
Self-Management of Operational
Issues for Grid Computing:

The Case of The Virtual Imaging
Platform

Rafael Ferreira da Silva
University of Southern California, Information Sciences Institute, USA, rafsilva@isi.edu

Tristan Glatard
CNRS, University of Lyon, CREATIS, INSERM, France, glatard@creatis.insa-lyon.fr
McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Canada

Frédéric Desprez
INRIA, University of Lyon, LIP, UMR CNRS 5668, ENS Lyon, France,
Frederic.Desprez@inria.fr

ABSTRACT
Science gateways, such as the Virtual Imaging Platform (VIP), enable transparent access to distributed
computing and storage resources for scientific computations. However, their large scale and the number
of middleware systems involved in these gateways lead to many errors and faults. This chapter addresses
the autonomic management of workflow executions on science gateways in an online and non-clairvoyant
environment, where the platform workload, task costs, and resource characteristics are unknown and not
stationary. The chapter describes a general self-management process, based on the MAPE-K loop
(Monitoring, Analysis, Planning, Execution, and Knowledge), to cope with operational incidents of
workflow executions. Then, this process is applied to handle late task executions, task granularities, and
unfairness among workflow executions. Experimental results show how our approach achieves a fair
quality of service by using control loops that constantly perform online monitoring, analysis, and
execution of a set of curative actions.

Key words: Self-Management, Grid Computing, Scientific Workflow, Science-Gateway, Virtual Imaging
Platform, Rafael Ferreira da Silva, Tristan Glatard, Frédéric Desprez, Information Sciences Institute,
CREATIS, McConnel Brain Imaging Centre, ENS Lyon

INTRODUCTION
Distributed computing infrastructures such as campus clusters, Grids, and now Clouds have become daily
instruments of scientific research. As collections of independent computers linked by a network presented
to the users as a single coherent system (e.g. Open Science Grid, XSEDE, EGI, and Amazon EC2), they
enable easy collaboration among researchers, enhanced reliability and availability, and high-performance
computing (Romanus et al., 2012). Increasingly, these systems are becoming more complex,
heterogeneous, and prone to failures that can affect the productivity of their users.

In the meantime, science gateways, such as the Virtual Imaging Platform (VIP) (Ferreira da Silva et al.,
2011; Glatard et al., 2013), are emerging as user-level platforms to facilitate the access to distributed
computing and storage resources for scientific computations. Their high-level interface allows scientists
to transparently run their analyses on large sets of computing resources. However, their large scale and
the number of middleware systems involved in these gateways lead to many errors and faults.
Applications running on these infrastructures are also growing in complexity and volume. Moreover,
many scientists now formulate their computational problems as scientific workflows (Taylor, 2007).
Workflows allow researchers to easily express multi-step computational tasks, for example: retrieve data
from an instrument or a database, reformat the data, and run an analysis. Scientists expect such gateways
to deliver high quality of service (QoS), where the workload and resources are efficiently and
automatically handled, and the system is fault-tolerant. In order to provide fair QoS, scientific workflow
executions are often backed by substantial human intervention that requires constantly monitoring of the
running experiments and infrastructure to prevent or handle faults and ensure successful application
completion.

Automating fault prevention, detection, and handling is challenging in such platforms. Science gateways
have no a-priori model of the execution time of their applications because 1) task costs depend on input
data with no explicit model, and 2) characteristics of the available resources depend on background load
(Ferreira da Silva, Juve, et al., 2013). Modeling application execution time in these conditions requires
cumbersome experiments, which cannot be conducted for every new application in the platform. As a
consequence, such platforms operate in non-clairvoyant conditions, where little is known about
executions before they actually happen. Such platforms also run in online conditions, i.e. users may
launch or cancel applications at any time and resources may leave at any time too.

In this chapter, we propose a general self-management process for autonomous detection and handling of
operational incidents in scientific workflow executions on grids (Ferreira da Silva, Glatard, & Desprez,
2012, 2013b). Our process is described as a MAPE-K loop (Kephart & Chess, 2003), which consists of
monitoring (M), analysis (A), planning (P), execution (E), and knowledge (K). Self-management
techniques, generally implemented as MAPE-K loops, provide an interesting framework to cope with
online non-clairvoyant problems. They address non-clairvoyance by using a-priori knowledge about the
platform (e.g. extracted from traces), detailed monitoring, and analysis of its current behavior. They can
also cope with online problems by periodical monitoring updates. Our ultimate goal is to reach a general
model of such a scientific gateway that could autonomously detect and handle operational incidents, and
control the behavior of non-clairvoyant, online platforms to limit human intervention required for their
operation. Performance optimization is a target but the main point is to ensure that correctly-defined
executions are completed, that performance is acceptable, and that misbehaving runs (e.g. failures coming
from user errors or unrecoverable infrastructure downtimes) are quickly detected and handled before they
consume too many resources.

BACKGROUND
In this section, we introduce definitions necessary to understand the rest of this chapter, and present the
relevant work regarding strategies to address the operational incidents proposed in this chapter: task
replication, task grouping, and fairness among workflow executions.

Scientific Gateways. Some Software-as-a-Service platforms, commonly called scientific gateways,
integrate application software with access to computing and storage resources via web portals or desktop
applications, where users can process their own data with predefined applications. Science-gateways are
used in different scientific domains such as multi-disciplinary, climate, and medical imaging.

Scientific Workflows. Scientific workflows allow users to easily express multi-step computational tasks,
for example retrieve data from an instrument or a database, reformat the data, and run an analysis. A

scientific workflow describes the dependencies between the tasks. In most cases the workflow is
described as a directed acyclic graph (DAG), where the nodes are tasks (or group of tasks) and the edges
denote the task (or group of tasks) dependencies. Sometimes control structures (e.g. loops, ifs) are also
used within workflows. Scientific workflows are described as high-level abstraction languages that
conceal the complexity of execution infrastructures to the user. Workflow language formalism is a
formalism expressing the causal/temporal dependencies among a number of tasks to execute. Workflow
interpretation and execution are handled by a workflow engine that manages the execution of the
application on the distributed computing infrastructure. In addition, scientific workflows facilitate
application management by assembling dependencies on deployment, and by enabling automatic interface
generation in a scientific gateway.

Grid Computing. Computational grids emerged in the middle of the past decade as a paradigm for high-
throughput computing for scientific research and engineering, through the federation of heterogeneous
resources distributed geographically in different administrative domains (Foster, 2001). Resource sharing
is governed by virtual organizations (VO), which are a set of individuals or institutions defined around a
set of resource-sharing rules and conditions. Grid computing infrastructures are federations of cooperating
resource infrastructure providers, working together to provide computing and storage services for
research communities. These infrastructures can be characterized into research and production
infrastructures. Research infrastructures are designed to support computer-science experiments related to
parallel, large-scale or distributed computing, and networking. Production infrastructures, on the other
hand, are designed to support large scientific experiments. They can be classified into HPC (High-
Performance Computing) and HTC (High throughput computing). HPC systems focuses on tightly
coupled parallel tasks, while HTC focuses on the efficient execution of a large number of loosely coupled
tasks. The grid middleware enables users to submit tasks to store data and execute computation on grid
infrastructures. Task scheduling, resources management, data storage, replication, and transfers are
handled by the middleware. It also enables security functions, such as authentication and authorization.

Task replication. Task replication, a.k.a. redundant requests, is commonly used to address non-
clairvoyant problems (Cirne, Brasileiro, Paranhos, Góes, & Voorsluys, 2007), but it should be used
sparingly, to avoid overloading the middleware and degrading fairness among users (Casanova, Desprez,
& Suter, 2010). For instance, (Litke, Skoutas, Tserpes, & Varvarigou, 2007) propose a task replication
strategy to handle failures in mobile grid environments. Their approach is based on the Weibull
distribution to estimate the number of replicas to guarantee a specific fault-tolerance level. In
(Ramakrishnan et al., 2009), task replication is enforced as a fault-tolerant mechanism to increase the
probability to complete a task successfully. Recently, (Ben-Yehuda, Schuster, Sharov, Silberstein, &
Iosup, 2012) proposed a framework for dynamic selection of Pareto-efficient scheduling strategy, where
tasks are replicated only in the tail phase when task completion rate is low. All the proposed approaches
make strong assumptions on task and resource characteristics, such as the expected duration and resource
performance. An important aspect to be evaluated when replicating task is the resource waste, a.k.a. the
cost of task replication. (Cirne et al., 2007) evaluate the waste of resources by measuring the percentage
of wasted cycles among all the cycles required to execute the application.

Task grouping. The low performance of fine-grained tasks is a common problem in widely distributed
platforms where the scheduling overhead and queuing times are high, such as grid and cloud systems.
Several works have addressed the control of task granularity of bag of tasks. For instance, (Muthuvelu et
al., 2005) proposed an algorithm to group bag of tasks based on their granularity size--defined as the
processing time of the task on the resource. Resources are ordered by their decreasing values of capacity
(in MIPS) and tasks are grouped up to the resource capacity. This process continues until all tasks are
grouped and assigned to resources. Then, (Ng Wai Keat, 2006) and (Ang, Ng, Ling, Por, & Liew, 2009)
extended the previous work by introducing bandwidth in the scheduling framework to enhance the
performance of task scheduling. Resources are sorted in decreasing order of bandwidth, then assigned to

grouped tasks downward ordered by processing requirement length. Later, (Muthuvelu, Chai, & Eswaran,
2008) extended (Muthuvelu et al., 2005) to determine task granularity based on QoS requirements, task
file size, estimated task CPU time, and resource constraints. Meanwhile, (Liu & Liao, 2009) proposed an
adaptive fine-grained job scheduling algorithm (AFJS) to group lightweight tasks according to processing
capacity (in MIPS) and bandwidth (in Mb/s) of the current available resources. To accommodate with
resource dynamicity, the grouping algorithm integrates monitoring information about the current
availability and capability of resources. (Zomaya & Chan, 2004) studied limitations and ideal control
parameters of task clustering by using genetic algorithms. Their algorithm performs task selection based
on the earliest task start time and task communication costs; it converges to an optimal solution of the
number of clusters and tasks per cluster. Although the reviewed works significantly reduce
communication and processing time, neither of them is non-clairvoyant and online at the same time.
Recently, (Muthuvelu, Chai, Chikkannan, & Buyya, 2010) proposed an online scheduling algorithm to
determine the task granularity of compute-intensive bag-of-tasks applications. The granularity
optimization is based on task processing requirements, resource-network utilization constraint, and users
QoS requirements (user's budget and application deadline). Submitted tasks are categorized according to
their file sizes, estimated CPU times, and estimated output file sizes, and arranged in a tree structure. The
scheduler selects a few tasks from these categories to perform resource benchmarking. In a collaborative
work (Chen, Ferreira da Silva, Deelman, & Sakellariou, 2013), we presented three balancing methods to
address the load balancing problem when clustering scientific workflow tasks. We defined three
imbalance metrics to quantitative measure workflow characteristics based on task runtime variation
(HRV), task impact factor (HIFV), and task distance variance (HDV). Although these are online
approaches, the solutions are still clairvoyant.

