value of 20s and the median value of 400s, and the last phase (outputs upload)
is filled by the median value of 15s, as it is not started yet.

50s

250s

400s

15s

42s

300s

400s

15s

42s

300s

20s

?

ti_setup {

ti_input {

ti_execution {

ti_output {

Median Task Estimated Task Real Task

} current

completed}

Figure 4: Task estimation based on median values.

4.2. Low Efficiency

This happens when the time spent by all the activity invocations in data transfers
dominates CPU time. It may be due to sites with poor network connectivity or be
intrinsic to the application. The incident degree is defined from the ratio between the
cumulative CPU time Ci consumed by all completed invocations and the cumulative
execution time of all completed invocations:

ηe = 1−
∑n(t)

i=1 Ci∑n(t)
i=1 (Ci +Di)

where Di is the time spent by invocation i in data transfers.
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4.3. Input Data Unavailable

This happens when a file is registered in the file catalog but the storage resource(s)
is(are) unavailable or unreachable. The incident degree ηiu in this state is determined
from the input transfer failure rate due to data unavailability. Transfers of completed,
failed, and running invocations are considered.

4.4. Input Data does not Exist

This happens when an incorrect data path was specified, the file was removed by
mistake or the file catalog is unavailable or unreachable. Again, the incident degree ηie
is directly determined by the input transfer failure rate due to non-existent data. Non-
existent file is distinguished from file unavailability using ad-hoc parsing of standard error
files. Transfers of completed, failed, and running invocations are considered.

4.5. Site Misconfigured for Input Data

This incident happens when sites have utmost input data transfer failure rate. The
incident degree ηis is measured as follows:

ηis = max(φ1, φ2, . . . , φk)−median(φ1, φ2, . . . , φk)

where φi denotes the input transfer failure ratio (including both input data unavailable
and input data does not exist) on site i and k is the number of white-listed sites used by
the activity. The difference between the maximum rate and the median ensures that the
incident degree has high values only when some sites are misconfigured. This metric is
correlated but not redundant with the two previous ones. If some input data file is not
available due to site-independent issues with the storage system, then ηiu will grow but
ηis will remain low because all sites fail identically. On the contrary, ηis may grow while
ηiu and ηie remain low.

4.6. Output Data Unavailable

Output data can also be unavailable. Unavailability happens due to three main
reasons: the user did not specify the output path correctly, the application did not
produce the expected data, or the file catalog or storage resource are unavailable or
unreachable. The incident degree ηou is determined by the output transfer failure rate.
Transfers of completed, failed and running invocations are considered.

4.7. Site Misconfigured for Output Data

The incident degree ηos in this incident is determined as follows:

ηos = max(ψ1, ψ2, . . . , ψk)−median(ψ1, ψ2, . . . , ψk)

where ψi denotes the output transfer failure ratio on site i and k is the number of white-
listed sites used by the activity.

4.8. Application Error

Applications can fail due to a variety of reasons among which: the application exe-
cutable is corrupted, dependencies are missing, or the executable is not compatible with
the execution host. The incident degree ηa in this state is measured by the task failure
rate due to application errors. Completed, failed, and running tasks are considered.
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4.9. Site Misconfigured for Application

The incident degree ηas in this state is measured as follows:

ηas = max(α1, α2, . . . , αk)−median(α1, α2, . . . , αk)

where αi denotes the task failure rate due to application errors on site i and k is the
number of white-listed sites used by the activity.

5. Incident Levels and Association Rules

Incident degrees ηi are quantified in discrete incident levels so that different sets of
actions can be used to address different levels of the incident. The number and values
of the thresholds are determined from observed distributions of ηi. The number mi of
incident levels associated to incident i is set as the number of modes in the observed
distribution of ηi. Thresholds τi,j are determined from mode clustering. Incidents levels
and thresholds are determined offline; thus they do not create any overhead on the
workflow execution.

