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Abstract—AI-driven scientific discovery has emerged as a
transformative fifth paradigm in research, with agentic AI
playing an increasingly prominent role across scientific domains.
Agentic AI can enable collaborative AI-human or even fully
autonomous decision-making, but it also introduces significant
reliability challenges due to the dynamic and evolutionary nature
of the AI agents. Specifically, foundation model-powered agents
are prone to generating hallucinated, misleading, or adversarial
outputs that can propagate silently through workflows and
corrupt downstream results. In this paper we present a concep-
tual framework for a unified approach that integrates agentic
workflow-level instrumentation and agent-level safeguards to
enhance the reliability of the wider system, particularly critical
in science. Embedding these mechanisms into a provenance-
augmented infrastructure enables early detection, containment,
and recovery from erroneous behavior, ultimately enhancing
reliability and reproducibility in AI-assisted scientific workflows.

Index Terms—Agentic AI, Agentic workflows, Reliability,
Safety, Agentic Systems

I. INTRODUCTION

Building on the paradigms of empirical observation, theo-
retical modeling, computational simulation, and data-intensive
science, a fifth paradigm—AI-driven scientific discovery—has
emerged as a transformative force in research [1]–[3]. Among
AI-driven methodologies, agentic AI shows particular promise
for addressing complex scientific problems, enabling advanced
decision-making with minimal human intervention [4]–[6].
This new paradigm is playing an increasingly critical role
across a wide range of scientific disciplines, including biol-
ogy [7], chemistry [8], materials science [9], medicine [10],
and economics [11].

Agentic AI refers to intelligent systems that can au-
tonomously perceive, plan, and act to accomplish complex
goals over extended time horizons. These systems typically
involve multistep reasoning and dynamically adapt to feedback
from both their environment and external tools. An AI agent,
first introduced in 1999 [12], comprises four fundamental
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components: (1) a brain, powered by a foundation model
(FM) such as a large language model (LLM), that enables
reasoning and decision-making; (2) memory, which stores
contextual information, past interactions, and user preferences;
(3) perception, which allows the agent to ingest and inter-
pret new inputs from external environments and tools; and
(4) action, which enables the agent to interact with other
agents and systems. These interactions often rely on structured
communication protocols, such as agent-to-agent [13] or the
Model Context Protocol (MCP) [14].

Agentic workflows integrate AI agents alongside traditional
non-AI components to orchestrate complex, multistep pro-
cesses. Unlike conventional workflow tasks and components,
AI agents exhibit dynamic and evolving behaviors driven by
continuous data integration from external sources or other
agents. These dynamic behaviors introduce significant chal-
lenges to scientific reproducibility, traceability, and, most
critically, the reliability of the overall workflow. Moreover,
these agents are prone to generating hallucinated or mis-
leading content [15]. Such outputs may silently propagate
through the system, influencing downstream computations,
decision-making, and task execution, thereby compromising
the integrity of scientific workflows. For instance, large lan-
guage models (LLMs) may output numerically plausible but
incorrect values, outputs that other agents may erroneously
treat as valid [16]–[18]. Furthermore, small variations in input
phrasing can lead to significantly different responses, making
systematic error detection more difficult [19]–[21]. Beyond
unintentional errors, these systems are also susceptible to
adversarial manipulation; malicious inputs or prompt injec-
tions can exploit vulnerabilities in LLMs, such as jailbreaking,
enabling the insertion of harmful or deceptive data that may
be further propagated by unsuspecting agents [22], [23]. In
addition to the challenges outlined above and illustrated in
Figure 1, the internal interactions within the agent, involving
the FM, memory, perception, and action components, can
introduce further irrationality and inconsistency in the agent’s
behavior. Therefore, systematically tracking and monitoring
these internal dynamics is essential to ensure explainable
decision-making and gain deeper insights into the reliability
of agentic workflows.

Beyond individual agent reliability and safety, the broader
challenge lies in designing agentic workflows that can coor-
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Fig. 1: Schematic representation of an FM-powered agent with Brain,
Memory, Perception, and Action entities, and examples of reliability
and safety challenges.

dinate effectively, manage shared resources, resolve conflicts,
and handle redundancy while preserving traceability. These
systems must incorporate human oversight, support continual
learning, and include robust debugging and evaluation tools
to remain reliable and adaptable [24]. Addressing these inter-
connected challenges is essential to building agentic workflows
that can meaningfully accelerate scientific research while pre-
serving the rigor, transparency, verifiability, and reproducibil-
ity demanded by the scientific community.