Fairness. Fairness among scientific workflow executions has been addressed in several studies
considering the scheduling of multiple scientific workflows. For instance, (Henan Zhao & Sakellariou,
2006) address fairness based on the slowdown of DAGs; they consider a clairvoyant problem where the
execution time and the amount of data transfers are known. Similarly, (N’Takpe & Suter, 2009) propose a
mapping procedure to increase fairness among parallel tasks on multi-cluster platforms; they address an
offline and clairvoyant problem where tasks are scheduled according to the critical path length, maximal
exploitable task parallelism, or amount of work to execute. (Casanova et al., 2010) evaluate several
scheduling online algorithms of multiple parallel task graphs (PTGs) on a single, homogeneous cluster.
Fairness is measured through the maximum stretch (a.k.a. slowdown) defined by the ratio between the
PTG execution time on a dedicated cluster, and the PTG execution time in the presence of competition
with other PTGs. (C.-C. Hsu, Huang, & Wang, 2011) and (Sommerfeld & Richter, 2011) propose an
online HEFT-based algorithm to schedule multiple workflows; they address a clairvoyant problem where
tasks are ranked based on the length of their critical path, and tasks are mapped to the resources with the
earliest finish time. (Hirales-Carbajal et al., 2012) schedule multiple parallel workflows on a Grid in a
non-clairvoyant but offline context, assuming dedicated resources. Their multi-stage scheduling strategies
consist of task labeling and adaptive allocation, local queue prioritization and site scheduling algorithm.
Fairness among workflow tasks is achieved by task labeling based on task run time estimation. Recently,
(Arabnejad & Barbosa, 2012) proposed an algorithm addressing an online but clairvoyant problem where
tasks are assigned to resources based on their rank values; task rank is determined from the smallest
remaining time among all remaining tasks of the workflow, and from the percentage of remaining tasks.
Finally, in their evaluation of non-preemptive task scheduling, (Sabin, Kochhar, & Sadayappan, 2004)
assess fairness by assigning a fair start time to each task, defined by the start time of the task on a
complete simulation of all tasks whose queue time is lower than that one. If a task has started its
execution after its fair start time, it is considered unfairly treated. Results are trace-based simulations over
a period of one month, but the study is performed in a clairvoyant context. (Skowron & Rzadca, 2013)
proposed an online and non-clairvoyant algorithm to schedule sequential jobs on distributed systems.
They consider a non-clairvoyant model where job's processing time is unknown until the job completes.
However, they assume that resources are homogeneous (what is not the case on Grid computing). In

contrast, our method considers resource performance, the execution of concurrent activities, and task
dependency in scientific workflow executions.

THE VIRTUAL IMAGING PLATFORM
The Virtual Imaging Platform (VIP) (Ferreira da Silva et al., 2011; Glatard et al., 2013) is an openly-
accessible platform for scientific workflow executions on a production grid. Figure 1 show the overall
VIP architecture for workflow execution. It is composed of 1) a web portal which interfaces users to
applications described as workflows, 2) a data management tool to handle transfer operations between
users machines and the Grid storage, 3) a workflow engine to process user inputs and spawn
computational tasks, 4) a workload management system for resource provisioning and task scheduling,
and 5) an execution infrastructure. In VIP, users authenticate to a web portal with login and password, and
they are then mapped to X.509 robot credentials. From the portal, users transfer data and launch
applications workflows to be executed on the Grid. Workflows are compositions of activities defined
independently from the processed data and that only consist of a program description and requirements.
At runtime, activities receive data and spawn invocations from their input parameter sets. Invocations are
independent from each other (bag of tasks) and executed on the computing resource as single-core tasks,
which can be resubmitted in case of failures. VIP applications are executed on the biomed virtual
organization (VO) of the European Grid Infrastructure (EGI). EGI is a federation of over 350 resources
centers (sites) across more than 50 countries, which has access to more than 320,000 logical CPUs and
152 PB of disk space. The biomed VO has access to some 90 computing sites of 22 countries, offering
190 batch queues and approximately 4 PB of disk space.

Figure 1: VIP architecture for workflow execution.

For a user, a typical application execution consists of the following steps: 1) select an application, 2)
upload input data, 3) launch a workflow, and 4) download results. These steps are shown in steps 1, 2 and
11 from Figure 2. For the platform, it consists of performing a workflow execution. A workflow
description and a set of input parameters is received and processed by the workflow engine, which
produces invocations. In VIP, workflows are interpreted and executed using the MOTEUR workflow
engine (Glatard, Montagnat, Lingrand, & Pennec, 2008), which provides an asynchronous grid-aware
enactor. From invocations the workflow engine generates Grid tasks, and submits to the DIRAC
(Tsaregorodtsev et al., 2010) workload management system, which implements a late binding between
tasks and resources. DIRAC deploys pilot jobs on computing resources; pilot jobs run special agents that
fetch user tasks from the task queue, set up their environment and steer their execution; task execution
consists of downloading input data, executing the application, and uploading results. Figure 2
summarizes this process.

SELF-MANAGEMENT OF WORKFLOW EXECUTIONS ON GRIDS
The resource heterogeneity of production Grids, such as EGI, raises workflow execution issues, for
instance, input and output data transfers may fail because of network glitches or limited site inter-
communication; application executions may fail because of corrupted executable files, missing
dependencies, or incompatibility; application executions may slowdown because of resources with poorer
performance. Furthermore, the high communication overhead and queuing time intrinsic to such
infrastructures may delay the workflow execution.

In this section, we propose a general self-management process (Ferreira da Silva et al., 2012; Ferreira da
Silva, Glatard, et al., 2013b) to autonomously handle operational incidents on workflow executions.
Instances involved in a workflow execution are modeled as Fuzzy Finite State Machines (FuSM) (Malik,
Mordeson, & Sen, 1994) where state degrees of membership are determined by an external process.
Degrees of membership are computed from metrics assuming that incidents have outlier performance, e.g.
a site or a particular invocation behaves differently than the others. These metrics make little assumptions
on the application or resource characteristics. Based on incident degrees, the process identifies incident
levels using thresholds determined from the platform history. A specific set of actions is then selected
from association rules among incident levels. The process is described formally in the next paragraphs.

Let I = {xi, i = 1,..., n} be the set of possible incidents and η = (η1,..., ηn) ∈ [0,1]n their degrees in the
FuSM. Incident xi can occur at mi different levels {xi,j , j = 1,…, mi} delimited by thresholds values τi =
{τi,j, 1,..., mi}. The level of incident i is determined by j such that τi,j ≤ ηi < τi,j+1. A set of actions ai(j) is
available to address xi,j:

ai :[1,mi] →℘(A)
j → ai(j) (1)

where A is the set of possible actions taken by the self-management process and ℘(A) is the power set of
A.

In addition to the incidents themselves, incident co-occurrences are taken into account. Association rules
(Agrawal, Imieliński, & Swami, 1993) are used to identify relations between levels of different incidents.
Association rules to xi,j are defined as Ri,j = {ru,v

i,j = (xu,v, xi,j, ρu,v
i,j)}. Rule ru,v

i,j means that when xu,v
happens then xi,j also happens with confidence ρu,v

i,j ∈ [0,1]. The confidence of a rule is an estimate of
probability P(xi,j | xu,v). For the sake of completeness, ri,j

i,j ∈ Ri,j and ρi,j
i,j =1. We also define R = Ui∈[1,n],

j∈[1,m] Ri,j. The inference made by an association rule does not necessarily imply causality. Instead, it
quantifies co-occurrence between the rule's terms (Tan, 2006).

Algorithm 1 presents the algorithm used at each iteration of the self-management process. Incident
degrees are determined based on metrics and incident levels j are obtained from historical data. A roulette
wheel selection (De Jong, 1975) based on η is performed to select xi,j the incident level of interest for the
iteration. In a roulette wheel selection, incident xi is selected with a probability pi proportional to its

degree: p(xi) =ηi η j
j=1

n

∫ . A potential cause xu,v for incident xi,j is then selected from another roulette wheel

selection on the association rules ru,v
i,j, where xu is at level v. Rule ru,v

i,j is weighted ηu × ρu,v
i,j in this

second roulette selection. Only first-order causes are considered here but the approach could be extended
to include more recursion levels. Note that ri,j

i,j participates in this selection so that a first-order cause is
not systematically chosen. Finally, actions in au(v) are performed.

Algorithm 1 One iteration of the self-managing process.
1: input: history of η
2: output: set of actions a
3: wait for event or timeout
4: determine incident degrees η ∈ [0,1] based on metrics
5: determine incident levels j such that τ i, j ≤ηi < τ i, j+1

6: select incident xi by roulette wheel selection based on η
7: select rule ru,v

i,j = (xu,v, xi,j, ρu,v
i,j) ∈ Ri,j by roulette wheel selection based on ηu × ρu,v

i,j, where xu is at level v
8: a=au(v)
9: perform actions in a

Incident degrees are quantified in discrete incident levels so that different sets of actions can be used to
address different levels of the incident. Thresholding consists in clustering platform configurations into

Figure 2: Workflow execution flow in VIP.

groups. We determine τi, the threshold value of an incident degree xi, from execution traces, for which
different thresholding approached can be used. For instance, we could consider that x% of the platform
configurations are inappropriate while the rest are acceptable. The choice of x, however, would be
arbitrary. Instead, we inspect the modes of the distribution of ηi to determine a threshold. Thresholds τi
are determined from visual mode clustering. The number mi of incident levels associated to incident i is
set as the number of modes in the observed distribution of ηi. Incidents levels and thresholds are
determined offline; thus they do not create any overhead on the workflow execution. The process is
parameterized on real application traces acquired in production on the European Grid Infrastructure (EGI)
(Ferreira da Silva & Glatard, 2013).