5.1. Training Dataset

Distributions of incident degrees were determined from the science-gateway workload
archive [31] available in the grid observatory1. These traces were collected from the Vir-
tual Imaging Platform [5] between April and August 2011. Applications deployed on this
platform are described as workflows executed using the MOTEUR workflow engine [32].
Resource provisioning and task scheduling is provided by DIRAC [33] using so-called
“pilot jobs”. Resources are provisioned online with no advance reservations. Tasks are
executed on the biomed virtual organization (VO) of the European Grid Infrastructure
(EGI)2 which, as of January 2013, has access to some 90 computing sites of 22 countries,
offering 190 batch queues and approximately 4 PB of disk space. Table 2 shows the
distribution of sites per country supporting the biomed VO.

This dataset contains 1, 082 executions of 36 different workflows executed by 26 users.
Workflow executions contain 1, 838 activity instances, corresponding to 92, 309 invoca-
tions and 123, 025 tasks (including resubmissions).

Figure 5 shows the cumulative amount of running activities along this period. It shows
that the workload is quite uniformly distributed although a slight increase is observed in
June.

5.2. Incident Levels

We replayed the events found in this dataset to compute incident degree values after
each event (total of 641, 297 events). Figure 6 displays histograms of computed incident
degrees. For readability purposes, only ηi 6= 0 values are represented. Most of the his-
tograms appear multi-modal, which confirms that incident degrees are quantified. Level
numbers and threshold values τ are set from visual mode detection in these histograms
and reported on Table 3 with associated actions.

1http://www.grid-observatory.org
2http://www.egi.eu
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Country Number of sites Number of batch queues
UK 13 50
Italy 12 30
France 12 31
Greece 9 11
Spain 5 7
Germany 5 14
Portugal 4 7
Turkey 3 3
Poland 3 4
Netherlands 3 12
Croatia 3 6
Bulgaria 3 3
FYROM 2 2
Brazil 2 3
Vietnam 1 1
Slovakia 1 1
Russia 1 2
Other (.org) 1 1
Moldova 1 1
Mexico 1 1
Cyprus 1 1
China 1 1

Table 2: Distribution of sites and batch queues per country in the biomed VO (January 2013).

Figure 5: Cumulative amount of running activities from April to August 2011.

Incidents at level 1 are considered painless for the execution and they do not trigger
any action. Other levels can lead to radical (completely stop the activity or blacklist a
site) or intermediate actions (task or file replication).

The use of historical information to determine the threshold value put on ηb reduces
the impact of the assumption that all tasks of a given workflow activity will have the
same duration. Indeed, the threshold value quantifies what is an acceptable deviation of
the task duration from its median value.

5.3. Association Rules

Association rules are computed based on the frequency of occurrences of two incident
levels in the training dataset. The confidence ρu,vi,j of a rule xu,v ⇒ xi,j measures the
probability that an incident level xi,j happens when xu,v occurs. Table 4 shows rule
samples extracted from the training dataset and ordered by decreasing confidence. The
set of rules leading to activity blocked (x1,2) and low efficiency (x2,2) incidents shows
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that they are partially dependent on other “cause” incidents, which is considered by the
self-healing process.

At the bottom of the table we find rules with null confidence. These are consistent
with common-sense interpretation of the incident dependencies (e.g. no site-specific issue
when input data is unavailable).

Figure 6: Histograms of incident degrees sampled in bins of 5%.
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Association rule ρu,vi,j

x5,2 ⇒ x2,2 0.3809
x7,2 ⇒ x1,2 0.3529
x5,3 ⇒ x1,2 0.3333
x1,2 ⇒ x2,2 0.3059
x3,2 ⇒ x1,2 0.2975
x7,2 ⇒ x2,2 0.2941
x5,2 ⇒ x1,2 0.2608
x9,2 ⇒ x1,2 0.2435
x2,2 ⇒ x1,2 0.2383