In the rest of this chapter, we show the instantiation of our self-management process to address two
workflow activity-level incidents: the long tail effect issue, and the task granularity problem; and an
incident at platform level: unfairness among workflow executions.

HANDLING BLOCKED ACTIVITIES
The long-tail effect is a common frustration for users who have to wait to retrieve the last pieces of their
computation. This issue happens due to execution on slow machines, poor network connection, or
communication issues, and leads to substantial speed-up reductions. In this section, we propose an
algorithm to handle the long-tail effect and to control task replication (Ferreira da Silva et al., 2012;
Ferreira da Silva, Glatard, et al., 2013b). Our method identifies blocked activities as the ones whose tasks
are performing worse than the median of already completed tasks. Tasks are assumed of identical costs.
This assumption considers that the variation of task durations of correct executions due to resource
heterogeneity is negligible compared to the variation when an incident happens. Algorithm 2 describes
our activity blocked control process.

Algorithm 2 Main loop for activity blocked control.
1: input: m workflow executions
2: while there is an active workflow do
3: wait for timeout or task status change in any workflow
4: determine blocked degree ηb
5: if ηb > τ b then
6: replicate late tasks
7: end if
8: end while

Incident Degree and Levels
Activity blocked degree ηb. We define the incident degree ηb of an activity from the maximum of the
performance coefficients pi of its n tasks, which relate the task phase durations (setup, inputs
download, application execution, and outputs upload) to their medians:

ηb = 2 ⋅max pi = p(ti, t
~
) = ti

t
~
+ ti
, i ∈ [1,n]

#
$
%

&%

'
(
%

)%
−1

(2)

where ti = ti_setup + ti_input + ti_exec + ti_output is the estimated duration of task i and

t
~

i = t
~
i_ setup + t

~
i_input + t

~
i_exec + t

~
i_output is the sum of the median durations of tasks 1 to n. Note that max{pi, i

∈[1,n]} ∈ [0.5,1] so that ηb ∈ [0,1]. Moreover, lim ti→+∞ pi =1 and max{pi, i ∈[1,n]} = 0.5 when all
the tasks behave like the median. When less than 2 tasks are completed, medians remain undefined and
the control process is inactive.

The estimated duration ti of a task is computed phase by phase, as follows: 1) for completed task phases,
the actual consumed resource time is used; 2) for ongoing task phases, the maximum value between the
current consumed resource time and the median consumed time is taken; and 3) for unstarted task phases,
the time slot is filled by the median value. Figure 3 illustrates the task estimation process where the
actual durations are used for the two first completed phases (42s for setup and 300s for inputs
download), the application execution phase uses the maximum value between the current value of
20s and the median value of 400s, and the last phase (outputs upload) is filled by the median value of
5s, as it is not started yet. Table 1 shows a summary of the symbols used in this section.

Threshold value τb. The threshold value for ηb separates configurations where the activity has acceptable
performance (ηb ≤ τb) from configurations where the activity is blocked (ηb > τb). We determine τb from
observed distributions of ηb. The blocked degree ηb was computed after each event found in the platform
historical data (Ferreira da Silva & Glatard, 2013), and as shown in Figure 4. Since the modes are not
clearly separable visually, we used K-Means to determine the threshold value τb = 0.35. We assume that
values in the lowest mode correspond to acceptable performance, and values in the highest mode
correspond to low performance. Thus, for ηb > 0.35 task replication will be triggered.

Figure 4: Histogram of activity-blocked degree sampled in bins of 0.05.

Figure 3: Task estimation based on median values.

Parameter Description

ηb Activity blocked incident degree
p Performance coefficient of a task

t, t
~

 Estimated duration of a task and sum of the
median estimated durations of tasks

τb Threshold value for ηb
R Set of replicas
w Waste coefficient

Table 1: Explanation of the symbols used in this section.

Task replication. Blocked activities are addressed by task replication. To limit resource waste, the
replication process for a particular task is controlled by two mechanisms. First, a task is not replicated if a
replica is already queued. Second, if replica j has better performance than replica r (i.e. p(tr, tj) > τb, see
Equation 2) and replica j is in a more advanced phase than replica r, then replica r is aborted. Algorithm 3
presents the algorithm of the replication process. It is applied to all tasks with pi > τb, as defined on
Equation2.

Algorithm 3 Replication process for one task.
1: input: set of replicas R of a task i
2: rep = true
3: for r ∈ R do
4: for j ∈ R, j ≠r do
5: if p(tr, tj) > τb and j is a step further than r then
6: abort r
7: end if
8: end for
9: if (r is started and p(tr, tj) ≤ τb) or r is queued then
10: rep = false
11: end if
12: end for
13: if rep == true then
14: replicate r
15: end if

Experiments and Results
The experiment presented hereafter evaluate the ability of the activity blocked control process to improve
workflow makespan without wasting resources in case of tasks are late.

Experiment conditions. The self-management control process was implemented as a plug-in of the
MOTEUR workflow engine, receiving notifications about task status changes and task phase durations.
Task replication is performed by resubmitting running tasks to DIRAC. To avoid concurrency issues in
the writing of output files, a simple mechanism based on file renaming is implemented. To limit
infrastructure overload, running tasks are replicated up to 5 times. MOTEUR is configured to resubmit
failed tasks up to 5 times in all runs.

This experiment uses a correct execution where the application is supposed to run properly and produce
the expected results. Five repetitions are performed for each workflow activity. Two workflow activities

are considered for the experiment: FIELD-II/pasa and Mean-Shift/hs3. FIELD is a program to
simulate ultrasound transducer fields and ultrasound imaging using linear acoustics. Mean-Shift is an
image processing technique used to implement filtering, clustering, and segmentation in a d-dimensional
space. Table 2 summarizes their main characteristics. A workflow execution using our method (Self-
Management) is compared to a control execution (No-Management). Executions are launched on the
biomed VO of the EGI, in production conditions. Self-Management and No-Management are both
launched simultaneously to ensure similar grid conditions. The DIRAC scheduler is configured to
equally distribute resources among executions.

Workflow activity #Tasks CPU time Input Output
FIELD-II (data-intensive) 122 few seconds to 15 minutes ~208 MB ~40 KB
Mean-Shift (CPU-intensive) 250 few minutes to 1 hour ~182 MB ~1KB

Table 2: Workflow activity characteristics.

Task replication may waste resources, i.e., resources are consumed by a set of tasks that compute the
same operations. Here, resource waste is measured by the amount of resource time consumed by Self-
Management executions related to the amount of resource time consumed by control executions. We use
the waste coefficient (w), defined as follows:

w =
hii=1

n
∑ + rj

j=1

m
∑
cii=1

n
∑

−1

(3)

where hi and ci are the resource time consumed (CPU time + data transfers time) by n completed tasks for
Self-Management and No-Management executions respectively, and ri is the resource time consumed
by m unused replicas. Note that task replication usually leads to hi ≤ ci. If w > 0, Self-Management
wastes resources compared to the control execution. Otherwise, Self-Management consumes fewer
resources than No-Management, which can happen when faster resources are selected.

Results and discussion. Figures 5 and 6 and Tables 3 and 4 show the makespan and waste coefficient
values of FIELD-II/pasa (left) and Mean-Shift/hs3 (right) for the 5 repetitions, respectively. The
makespan was considerably reduced in all repetitions of both activities. Speed-up values yielded by
Self-Management ranged from 1.7 to 4.5 for FIELD-II/pasa and from 1.5 to 3.2 for Mean-
Shift/hs3. The Self-Management process also reduces resource consumption up to 35% when
compared to the control execution. This happens because replication increases the probability to select a
faster resource. The total number of replicated tasks for all repetitions is 292 for FIELD-II/pasa (i.e.
0.48 task replication per task in average) and 712 for Mean-Shift/hs3 (i.e. 0.57 task replication per
task in average).

Figure 6: Execution makespan values for Mean-Shift/hs3.

Figure 5: Execution makespan values for FIELD-II/pasa.

OPTIMIZING TASK GRANULARITY
Controlling the granularity of workflow activities executed on grids is required to reduce the impact of
task queuing and data transfer time overheads. Most existing granularity control approaches assume
extensive knowledge about the applications and resources (e.g. task duration on each resource), and that
both the workload and available resources do not change over time (Ang et al., 2009; Muthuvelu et al.,
2005, 2010; Ng Wai Keat, 2006). However such estimates are hard to obtain in production conditions
(Ferreira da Silva, Juve, et al., 2013). Therefore, we propose a granularity control algorithm (Ferreira da
Silva, Glatard, & Desprez, 2014, 2013a) for platforms where such clairvoyant and offline conditions are
not realistic. Our method groups tasks when the fineness degree of the application, which takes into
account the ratio of shared data and the queuing/round-trip time ratio, becomes higher than a threshold
determined from execution traces. The algorithm also ungroups task groups when new resources arrive.
Algorithm 4 describes our task granularity control composed of two processes: 1) fineness control groups
too fine task groups for which the fineness degree ηf is greater than threshold τf, and 2) coarseness control
ungroups too coarse task groups for which the coarseness degree ηc is greater than threshold τc. Table 5
shows a summary of the symbols used in this section.

Algorithm 4 Main loop for granularity control.
1: input: m waiting tasks
2: create n 1-task groups Ti
3: while there is an active task group do
4: wait for timeout or task status change
5: determine fineness degree ηf
6: if η f > τ f then

7: group task groups using Algorithm 5
8: end if
9: determine coarseness degree ηc
10: if ηc > τ c then
11: ungroup coarsest task groups
12: end if
13: end while

Repetition h r c w
1 41,338s 23,823s 71,853s -0.09
2 37,190s 28,251s 66,435s -0.01
3 40,209s 25,068s 68,792s -0.05
4 39,009s 32,973s 78,723s -0.08
5 38,847s 37,393s 78,988s -0.03

Table 3: Waste coefficient values (w) for FIELD-II/pasa.

Repetition h r c w
1 97,875s 17,709s 116,853s -0.01
2 85,100s 19,086s 161,801s -0.35
3 98,736s 25,162s 125,615s -0.01
4 107,071s 62,746s 204,456s -0.17
5 126,344s 2,195s 131,446s -0.02

Table 4: Waste coefficient values (w) for Mean-Shift/hs3.

Incident Degree and Levels
Fineness control
Fineness degree ηf. Let n be the number of waiting tasks in a workflow activity, and m the number of
task groups. Tasks of an activity are assumed independent, but with similar costs (bag of tasks). Initially,
1 group is created for each task (n = m). Ti is the set of tasks in group i, and ni is the number of tasks in Ti.
Groups are a partition of the set of waiting tasks: Ti ∩ i≠ j Tj =∅ and nii=1

m
∑ = n . The activity fineness

degree ηf is the maximum of all group fineness degrees fi:

nf =max(fi)
i∈[1,m]

(4)

All ηf are in [0,1], and high fineness degrees indicate fine granularities. We use a max operator in this
equation to ensure that any task group with a too fine granularity will be detected. The fineness degree fi
of group i is defined as:

fi = di ⋅ ri (5)

where di is the ratio between the transfer time of the input data shared among all tasks in the activity, and
the total execution time of the group:

di =
t
~
_ shared

t
~
_ shared+ ni (t

~
− t
~
_ shared)

(6)

where t

~
_ shared is the median transfer time of the input data shared among all tasks in the activity, and t

~
 is

the sum of its median task phase durations corresponding to application setup, input data transfer,
application execution and output data transfer: t

~
 = t

~
_ setup + t

~
_input + t

~
_exec + t

~
_output . Median values t

~
_ shared

and t
~
 are computed from values measured on completed tasks. When less than 2 tasks are completed,

medians remain undefined and the control process is inactive. This online estimation makes our process
non-clairvoyant with respect to the task duration, which is progressively estimated as the workflow
activity runs. Yet, it assumes that all tasks in an activity have similar costs.

In Equation 5, ri is the ratio between the maximum of the task queuing times qi in the group, and the total
round-trip time (queuing + execution) of the group:

ri =
max j∈[1,ni]

qj

max j∈[1,ni]
qj + t

~
_ shared+ ni (t

~
− t
~
_ shared)

(7)

Parameter Description
ηf, ηc Fineness and coarseness incident degrees

T Set of tasks within a grouped task
d Ratio between transfer time of input shared data and execution time
r Ratio between task queuing times and task turnaround time

t
~
_ shared Median transfer time of the input data shared among all tasks of an

activity
τf, τc Threshold values for ηf and ηc

Table 5: Explanation of the symbols used in this section.

Group queuing time is the max of all task queuing times in the group; group execution time is the time to
transfer shared input data and the time to execute all task phases in the group except for the transfers of
shared input data. Note that di, ri, and therefore fi and ηf are in [0,1]. ηf tends to 0 when there is little
shared input data among the activity tasks or when the task queuing times are low compared to the
execution times; in both cases, grouping tasks is indeed useless. Conversely, ηf tends to 1 when the
transfer time of shared input data becomes high, and the queuing time is high compared to the execution
time; grouping is needed in this case.

Threshold value τf. The threshold value for ηf separates configurations where the activity's fineness is
acceptable (ηf ≤ τf) from configurations where the activity is too fine (ηf > τf). We determine τf from
execution traces (Ferreira da Silva & Glatard, 2013), inspecting the distribution modes of ηf. Values of ηf
in the highest mode of the distribution, i.e. which are clearly separated from the others, will be considered
too fine. Figure 7 shows the histogram of these values. The histogram appears bimodal, which indicates
that ηf separates platform configurations in two distinct groups. We assume that these groups correspond
to acceptable fineness (lowest mode) and too fine granularity (highest mode), and thus we choose τf =
0.55. For ηf ≥ 0.55, task grouping will therefore be triggered.

Task grouping. We assume that running tasks cannot be pre-empted, i.e. only waiting tasks can be
grouped. Algorithm 5 describes our task grouping algorithm. Groups where fi > τf are grouped pairwise
until ηf ≤ τf or until the amount of waiting groups Q is smaller or equal to the amount of running groups R.
Although ηf ignores scattering (Equation 4 uses a max operator), the algorithm considers it by grouping
tasks in all groups where fi > τf. Ordering groups by decreasing fi values tends to equally distribute tasks
among groups. The grouping process stops when Q ≤ R to avoid parallelism loss. This condition also
avoids conflicts with the ungrouping process described in the next sub-section.

Algorithm 5 Task grouping.
1: input: f1 to fm // group fineness degrees, sorted in decreasing order
2: input: Q, R // number of queued and running task groups
3: for i = 1 to m – 1 do
4: j = i + 1
5: while fi > τ f and Q > R and j ≤m do

6: if fi > τ f then

7: group all tasks of Tj into Ti
8: recalculate fi using Equation 5
9: Q = Q – 1
10: end if
11: j = j + 1
12: end while
13: i = j

Figure 7: Histogram of fineness incident degree sampled in bins of 0.05.

14: end for
15: delete all empty task groups

Coarseness control
Condition Q > R used in Algorithm 5 ensures that all resources will be exploited if the number of
available resources is stationary (i.e., constant). In case the number of available resources decreases, the
fineness control process may further reduce the number of groups. However, if the number of available
resources increases, task groups may need to be ungrouped to maximize resource exploitation. This
ungrouping is implemented by our coarseness control process. The process monitors the value of ηc
defined as:

nc =
R

Q+ R

(8)

The threshold value τc is set to 0.5 so that ηc > τc ⇔ Q < R.

When an activity is considered too coarse, its groups are ordered by increasing values of ηf and the first
groups (i.e. the coarsest ones) are split until ηc < τc. Note that ungrouping increases the number of queued
tasks, therefore tends to reduce ηc.

Experiments and Results
The experiments presented hereafter evaluate, in a production environment, the fineness control process
under stationary load, and the interest of controlling coarseness under non-stationary load.

Experiment Conditions. The granularity control process was implemented as a plugin of the MOTEUR
workflow manager, receiving notifications about task status changes and task phase durations. The plugin
then uses this data to group and ungroup tasks according to Algorithm 4, where the timeout value is set to
2 minutes. To ensure resource limitation without overloading the production system with test tasks,
experiment executions are limited to 3 sites of different countries. As no online task modification is
possible in the DIRAC workload management system, we implemented task grouping by canceling
queued tasks and submitting grouped tasks as a new task.

Three workflow activities (summarized in Table 6), implementing different types of medical image
simulation, are used in the experiments: SimuBloch, FIELD-II, and PET-Sorteo/emission.
SimuBloch is a simulator made for fast simulation of MRIs based on Bloch equation. Two sets of
experiments are conducted under different load patterns. The first experiment evaluates the fineness
control process only under stationary load. It consists of separated executions of SimuBloch, FIELD-II,
and PET-Sorteo/emission. A workflow activity using our task grouping mechanism (Fineness) is
compared to a control activity (No-Granularity). Resource contention on the 3 execution sites is
maintained high and constant so that no ungrouping is required. The second experiment evaluates the
interest of using the ungrouping control process under non-stationary load. It uses activity FIELD-II. An
execution using both fineness and coarseness control (Fineness-Coarseness) is compared to an
execution without coarseness control (Fineness) and to a control execution (No-Granularity).
Executions are started under resource contention, but the contention is progressively reduced during the
experiment. This is done by submitting a heavy workflow before the experiment starts, and canceling it
when half of the control tasks are completed.

Results and Discussion.

Figure 8 shows the makespan of SimuBloch, FIELD-II, and PET-Sorteo/emission executions.
Fineness yields a significant makespan reduction for all repetitions. Table 7 shows the makespan (M)
values and the final number of task groups. The task grouping mechanism is not able to group all
SimuBloch tasks in a single group because 2 tasks must be completed for the process to have enough
information about the application (i.e. t

~
_ shared and t

~
 can be computed). This is a constraint of our non-

clairvoyant conditions, where task durations cannot be determined in advance. FIELD-II tasks are
initially not grouped, but as the queuing time becomes important, tasks are considered too fine, thus they
are grouped. PET-Sorteo/emission is an intermediary case where only a few tasks are grouped.
Results show that the task grouping mechanism speeds up SimuBloch and FIELD-II executions up to a
factor of 2.6, and PET-Sorteo/emission executions up to a factor of 2.5.

Workflow activity #Tasks CPU time Input Output t
~
_ shared / t

~

SimuBloch (data-intensive) 25 few seconds ~15 MB < 5 MB ~0.9
FIELD-II (data-intensive) 122 few seconds to 15 minutes ~208 MB ~40 KB [0.4,0.6]
Mean-Shift (CPU-intensive) 250 few minutes to 1 hour ~182 MB ~1KB [0.5,0.8]

Table 6: Workflow activity characteristics.

Figure 9 shows the evolution of task groups for FIELD-II executions under non-stationary load
(resources arrive during the experiment). Makespan values are reported in Table 8. In the first three
repetitions, resources emerge progressively during workflow executions. Fineness and Fineness-
Coarseness speed up executions up to a factor of 1.5 and 2.1. Since Fineness does not benefit from
newly arrived resources, it has a lower speed up compared to No-Granularity due to parallelism loss.
In the two last repetitions (where resources appear suddenly), the ungrouping process in Fineness-

 SimuBloch FIELD-II PET-Sorteo
 M (s) Groups M (s) Groups M (s) Groups

1 No-Granularity 5421 25 10230 122 873 80
Fineness 2118 3 5749 80 451 57

2 No-Granularity 3138 25 7734 122 2695 80
Fineness 1803 3 2982 75 1766 40

3 No-Granularity 1831 25 9407 122 1983 80
Fineness 780 4 4894 73 1047 53

4 No-Granularity 1737 25 6026 122 552 80
Fineness 797 6 3507 61 218 64

5 No-Granularity 3257 25 4865 122 1033 80
Fineness 1468 4 3641 91 831 71

Table 7: Makespan (M) and number of task groups for SimuBloch, FIELD-II, and PET-Sorteo/emission

executions for the 5 repetitions.

Figure 8: Makespan for Fineness and No-Granularity executions under stationary load.

Coarseness has similar performance than No-Granularity since the execution maximizes the
parallelism, while Fineness is penalized by its lack of adaptation: a slowdown of 20% is observed
compared to No-Granularity.

Our task granularity control process works best under high resource contention, when the amount of
available resources is stable or decreases over time. Coarseness control can cope with soft increases in the
number of available resources, but fast variations remain difficult to handle. In the worst-case scenario,
tasks are first grouped due to resource limitation, and resources suddenly appear once all task groups are
already running. In this case the ungrouping algorithm has no group to handle, and granularity control
penalizes the execution. Task pre-emption should be added to the method to address this scenario.