. . . . . .
x3,2 ⇒ x2,2 0.1276
x7,2 ⇒ x3,3 0.1250
x3,3 ⇒ x9,2 0.1228
x7,2 ⇒ x3,2 0.0625

. . . . . .
x3,3 ⇒ x5,2 0.0000
x3,3 ⇒ x5,3 0.0000
x4,2 ⇒ x5,2 0.0000
x4,2 ⇒ x5,3 0.0000
x5,2 ⇒ x3,3 0.0000
x5,2 ⇒ x4,2 0.0000
x5,3 ⇒ x3,3 0.0000
x5,3 ⇒ x4,2 0.0000

Table 4: Confidence of rules between incident levels.

6. Actions

Four actions are performed by the self-healing process: task replication, file replica-
tion, site blacklisting and activity stop. The first three are described below.

6.1. Task replication

Blocked activities and activities of low efficiency are addressed by task replication.
To limit resource waste, the replication process for a particular task is controlled by two
mechanisms. First, a task is not replicated if a replica is already queued. Second, if
replica j has better performance than replica r (i.e. p(tr, tj) > τ , see equation 2) and
j is in a more advanced phase than r, then replica r is aborted. Figure 7 presents the
algorithm of the replication process. It is applied to all tasks with pi > τ , as defined on
equation 2.

6.2. File Replication

File replication is implemented differently depending on the incident. In case of input
data unavailability, a file is replicated to a storage resource selected randomly. The max-
imal allowed number of file replicas is set to 5. In case a site is misconfigured, replication
to the site local storage resource is first attempted. This aims at circumventing inter-
domain connectivity issues. If there is no local storage available or the replication process
fails, then a second attempt is performed to a storage resource successfully accessed by
other tasks executed on the same site. Otherwise, a storage resource is randomly selected.
Fig. 8 depicts this process.
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Input: Set of replicas R of a task i

01. rep = true
02. for r ∈ R do
03. for j ∈ R, j 6= r do
04. if p(tr, tj) > τ and j is a step further than r then
05. abort r
06. done
07. if r is started and p(tr, t̃) ≤ τ then
08. rep = false
09. else if r is queued then
10. rep = false
11. done
12. if rep == true then
13. replicate r

Figure 7: Replication process for one task.

Inputs: File f , set of storage resources S, set of completed tasks on the same site T

01. replicate f to local storage resource
02. if replication not successful then
03. select storage si ∈ S where t ∈ T could access s
04. replicate f to si
05. if replication not successful then
06. select randomly sr ∈ S
07. replicate f to sr
08. done
09. done

Figure 8: Site misconfigured: replication process for one file.

6.3. Site Blacklisting

Problematic sites are only temporarily blacklisted during a time interval set from
exponential back-off. The site is first blacklisted for 1 minute only and then put back on
the white list. In case it is detected misconfigured again, then the blacklist duration is
increased to 2 minutes, then to 4 minutes, 16 minutes, etc.

7. Experiments

The healing process is implemented in the Virtual Imaging Platform (see description
in section 5.1) and deployed in production. The experiments presented hereafter, con-
ducted for two real workflow activities, evaluate the ability of the healing process to (i)
improve workflow makespan by replicating tasks of blocked activities (Experiment 1 ) and
(ii) quickly identify and report critical issues (Experiment 2 ). Another experiment, eval-
uating the handling of low efficiency, site misconfiguration, and input data unavailability,
was reported in [34].

7.1. Experiment conditions and metrics

Experiment 1 aims at testing that blocked activities are properly detected and han-
dled; the other incidents are ignored. This experiment uses a correct execution where
all the input files exist and the application is supposed to run properly and produce the
expected results. Five repetitions are performed for each workflow activity.
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Experiment 2 aims at testing that unrecoverable errors are quickly identified and the
execution is stopped. Unrecoverable errors are intentionally injected in 3 different runs:
in run non-existent inputs, non-existent file paths are used for all the invocations;
in application-error, all the file paths exist but input files are corrupted; and in
non-existent output, input files are correct but the application does not produce the
expected results.