CONTROLLING FAIRNESS AMONG WORKFLOW EXECUTIONS

Fairly allocating distributed computing resources among workflow executions is critical to multi-user
platforms such as VIP. However, this problem remains mostly studied in clairvoyant and offline
conditions, where task durations on resources are known, or the workload and available resources do not
vary along time. We consider a non-clairvoyant, online fairness problem where the platform workload,
task costs and resource characteristics are unknown and not stationary. We propose a fairness control loop
which assigns task priorities based on the fraction of pending work in the workflows (Ferreira da Silva et
al., 2014; Ferreira da Silva, Glatard, & Desprez, 2013c). Workflow characteristics and performance on the
target resources are estimated progressively, as information becomes available during the execution.
Workflows consist of linked activities spawning tasks for which the executable and input data are known,
but the computational cost and produced data volume are not. Algorithm 6 summarizes our fairness
control process. Fairness is controlled by allocating resources to workflows according to their fraction of
pending work. It is done by re-prioritizing tasks in workflows where the unfairness degree ηu is greater
than a threshold τu. Table 9 shows a summary of the symbols used in this section.

Figure 9: Evolution of task groups for FIELD-II executions under non-stationary load (resources arrive during

the experiment).

 Run 1 Run 2 Run 3 Run 4 Run 5
Workflow activity M (s) ē (s) M (s) ē (s) M (s) ē (s) M (s) ē (s) M (s) ē (s)

No-Granularity 4617 2011 5934 2765 6940 3855 3199 1863 4147 2295
Fineness 3892 2036 4607 2090 4602 2631 3567 1928 5247 2326
Fineness-Coarseness 2927 1708 3335 1829 3247 2091 2952 1586 4073 2197

Table 8: Makespan (M) and average queuing time (ē) for FIELD-II workflow execution for the 5 repetitions.

Algorithm 6 Main loop for fairness control.
1: input: m workflow executions
2: while there is an active workflow do
3: wait for timeout or task status change in any workflow
4: determine unfairness degree ηu
5: if ηu > τ u then
6: re-prioritize tasks using Algorithm 7
7: end if
8: end while

Incident Degree and Levels
Unfairness degree ηu. Let m be the number of workflows with an active activity; a workflow activity is
active if it has at least one waiting (queued) or running task. The unfairness degree ηu is the maximum
difference between the fractions of pending work:

ηu =Wmax −Wmin (9)

with Wmin = min{Wi, i ∈ [1,m]} and Wmax = max{Wi, i ∈ [1,m]}. All Wi are in [0,1]. For ηu = 0, we
consider that resources are fairly distributed among all workflows; otherwise, some workflows consume
more resources than they should. The fraction of pending work Wi of a workflow i ∈ [1,m] is defined
from the fraction of pending work wi,j of its ni active activities:

Wi =max(wi, j)
j∈[1,ni]

(10)

All wi,j are between 0 and 1. A high wi,j value indicates that the activity has a lot of pending work
compared to the others. We define wi,j as:

wi, j =
Qi, j

Qi, j + Ri, jPi, j
⋅Ti, j

(11)

where Qi,j is the number of waiting tasks in the activity, Ri,j is the number of running tasks in the activity,
Pi,j is the performance of the activity, and Ti,j is its relative observed duration. Ti,j is defined as the ratio
between the median duration t

~
i, j of the completed tasks in activity j and the maximum median task

duration among all active activities of all running workflows:

Parameter Description
ηu Unfairness incident degree

W, w Fraction of pending work
Q, R Number of queued and running tasks

P Performance of the activity
T Relative observed duration

t
~

 Sum of the median task execution times

τu Threshold value for ηu
Δ Number of waiting tasks of an activity
µ Area under the curve ηu during the execution

Table 9: Explanation of the symbols used in this section.

Ti, j =
t
~
i, j

max
v∈[1,m],w∈[1,ni

*]
(t
~
u,w)

(12)

Tasks of an activity all consist of the following successive phases: setup, inputs download,

application execution, and outputs upload; t
~
i, j is computed as t

~
i, j = t

~
i, j

setup

+ t
~
i, j

input

+ t
~
i, j

exec

+ t
~
i, j

output

_ .
Medians are progressively estimated as tasks complete. At the beginning of the execution, Ti,j is initialized
to 1 and all medians are undefined; when two tasks of activity j complete, t

~
i, j is updated and Ti,j is

computed with Equation 12. In this equation, the max operator is computed only on ni
* ≤ ni activities with

at least 2 completed tasks, i.e. for which t
~
i, j can be determined. We are aware that using the median may

be inaccurate. However, without a model of the applications' execution time, we have to rely on observed
task durations. Using the whole time distribution (or at least its few first moments) may be more accurate
but it would make the method more complex.

In Equation 11, the performance Pi,j of an activity varies between 0 and 1. A low Pi,j indicates that
resources allocated to the activity have bad performance for the activity; in this case, the contribution of
running tasks is reduced and wi,j increases. Conversely, a high Pi,j increases the contribution of running
tasks, therefore decreases wi,j. For an activity j with kj active tasks, we define Pi,j as:

Pi, j = 2 ⋅ 1− maxu∈[1,kj]

tu
t
~
i, j+ tu

$
%
&

'&

(
)
&

*&

+

,

-
-

.

/

0
0

(13)

where tu = tu

setup + tu
input + tu

exec + tu
output
_ is the sum of the estimated durations of task u's phases. Estimated task

phase durations are computed as the max between the current elapsed time in the task phase (0 if the task
phase has not started) and the median duration of the task phase. Pi,j is initialized to 1, and updated using
Equation 13 only when at least 2 tasks of activity j are completed. Note that computing Pi,j is equivalent
to computing the complement of the activity blocked degree 1 – ηb for activity j of workflow i.

If all tasks perform as the median, i.e. tu = t

~
i, j , then maxu∈[1,kj] tu / (t

~
i, j+tu){ }= 0.5 and Pi,j = 1. Conversely, if a

task in the activity is much longer than the median, i.e. tu >> t
~
i, j , then maxu∈[1,kj] tu / (t

~
i, j+tu){ } ≈1 and Pi,j ≈ 0.

This definition of Pi,j, considers that bad performance results in a few tasks blocking the activity. Indeed,
we assume that the scheduler does not deliberately favor any activity and that performance discrepancies
are manifested by a few unlucky tasks slowed down by bad resources. Performance, in this case, has a
relative definition: depending on the activity profile, it can correspond to CPU, RAM, network
bandwidth, latency, or a combination of those. We admit that this definition of Pi,j is a bit rough.
However, under our non-clairvoyance assumption, estimating resource performance for the activity more
accurately is hardly possible because 1) we have no model of the application, therefore task durations
cannot be predicted from CPU, RAM or network characteristics, and 2) network characteristics and even
available RAM are shared among concurrent tasks running on the infrastructure, which makes them
hardly measurable.

Thresholding unfairness τu. Task prioritization is triggered when the unfairness degree is considered
critical, i.e ηu > τu. Inspecting the modes of the distribution of ηu we determine that values of ηu in the

highest mode of the distribution, i.e. which are clearly separated from the others, will be considered
unfair. Figure 10 shows the histogram of these values, where only ηu ≠ 0 values are represented. This
histogram is clearly bi-modal, which is a good property since it reduces the influence of τu. From this
histogram, we choose τu = 0.2. For ηu > 0.2, task prioritization is triggered.

Task prioritization. Task priority is an integer initialized to 1. The action taken to cope with unfairness
is to increase the priority of Δi,j waiting tasks for all activities j of workflow i where wi,j - Wmin > τu.
Running tasks cannot be pre-empted. Δi,j is determined so that w

~
i, j =Wmin +τ u , where w

~
i, j is the estimated

value of wi,j after Δi,j tasks are prioritized. We approximate w
~
i, j as:

w
~
i, j =

Qi, j −Δi, j

Qi, j + Ri, jPi, j
⋅T
^
i, j

(14)

which assumes that Δi,j tasks will move from status queued to running, and that the performance of new
resources will be maximal. It gives:

Δi, j =Qi, j −
(τ u +Wmin)(Qi, j + Ri, jPi, j)

T
^
i, j

#

$
#
#

%

&
%
%

(15)

where !" #$ rounds a decimal down to the nearest integer value.

Algorithm 7 describes our task re-prioritization algorithm. maxPriority is the maximal priority value in
all workflows. The priority of Δi,j waiting tasks is set to maxPriority + 1 in all activities j of workflows i
where wi,j - Wmin > τu. Note that this algorithm takes into account scatter among Wi although ηu ignores it
(see Equation 9). Indeed, tasks are re-prioritized in any workflow i for which wi,j - Wmin > τu.

Algorithm 7 Task re-prioritization.
1: input: W1 to Wm // fractions of pending works
2: maxPriority = max task priority in all workflows
3: for i = 1 to m do
4: if Wi −Wmin > τ u then
5: for j = 1 to ai do
6: // ai is the number of active activities in workflow i
7: if wi, j −Wmin > τ u then

8: compute Δi,j from Equation 15
9: for p = 1 to Δi,j do

Figure 10: Histogram of the unfairness degree ηu sampled in bins of 0.05.

10: if ∃waiting task q in activity j with priority ≤ maxPriority then
11: q.priority = maxPriority + 1
12: end if
13: end for
14: end if
15: end for
16: end if
17: end for

The method also accommodates online conditions. If a new workflow i is submitted, then Ri,j = 0 for all
its activities and T

^
i, j is initialized to 1. This leads to Wmax = Wi = 1, which increases ηu. If ηu goes beyond

τu, then Δi,j tasks of activity j of workflow i have their priorities increased to restore fairness. Similarly, if
new resources arrive, then Ri,j increase and ηu is updated accordingly.

Experiments and Results
The experiments presented hereafter evaluate our method on a set of identical workflows, where the
variability of the measured makespan can be used as a fairness metric. In addition, we add a very short
workflow to this set of identical workflow, which was one of the configurations motivating this study.

Experiment conditions. Fairness control was implemented as a MOTEUR plug-in receiving notifications
about task and workflow status changes. Each workflow plug-in forwards task status changes and t

~
i, j

values to a service centralizing information about all the active workflows. This service then re-prioritizes
tasks according to Algorithms 6 and 7. The timeout value used in Algorithm 6 is set to 3 minutes. As no
online task modification is possible in DIRAC, we implemented task prioritization by canceling and
resubmitting queued tasks to DIRAC with new priorities. Two real medical simulation workflows are
considered: GATE and SimuBloch. GATE is a Geant4-based open-source software to perform nuclear
medicine simulations, especially for TEP and SPECT imaging, as well for radiation therapy. Table 10
summarizes their main characteristics.

Three different fairness metrics are used in the experiments. First, the standard deviation of the makespan,
written σm, is a straightforward metric that can be used when identical workflows are executed. Second,
we define the unfairness µu as the area under the curve ηu (see Equation 9) during the execution:

µ = ηu(ti) ⋅ (ti − ti−1)
i=2

M

∑
(16)

where M is the number of time samples until the makespan. This metric measures if the fairness process
can indeed minimize its own criterion ηu. In addition, the slowdown s of a completed workflow execution
is measured as:

s = Mmulti

Mown

(17)

Workflow activity #Tasks CPU time Input Output
GATE (CPU-intensive) 100 few minutes to 1 hour ~115 MB ~40 MB
SimuBloch (data-intensive) 25 few seconds ~15 MB < 5 MB

Table 10: Workflow characteristics.

where Mmulti is the makespan observed on the shared platform, and Mown is the estimated makespan if it
was executed alone on the platform. In our conditions, Mown is estimated as:

Mown =maxp∈Ω
tu

u∈p
∑

(18)

where Ω is the set of task paths in the workflow, and tu is the measured duration of task u. This assumes
that concurrent executions only impact task waiting time. For instance, network congestion or changes in
performance distribution resulting from concurrent executions are ignored. We use σs, the standard
deviation of the slowdown to quantify unfairness. The standard deviation of the makespan (σm) is also
used.

Results and discussion. Figure 11 shows the makespan for the set of identical workflows. The
unfairness degree ηu is shown in Figure 12, while the makespan standard deviation σm, slowdown
standard deviation σs and unfairness µu for the 4 repetitions using the set of identical workflows is shown
in Table 11. The difference among makespans and unfairness degree values are significantly reduced in all
repetitions of Fairness. Both Fairness and No-Fairness behave similarly until ηu reaches the
threshold value τu = 0.2. Unfairness is then detected and the mechanism triggers task prioritization.
Paradoxically, the first effect of task prioritization is a slight increase of ηu. Indeed, Pi,j and T

^
i, j , that are

initialized to 1, start changing earlier in Fairness than in No-Fairness due to the availability of task
duration values to compute t

~
i, j . Note that ηu reaches similar maximal values in both cases, but reaches

them faster in Fairness. The fairness mechanism then manages to decrease ηu back under 0.2 much
faster than it happens in No-Fairness when tasks progressively complete. Quantitatively, the fairness
mechanism reduces σm up to a factor of 15, σs up to a factor of 7, and µu by about 2.

Figure 12: Unfairness degree ηu for the set of identical workflows.

Figure 11: Comparison of the makespan for the 3 identical workflows.

Figure 13 shows the makespan for the case where a very short workflow is introduced. Unfairness degree
ηu is shown in Figure 14. Table 12 shows unfairness µu and slowdown standard deviation σs. In all cases,
the makespan of the very short SimuBloch executions is significantly reduced for Fairness. The
evolution of ηu is coherent with the first experiment: a common initialization phase followed by an
anticipated growth and decrease for Fairness. Fairness reduces σs up to a factor of 5.9 and unfairness
up to a factor of 1.9. Table 13 shows the execution makespan (m), average wait time (w

_
) and slowdown

(s) values for the SimuBloch execution launched after the 3 GATE. As it is a non-clairvoyant scenario
where no information about task execution time and future task submission is known, the fairness
mechanism is not able to give higher priorities to SimuBloch tasks in advance. Despite that, the fairness
mechanism speeds up SimuBloch executions up to a factor of 2.9, reduces task average wait time up to
factor of 4.4 and reduces slowdown up to a factor of 5.9.

 Repetition 1 Repetition 2 Repetition 3 Repetition 4
 σs µ(s) σs µ(s) σs µ(s) σs µ(s)

NF 94.88 7269 100.05 16048 87.93 11331 213.60 28190
F 15.95 9085 42.94 12543 57.62 7721 76.69 21355

Table 12. Slowdown standard deviation σs and unfairness µu.

Figure 14: Unfairness degree ηu for a set of identical workflows and a very short workflow.

Figure 13: Comparison of the makespan for 3 identical workflows and a very short workflow.

 Repetition 1 Repetition 2 Repetition 3 Repetition 4
 σm(s) σs µ(s) σm(s) σs µ(s) σm(s) σs µ(s) σm(s) σs µ(s)

NF 4666 1.03 8758 2541 0.50 4154 5791 2.10 13392 1567 0.87 12283
F 1884 0.40 5292 167 0.84 2367 2007 0.84 7243 706 0.24 6070

Table 11. Makespan standard deviation σm, slowdown standard deviation σs and unfairness µu.

In all experiments, fairness optimization takes time to begin because the method needs to acquire
information about the applications, which are totally unknown when a workflow is launched. We could
think of reducing the time of this information-collecting phase, e.g. by designing initialization strategies
maximizing information discovery, but it could not be totally removed. Currently, the method works best
for applications with a lot of short tasks because the first few tasks can be used for initialization, and
optimization can be exploited for the remaining tasks. The worst-case scenario is a configuration where
the number of available resources stays constant and equal to the number of tasks in the first submitted
workflow: in this case, no action could be taken until the first workflow completes, and the method would
not do better than first-come-first-served. Pre-emption of running tasks should be considered to address
that.

INTERACTIONS BETWEEN TASK GRANULARITY AND FAIRNESS CONTROL
Adjusting task granularity obviously impacts resource allocation, therefore fairness among executions.
We approach this issue from an experimental angle, testing the following hypotheses: 1) the granularity
control loop reduces fairness among executions; and 2) the fairness control loop avoids this reduction
(Ferreira da Silva et al., 2014).

Two experiments are conducted. The first experiment tests whether the task granularity control process
penalizes fairness among workflow executions; and the second tests whether the fairness control process
mitigates the unfairness created by the granularity control process. For each experiment, a workflow set
where one workflow uses the granularity control process (Granularity, G) is compared to a control
workflow set (No-Granularity, NG). A workflow set consists of three SimuBloch workflows
submitted sequentially. In the Granularity set, the first workflow has the granularity control process
enabled, and the others do not. The first experiment has a fairness service, which only measures the
unfairness among workflow executions, but no action is triggered. In the second experiment, task
prioritization is triggered once unfairness is detected.

Both experiments are launched simultaneously to ensure similar grid conditions. For each grouped task
resubmitted in the Granularity execution, a task in the No-Granularity is resubmitted too in each
experiment to ensure equal race conditions for resource allocation. Similarly, for each task prioritized in
the first experiment, a task in the second is also prioritized to ensure equal race conditions. Again,
experiment results are not influenced by the submission process overhead since both Granularity and
No-Granularity of both experiments experience the same overhead. Therefore, performance results
obtained in both experiments can be compared to each other.

Results and discussion. Figure 15 shows the comparison of the slowdown for the first experiment.
Unfairness degree ηu is shown in Figure 16. Table 14 shows the makespan standard deviation σm,
slowdown standard deviation σs, and unfairness µu. Both Granularity and No-Granularity

Run Type m (secs) w
_

 (secs) s

1 No-Fairness 27854 18983 196.15
Fairness 9531 4313 38.43

2 No-Fairness 27784 19105 210.48
Fairness 13761 10538 94.25

3 No-Fairness 14432 13579 182.48
Fairness 9902 8145 122.25

4 No-Fairness 51664 47591 445.38
Fairness 38630 27795 165.79

Table 13: SimuBloch's makespan, average wait time and slowdown.

executions behave similarly until ηf reaches the threshold value τf = 0.55. Tasks are considered too fine
and the mechanism triggers task grouping. In all cases, the slowdown of the workflow executed with
granularity (the first one on the Granularity set) is the lowest, i.e. its execution benefits of the
grouping mechanism by saving waiting times and data transfers of shared input data. In the workflow set
where the granularity control process is enabled, the unfairness value is up to a factor of 2 higher when
compared to the workflow set where the granularity is disabled (No-Granularity).

Figure 17 shows the comparison of slowdown for the second experiment. Unfairness degree ηu is shown
in Figure 18. Table 15 shows makespan standard deviation σm, slowdown standard deviation σs, and
unfairness µu. Both Granularity and No-Granularity executions have similar unfairness values. The
same behavior is observed in σm and σs for repetitions 1, 3, and 4. This is not the case of repetition 2, in
which resources suddenly appeared while tasks were being grouped. This resulted in parallelism loss for
some workflow executions while the others were less impacted.

Figure 17: Granularity with fairness: comparison of the slowdowns.

 Repetition 1 Repetition 2 Repetition 3 Repetition 4
 σm(s) σs µ(s) σm(s) σs µ(s) σm(s) σs µ(s) σm(s) σs µ(s)

NF 2446 16.55 823 15 3.24 503 1273 8.91 998 1364 38.70 1040
F 2962 21.94 1638 1015 13.15 527 2566 11.01 1212 2017 73.90 1250

Table 14. Granularity without fairness: unfairness and standard deviation of the makespan and slowdown.

Figure 16: Granularity without fairness: unfairness degree ηu.

Figure 15: Granularity without fairness: comparison of the slowdowns.

FUTURE RESEARCH DIRECTIONS
The self-management method introduced in this chapter demonstrated its effectiveness to handle
operational incidents on workflow executions. The use of a MAPE-K loop is fundamental to achieve a
fair quality of service by using control loops that constantly perform online monitoring, analysis, and
execution of a set of curative actions. However, some limitations are also identified. For instance, the
method needs to acquire information about the applications, which are completely unknown when a
workflow is launched. When handling blocked activities, this limitation delays the decision to replicate a
task; at least two tasks should be finished to estimate the median durations of each phase. The same delay
is observed when handling the granularity of tasks, where tasks are grouped once an estimation of the
duration is available. For the fairness process, the relative observed duration parameter also depends on
task duration estimations, thus the metric does not consider this parameter while the estimations are not
available. One approach to circumvent this issue could be to initialize such estimations according to
observed distributions of these values, adjusting the estimations along the workflow execution.