Two workflow activities are considered for each experiment. FIELD-II/pasa consists
of 122 invocations of an ultrasonic simulator on an echocardiography 2D dataset. It is
a data-intensive activity where invocations use from a few seconds to some 15 minutes
of CPU time; it transfers 208 MB of input data and outputs about 40 KB of data.
Mean-Shift/hs3 has 250 CPU-intensive invocations of an image filtering application.
Invocation CPU time ranges from a few minutes up to one hour; input data size is
182 MB and output is less than 1 KB. Files are replicated on two storage sites for both
activities.

For each experiment, a workflow execution using our method (Self-Healing) is com-
pared to a control execution (No-Healing). Executions are launched on the biomed VO
of the EGI, in production conditions, i.e., without any control of the number of available
resources and reliability. Self-Healing and No-Healing are both launched simultane-
ously to ensure similar grid conditions. The DIRAC scheduler is configured to equally
distribute resources among executions.

The FuSM and healing process are implemented in the MOTEUR workflow engine.
The timeout value in the healing process is computed dynamically as the median of
the task inter-completion delays in the current execution. Task replication is performed
by resubmitting running tasks to DIRAC. To avoid concurrency issues in the writing
of output files, a simple mechanism based on file renaming is implemented. To limit
infrastructure overload, running tasks are replicated up to 5 times only. MOTEUR is
configured to resubmit failed tasks up to 5 times in all runs of both experiments. We use
DIRAC v5r12p9 and MOTEUR 0.9.19.

The waste metric used by Cirne et al. [2] does not fit our context because it cannot
provide an effective estimation of the amount of resource wasted by self-healing simula-
tions when compared to the control ones. Here, resource waste is assessed by the amount
of resource time consumed by the simulations performing the healing process related
to the amount of resource time consumed by control simulations. We use the waste

coefficient (w), defined as follows:

w =

∑n
i=1 hi +

∑m
j=1 rj∑n

i=1 ci
− 1

where hi and ci are the resource time consumed (CPU time + data transfers time) by
n completed tasks for Self-Healing and No-Healing simulations respectively, and ri
is the resource time consumed by m unused replicas. Note that task replication usually
leads to hi ≤ ci. If w > 0, the healing approach wastes resources compared to the control.
If w < 0, then the healing approach consumes less resources than the control, which can
happen when faster resources are selected.

7.2. Results and Discussion

Experiment 1. Figure 9 shows the makespan of FIELD-II/pasa and Mean-Shift/hs3 for
the 5 repetitions. The makespan is considerably reduced in all repetitions of both activ-
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ities. Speed-up values yielded by Self-Healing range from 2.6 to 4 for FIELD-II/pasa
and from 1.3 to 2.6 for Mean-Shift/hs3.

Figures 10 and 11 present a cumulative density function (CDF) of the number of
completed tasks for FIELD-II/pasa and Mean-Shift/hs3, respectively. In most cases
completion curves of both Self-Healing and No-Healing executions are similar up to
95%. This confirms that both executions are executed in similar grid conditions. In
some cases (e.g. Repetition 2 in Figure 11) Self-Healing execution even presents
lower performance than No-Healing execution but it is compensated by the long-tail
effect produced by the latter.

Figure 9: Execution makespan for FIELD-II/pasa (top) and Mean-Shift/hs3 (bottom).

Tables 5 and 6 show the waste coefficient values for the 5 repetitions for FIELD-II/pasa
and Mean-Shift/hs3 respectively. The Self-Healing process reduces resource con-
sumption up to 26% when compared to the control execution. This happens because
replication increases the probability to select a faster resource. The total number of
replicated tasks for all repetitions is 172 for FIELD-II/pasa (i.e. 0.28 task replication
per invocation in average) and 308 for Mean-Shift/hs3 (i.e. 0.24 task replication per
invocation in average).