CONCLUSION
In this chapter, we introduced the Virtual Imaging Platform (VIP), an openly accessible online science-
gateway for medical imaging simulation, which provides access to distributed computing and storage
resources. We then addressed the autonomic management of workflow executions on VIP in an online
and non-clairvoyant environment. We introduced our general self-management mechanism, based on the
MAPE-K loop, to cope with operational incidents of workflow executions. Then, we showed the
application of our method to handle late task executions, task granularities, and unfairness among
workflow executions.

The self-mechanism method proposed in this chapter demonstrated its effectiveness to handle operational
incidents on workflow executions. The use of a MAPE-K loop is fundamental to achieve a fair quality of
service by using control loops that constantly perform online monitoring, analysis, and execution of a set
of curative actions. Although we showed the application of the self-management method in a medical
imaging science-gateway using a grid infrastructure, the method is general enough to be used by other
platforms and infrastructures.

REFERENCES

 Repetition 1 Repetition 2 Repetition 3 Repetition 4
 σm(s) σs µ(s) σm(s) σs µ(s) σm(s) σs µ(s) σm(s) σs µ(s)

NF 2548 15.41 445 78 0.11 501 2768 6.11 718 1044 35.37 826
F 2384 13.47 335 456 0.23 455 1674 3.11 712 1028 34.53 754

Table 15. Granularity with fairness: unfairness and standard deviation of the makespan and slowdown.

Figure 18: Granularity with fairness: unfairness degree ηu.

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large
databases. ACM SIGMOD Record, 22(2), 207–216. doi:10.1145/170036.170072

Ang, T. F., Ng, W. K., Ling, T. C., Por, L. Y., & Liew, C. S. (2009). A Bandwidth-Aware Job Grouping-
Based Scheduling on Grid Environment. Information Technology Journal, 8(3), 372–377.
doi:10.3923/itj.2009.372.377

Arabnejad, H., & Barbosa, J. (2012). Fairness Resource Sharing for Dynamic Workflow Scheduling on
Heterogeneous Systems (pp. 633–639). IEEE. doi:10.1109/ISPA.2012.94

Ben-Yehuda, O. A., Schuster, A., Sharov, A., Silberstein, M., & Iosup, A. (2012). ExPERT: Pareto-
Efficient Task Replication on Grids and a Cloud (pp. 167–178). IEEE.
doi:10.1109/IPDPS.2012.25

Casanova, H., Desprez, F., & Suter, F. (2010). On cluster resource allocation for multiple parallel task
graphs. Journal of Parallel and Distributed Computing, 70(12), 1193–1203.
doi:10.1016/j.jpdc.2010.08.017

Chen, W., Ferreira da Silva, R., Deelman, E., & Sakellariou, R. (2013). Balanced Task Clustering in
Scientific Workflows (pp. 188–195). IEEE. doi:10.1109/eScience.2013.40

Cirne, W., Brasileiro, F., Paranhos, D., Góes, L. F. W., & Voorsluys, W. (2007). On the efficacy,
efficiency and emergent behavior of task replication in large distributed systems. Parallel
Computing, 33(3), 213–234. doi:10.1016/j.parco.2007.01.002

De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. University of
Michigan.

Ferreira da Silva, R., Camarasu-Pop, S., Grenier, B., Hamar, V., Manset, D., Montagnat, J., … Glatard, T.
(2011). Multi-infrastructure workflow execution for medical simulation in the Virtual Imaging
Platform. In 2011 HealthGrid Conference.

Ferreira da Silva, R., & Glatard, T. (2013). A Science-Gateway Workload Archive to Study Pilot Jobs,
User Activity, Bag of Tasks, Task Sub-steps, and Workflow Executions. In I. Caragiannis, M.
Alexander, R. M. Badia, M. Cannataro, A. Costan, M. Danelutto, … J. Weidendorfer (Eds.),
Euro-Par 2012: Parallel Processing Workshops (pp. 79–88). Springer Berlin Heidelberg.
Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-36949-0_10

Ferreira da Silva, R., Glatard, T., & Desprez, F. (2012). Self-Healing of Operational Workflow Incidents
on Distributed Computing Infrastructures (pp. 318–325). IEEE. doi:10.1109/CCGrid.2012.24

Ferreira da Silva, R., Glatard, T., & Desprez, F. (2013a). On-Line, Non-clairvoyant Optimization of
Workflow Activity Granularity on Grids. In F. Wolf, B. Mohr, & D. an Mey (Eds.), Euro-Par
2013 Parallel Processing (pp. 255–266). Springer Berlin Heidelberg. Retrieved from
http://link.springer.com/chapter/10.1007/978-3-642-40047-6_28

Ferreira da Silva, R., Glatard, T., & Desprez, F. (2013b). Self-healing of workflow activity incidents on
distributed computing infrastructures. Future Generation Computer Systems, 29(8), 2284–2294.
doi:10.1016/j.future.2013.06.012

Ferreira da Silva, R., Glatard, T., & Desprez, F. (2013c). Workflow Fairness Control on Online and Non-
clairvoyant Distributed Computing Platforms. In F. Wolf, B. Mohr, & D. an Mey (Eds.), Euro-
Par 2013 Parallel Processing (pp. 102–113). Springer Berlin Heidelberg. Retrieved from
http://link.springer.com/chapter/10.1007/978-3-642-40047-6_13

Ferreira da Silva, R., Glatard, T., & Desprez, F. (2014). Controlling fairness and task granularity in
distributed, online, non-clairvoyant workflow executions: CONTROLLING FAIRNESS AND
TASK GRANULARITY IN WORKFLOWS. Concurrency and Computation: Practice and
Experience, n/a–n/a. doi:10.1002/cpe.3303

Ferreira da Silva, R., Juve, G., Deelman, E., Glatard, T., Desprez, F., Thain, D., … Livny, M. (2013).
Toward fine-grained online task characteristics estimation in scientific workflows (pp. 58–67).
ACM Press. doi:10.1145/2534248.2534254

Foster, I. (2001). The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International
Journal of High Performance Computing Applications, 15(3), 200–222.
doi:10.1177/109434200101500302

Glatard, T., Lartizien, C., Gibaud, B., Ferreira da Silva, R., Forestier, G., Cervenansky, F., … Friboulet,
D. (2013). A Virtual Imaging Platform for Multi-Modality Medical Image Simulation. IEEE
Transactions on Medical Imaging, 32(1), 110–118. doi:10.1109/TMI.2012.2220154

Glatard, T., Montagnat, J., Lingrand, D., & Pennec, X. (2008). Flexible and Efficient Workflow
Deployment of Data-Intensive Applications On Grids With MOTEUR. International Journal of
High Performance Computing Applications, 22(3), 347–360. doi:10.1177/1094342008096067

Henan Zhao, & Sakellariou, R. (2006). Scheduling multiple DAGs onto heterogeneous systems (p. 14
pp.). IEEE. doi:10.1109/IPDPS.2006.1639387

Hirales-Carbajal, A., Tchernykh, A., Yahyapour, R., González-García, J. L., Röblitz, T., & Ramírez-
Alcaraz, J. M. (2012). Multiple Workflow Scheduling Strategies with User Run Time Estimates
on a Grid. Journal of Grid Computing, 10(2), 325–346. doi:10.1007/s10723-012-9215-6

Hsu, C.-C., Huang, K.-C., & Wang, F.-J. (2011). Online scheduling of workflow applications in grid
environments. Future Generation Computer Systems, 27(6), 860–870.
doi:10.1016/j.future.2010.10.015

Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 36(1), 41–50.
doi:10.1109/MC.2003.1160055

Litke, A., Skoutas, D., Tserpes, K., & Varvarigou, T. (2007). Efficient task replication and management
for adaptive fault tolerance in Mobile Grid environments. Future Generation Computer Systems,
23(2), 163–178. doi:10.1016/j.future.2006.04.014

Liu, Q., & Liao, Y. (2009). Grouping-Based Fine-Grained Job Scheduling in Grid Computing (pp. 556–
559). IEEE. doi:10.1109/ETCS.2009.132

Malik, D. S., Mordeson, J. N., & Sen, M. K. (1994). On subsystems of a fuzzy finite state machine. Fuzzy
Sets and Systems, 68(1), 83–92. doi:10.1016/0165-0114(94)90274-7

Muthuvelu, N., Chai, I., Chikkannan, E., & Buyya, R. (2010). On-Line Task Granularity Adaptation for
Dynamic Grid Applications. In C.-H. Hsu, L. T. Yang, J. H. Park, & S.-S. Yeo (Eds.), Algorithms
and Architectures for Parallel Processing (Vol. 6081, pp. 266–277). Berlin, Heidelberg: Springer
Berlin Heidelberg. Retrieved from http://www.springerlink.com/index/10.1007/978-3-642-13119-
6_24

Muthuvelu, N., Chai, I., & Eswaran, C. (2008). An Adaptive And Parameterized Job Grouping Algorithm
For Scheduling Grid Jobs (pp. 975–980). IEEE. doi:10.1109/ICACT.2008.4493929

Muthuvelu, N., Liu, J., Soe, N. L., Venugopal, S., Sulistio, A., & Buyya, R. (2005). A Dynamic Job
Grouping-based Scheduling for Deploying Applications with Fine-grained Tasks on Global
Grids. In Proceedings of the 2005 Australasian Workshop on Grid Computing and e-Research -
Volume 44 (pp. 41–48). Darlinghurst, Australia, Australia: Australian Computer Society, Inc.
Retrieved from http://dl.acm.org/citation.cfm?id=1082290.1082297

N’Takpe, T., & Suter, F. (2009). Concurrent scheduling of parallel task graphs on multi-clusters using
constrained resource allocations (pp. 1–8). IEEE. doi:10.1109/IPDPS.2009.5161161

Ng Wai Keat, T. A. (2006). Scheduling framework for bandwidth-aware job grouping-based scheduling
in grid computing. Malaysian Journal of Computer Science, 19.

Open Science Grid. (2014). Retrieved from http://www.opensciencegrid.org
Ramakrishnan, L., Huang, T. M., Thyagaraja, K., Zagorodnov, D., Koelbel, C., Kee, Y.-S., … Mandal, A.

(2009). VGrADS: enabling e-Science workflows on grids and clouds with fault tolerance (p. 1).
ACM Press. doi:10.1145/1654059.1654107

Romanus, M., Mantha, P. K., McKenzie, M., Bishop, T. C., Gallichio, E., Merzky, A., … Jha, S. (2012).
The Anatomy of Successful ECSS Projects: Lessons of Supporting High-throughput High-
performance Ensembles on XSEDE. In Proceedings of the 1st Conference of the Extreme Science
and Engineering Discovery Environment: Bridging from the eXtreme to the Campus and Beyond
(pp. 46:1–46:9). New York, NY, USA: ACM. doi:10.1145/2335755.2335843

Sabin, G., Kochhar, G., & Sadayappan, P. (2004). Job fairness in non-preemptive job scheduling (pp.
186–194 vol.1). IEEE. doi:10.1109/ICPP.2004.1327920

Skowron, P., & Rzadca, K. (2013). Non-monetary fair scheduling: a cooperative game theory approach
(p. 288). ACM Press. doi:10.1145/2486159.2486169

Sommerfeld, D., & Richter, H. (2011). Efficient Grid Workflow Scheduling Using a Two-Tier Approach.
Presented at the HealthGrid 2011.

Tan, P.-N. (2006). Introduction to data mining (1st ed.). Boston: Pearson Addison Wesley.
Taylor, I. J. (2007). Workflows for e-science scientific workflows for grids. London: Springer. Retrieved

from http://public.eblib.com/EBLPublic/PublicView.do?ptiID=337445
Tsaregorodtsev, A., Brook, N., Ramo, A. C., Charpentier, P., Closier, J., Cowan, G., … Zhelezov, A.

(2010). DIRAC3 – the new generation of the LHCb grid software. Journal of Physics:
Conference Series, 219(6), 062029. doi:10.1088/1742-6596/219/6/062029

XSEDE. (2014). Retrieved from http://www.xsede.org
Zomaya, A. Y., & Chan, G. (2004). Efficient clustering for parallel tasks execution in distributed systems

(pp. 167–174). IEEE. doi:10.1109/IPDPS.2004.1303164

ADDITIONAL READING
Callaghan, S., Deelman, E., Gunter, D., Juve, G., Maechling, P., Brooks, C., ... & Jordan, T. (2010).

Scaling up workflow-based applications. Journal of Computer and System Sciences, 76(6), 428-
446.

Callaghan, S., Maechling, P., Small, P., Milner, K., Juve, G., Jordan, T. H., ... & Brooks, C. (2011).
Metrics for heterogeneous scientific workflows: A case study of an earthquake science
application. International Journal of High Performance Computing Applications,
1094342011414743.

Camarasu-Pop, S., Glatard, T., Da Silva, R. F., Gueth, P., Sarrut, D., & Benoit-Cattin, H. (2013). Monte
Carlo simulation on heterogeneous distributed systems: A computing framework with parallel
merging and checkpointing strategies. Future Generation Computer Systems, 29(3), 728-738.

Camarasu-Pop, S., Glatard, T., Mościcki, J. T., Benoit-Cattin, H., & Sarrut, D. (2010). Dynamic
partitioning of GATE Monte-Carlo simulations on EGEE. Journal of Grid Computing, 8(2), 241-
259.

Chen, W., & Deelman, E. (2011). Workflow overhead analysis and optimizations. In Proceedings of the
6th workshop on Workflows in support of large-scale science (pp. 11-20). ACM.

Deelman, E., Gannon, D., Shields, M., & Taylor, I. (2009). Workflows and e-Science: An overview of
workflow system features and capabilities. Future Generation Computer Systems, 25(5), 528-540.

Deelman, E., Juve, G., Malawski, M., & Nabrzyski, J. (2013). Hosted science: Managing computational
workflows in the cloud. Parallel Processing Letters, 23(02).

Ferreira da Silva, R., Chen, W., Juve, G., Vahi, K., & Deelman, E. (2014) Community Resources for
Enabling Research in Distributed Scientific Workflows. 10th IEEE International Conference on
e-Science.

Gil, Y., González-Calero, P. A., & Deelman, E. (2007). On the black art of designing computational
workflows. In Proceedings of the 2nd workshop on Workflows in support of large-scale science
(pp. 53-62). ACM.

Glatard, T., Rousseau, M. E., Camarasu-Pop, S., Rioux, P., Sherif, T., Beck, N., ... & Evans, A. C. (2014)
Interoperability between the CBRAIN and VIP web platforms for neuroimage analysis.

Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., & Good, J. (2008). On the use
of cloud computing for scientific workflows. In eScience, 2008. eScience'08. IEEE Fourth
International Conference on (pp. 640-645). IEEE.

Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., & Vahi, K. (2013). Characterizing and
profiling scientific workflows. Future Generation Computer Systems, 29(3), 682-692.

Kandaswamy, G., Mandal, A., & Reed, D. A. (2008). Fault tolerance and recovery of scientific
workflows on computational grids. In Cluster Computing and the Grid, 2008. CCGRID'08. 8th
IEEE International Symposium on (pp. 777-782). IEEE.

Kumar, V. S., Sadayappan, P., Mehta, G., Vahi, K., Deelman, E., Ratnakar, V., ... & Saltz, J. (2009). An
integrated framework for performance-based optimization of scientific workflows. In Proceedings
of the 18th ACM international symposium on High performance distributed computing (pp. 177-
186). ACM.

Malawski, M., Juve, G., Deelman, E., & Nabrzyski, J. (2012). Cost-and deadline-constrained
provisioning for scientific workflow ensembles in iaas clouds. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis (p. 22). IEEE
Computer Society Press.

Montagnat, J., Isnard, B., Glatard, T., Maheshwari, K., & Fornarino, M. B. (2009). A data-driven
workflow language for grids based on array programming principles. In Proceedings of the 4th
Workshop on Workflows in Support of Large-Scale Science (p. 7). ACM.

Olabarriaga, S. D., Jaghoori, M. M., Korkhov, V., van Schaik, B., & van Kampen, A. (2013, November).
Understanding workflows for distributed computing: nitty-gritty details. In Proceedings of the 8th
Workshop on Workflows in Support of Large-Scale Science (pp. 68-76). ACM.

Plankensteiner, K., Prodan, R., & Fahringer, T. (2009). A new fault tolerance heuristic for scientific
workflows in highly distributed environments based on resubmission impact. In e-Science, 2009.
e-Science'09. Fifth IEEE International Conference on (pp. 313-320). IEEE.

Russell, N., van der Aalst, W., & ter Hofstede, A. (2006, January). Workflow exception patterns. In
Advanced Information Systems Engineering (pp. 288-302). Springer Berlin Heidelberg.

Samak, T., Gunter, D., Goode, M., Deelman, E., Mehta, G., Silva, F., & Vahi, K. (2011). Failure
prediction and localization in large scientific workflows. In Proceedings of the 6th workshop on
Workflows in support of large-scale science (pp. 107-116). ACM.

Shahand, S., Benabdelkader, A., Jaghoori, M. M., Mourabit, M. A., Huguet, J., Caan, M. W., ... &
Olabarriaga, S. D. (2014). A data‐centric neuroscience gateway: design, implementation, and
experiences. Concurrency and Computation: Practice and Experience.

Singh, G., Vahi, K., Ramakrishnan, A., Mehta, G., Deelman, E., Zhao, H., ... & Katz, D. S. (2007).
Optimizing workflow data footprint. Scientific Programming, 15(4), 249-268.

Vöckler, J. S., Juve, G., Deelman, E., Rynge, M., & Berriman, B. (2011). Experiences using cloud
computing for a scientific workflow application. In Proceedings of the 2nd international
workshop on Scientific cloud computing (pp. 15-24). ACM.

Wieczorek, M., Hoheisel, A., & Prodan, R. (2008). Taxonomies of the multi-criteria grid workflow
scheduling problem. In Grid Middleware and Services (pp. 237-264). Springer US.

Zhang, Y., Mandal, A., Koelbel, C., & Cooper, K. (2009). Combined fault tolerance and scheduling
techniques for workflow applications on computational grids. In Cluster Computing and the Grid,
2009. CCGRID'09. 9th IEEE/ACM International Symposium on (pp. 244-251). IEEE.

KEY TERMS AND DEFINITIONS
Grid Computing: Federation of heterogeneous resources distributed geographically in different
administrative domains to provide computing and storage services for research communities.

Scientific Gateway: Integrates application software with access to computing and storage resources via
web portals or desktop applications.

Scientific Workflow: Allows users to easily express multi-step computational tasks, for example
retrieve data from an instrument or a database, reformat the data, and run an analysis

Task Grouping: Groups fine-grained tasks into coarse-grained tasks to reduce the scheduling and
queuing time overheads inherent to distributed computing platforms.

Task Replication: Common technique to increase the probability of successfully complete task
executions in distributed computing platforms.

Task Resubmission: Most common technique to address failures on task executions in distributed
computing platforms.

Unfairness Among Workflow Executions: Computing resources are not fairly (i.e. proportionally)
allocated to workflow applications. It occurs when the demand is higher than the offer, that is, when some
workflows are slowed down by concurrent executions.

BIOGRAPHY
Rafael Ferreira da Silva is a Computer Scientist in the Collaborative Computing Group at the USC
Information Sciences Institute. He received his PhD in Computer Science from INSA-Lyon, France, in
2013. In 2010, he received his Master's degree in Computer Science from Universidade Federal de
Campina Grande, Brazil, and his BS degree in Computer Science from Universidade Federal da Paraiba,
in 2007. His research focuses on the execution of scientific workflows on heterogeneous distributed
systems such as Clouds and Grids. See http://www.rafaelsilva.com for further information.

Tristan Glatard obtained a PhD in grid computing applied to medical image analysis from the University
of Nice Sophia-Antipolis in 2007. He was a post-doc at the University of Amsterdam in 2008. He is now
a researcher at CNRS Creatis in Lyon, working on distributed systems for medical imaging applications.

Frédéric Desprez is a Chief Senior Research Scientist at Inria and holds a position at the LIP laboratory
(ENS Lyon, France). He co-founded the SysFera company where he holds a position as scientific advisor.
He received his PhD in C.S. from Institut National Polytechnique de Grenoble, France, in 1994 and his
MS in C.S. from ENS Lyon in 1990. His research interests include parallel algorithms, scheduling for
large scale distributed platforms, data management, and grid and cloud computing. He leads the
Grid'5000 project, which offers a platform to evaluate large-scale algorithms, applications, and
middleware systems. See http://graal.ens-lyon.fr/~desprez/ for further information.