Repetition h r c w
1 56, 159s 2, 203s 64, 163s −0.10
2 60, 991s 6, 383s 79, 031s −0.15
3 60, 473s 10, 818s 77, 851s −0.09
4 42, 475s 1, 420s 41, 528s 0.05
5 56, 726s 4, 527s 82, 555s −0.26

Table 5: Waste coefficient values for FIELD-II/pasa.
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Figure 10: Experiment 1: CDF of the number of completed tasks for FIELD-II/pasa repetitions.

Repetition h r c w
1 119, 597s 5, 778s 126, 714s −0.02
2 125, 959s 4, 792s 161, 493s −0.20
3 133, 935s 14, 352s 151, 091s −0.02
4 147, 077s 2, 898s 152, 282s −0.02
5 141, 494s 17, 514s 159, 152s −0.01

Table 6: Waste coefficient values for Mean-Shift/hs3.

Experiment 2. Figure 12 shows the makespan of FIELD-II/pasa and Mean-Shift/hs3

for the 3 runs where unrecoverable errors are introduced. No-Healing was manually
stopped after 7 hours to avoid flooding the infrastructure with faulty tasks. In all cases,
Self-Healing is able to detect the issue and stop the execution far before No-Healing.
It confirms that the healing process is able to identify unrecoverable errors and stop the
execution accordingly. As shown on Table 7, the number of submitted fault tasks is
significantly reduced, which has benefits both to the infrastructure and to the gateway
itself.

Number of tasks
Run Self-Healing No-Healing

application-error FIELD-II/pasa 196 732
Mean-Shift/hs3 249 1500

non-existent input FIELD-II/pasa 293 732
Mean-Shift/hs3 417 1500

non-existent output FIELD-II/pasa 287 732
Mean-Shift/hs3 364 1500

Table 7: Number of submitted faulty tasks.

8. Conclusion

We presented a simple, yet practical method for autonomous detection and handling
of operational incidents in workflow activities. No strong assumption is made on the task

17



Figure 11: Experiment 1: CDF of the number of completed tasks for Mean-Shift/hs3 repetitions.

Figure 12: Experiment 2: makespan of FIELD-II/pasa and Mean-Shift/hs3 for 3 different runs.

duration or resource characteristics and incident degrees are measured with metrics that
can be computed online. We made the hypothesis that incident degrees were quantified
into distinct levels, which we verified using real traces collected during 5 months in our
Virtual Imaging Platform. Incident levels are associated offline to action sets ranging
from light execution tuning (file/task replication) to radical site blacklisting or activity
interruption. Action sets are selected based on the degree of their associated incident
level and on confidence of association rules determined from execution history.

This strategy was implemented in the MOTEUR workflow engine and deployed on
the European Grid Infrastructure with the DIRAC resource manager. Results show that
our handling of blocked activities speeds up execution up to a factor of 4 and consumes
up to 26% less resource time than a control execution. A second experiment shows that
our self-healing loop properly detects unrecoverable errors.

As a limitation, the mechanism can only handle incidents that have been observed
in the historical information. However, the approach can be extended in several ways.
First, other incidents could be added, provided that they can be quantified online by
a metric ranging from 0 to 1. Possible candidates are infrastructure service downtimes
(e.g. file catalog, storage servers, computing sites) and unfairness among workflow exe-
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cutions. Action sets could also be extended, for instance with actions related to resource
provisioning.

Besides, mode detection used for incident quantification could be improved by (i)
automated detection (e.g. with Mean-Shift [35]) and (ii) periodical update from execution
history. Using the history of actions performed to adjust incident degree could also be
envisaged. For instance, incidents for which several actions already have been taken
could be considered more critical.

Finally, other components of science-gateways could be targeted with the same ap-
proach. Our future work addresses complete workflow executions, taking actions such as
pausing workflow executions, detected blocked workflows beyond activities, or allocating
resources to users and executions.
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