In this paper we argue for a unified approach to enhance the
reliability and robustness of agentic workflows through inte-
grated detection, validation, control, and recovery mechanisms
in the agentic frameworks. Our objective is not to create yet
another system but to provide framework-agnostic reliability
mechanisms that can be integrated into existing frameworks
(e.g., when the underlying platform already exposes a check-
pointing mechanism, our extension simply augments that with
capabilities to check current agent accuracy, compare against
previously registered benchmark results, and then recommend
a checkpoint of the reliable state or a restart from the last most
reliable one if the accuracy dropped). Our approach introduces
both workflow-level and agent-level techniques that enable
early detection of corrupted or anomalous data, containment
of faulty behavior, and recovery of agents to known, reliable
states. Linking these mechanisms to a provenance-aware in-
frastructure enables the workflow system to trace the origin
and propagation of harmful information, whether it arises
from hallucinations, reasoning faults, or adversarial prompt
injections, and to trigger targeted recovery actions to prevent
systemwide reliability breakdown.

This work presents a conceptual framework focused on
reliability-enhancing techniques for agentic workflows. Rather
than prescribing specific implementations or tailoring solutions
to particular use cases, we articulate foundational principles
intended to guide the design of robust and trustworthy systems.
We examine how these mechanisms can be integrated into
existing agentic workflow architectures and identify key open
questions that must be addressed to enable practical deploy-
ment at scale. Through this exploration, our goal is to lay
the groundwork for future research and collaborative efforts

aimed at building scalable, reliable, and scientifically rigorous
agentic systems.

II. BACKGROUND AND RELATED WORK

Reliability concerns in AI-powered systems arise from two
principal sources. The first stems from the inherent limitations
of current AI models and the assumption that these systems
possess true reasoning or understanding, a long-standing and
unresolved question in AI. The second involves external
threats, including adversarial attacks, data poisoning, and
prompt injection, which can compromise the trustworthiness
and safety of AI-driven workflows.

a) AI Reasoning and Rationality: AI is commonly
framed through two philosophical hypotheses; the first, known
as weak AI, suggests that machines can behave as if they
are intelligent, a widely accepted notion among researchers
today [25]. The second, called strong AI, claims that ma-
chines that appear to be intelligent are not merely simulating
intelligence but are actually capable of real thinking [25].
Reasoning-oriented models have shown remarkable perfor-
mance on complex reasoning tasks by breaking down the
problem into smaller, simpler questions and generating chains
of thoughts prior to the final answer [26], [27], which might
empower the second AI hypothesis to some extent, without
necessarily verifying it.

Despite their impressive capabilities in solving specific
tasks, current reasoning models remain far from achieving
human-level performance. In [28] the reasoning abilities of
LLMs were evaluated using cognitive tests originally de-
veloped for humans by Wason [29] and by Kahneman and
Tversky [30]. The evaluation focused on two key dimensions:
correctness and human likeness [31]. The results revealed
distinctive forms of irrationality in LLM outputs, including
logical errors and inconsistent responses. These findings raise
important safety concerns for their deployment in high-risk
domains and underscore the need for robust methodologies
to assess and benchmark the reasoning capabilities—ideally
by distinguishing between competence, defined as a system’s
internal knowledge and capabilities, and performance, which
relates to demonstrations of this knowledge, where most LLMs
might hallucinate and fabricate data.

b) Internal Operation of Agents: In agentic workflows,
the output of one agent frequently becomes the input for
downstream agents or tasks, creating tightly coupled interagent
dependencies. This architectural property introduces a unique
class of internal risks. For example, a hallucinating agent [15]
can produce incorrect or misleading information that is sub-
sequently consumed by other agents, triggering a cascade of
erroneous decisions and compromising the reliability of the
entire system.

AI agents often exhibit irrational behavior. Small variations
in input, such as slight rephrasings of prompts, can result
in significantly different outputs, complicating the tasks of
tracing, validating, and debugging decision chains. This unpre-
dictability is exacerbated by the lack of inherent understanding
and robust reasoning in LLMs, which can, for example,



lead to silent data drift or the oversimplification of complex
inputs [32], often omitting critical details without generating
any explicit error signal.

Although recent efforts have examined these challenges
through the lens of general AI safety, they often lack a
dedicated focus on the unique reliability requirements of
scientific applications. Jeon [33] advocates for standardiza-
tion to ensure the safety and reliability of AI. Works such
as [34]–[36] explore strategies for safeguarding LLMs, includ-
ing input/output monitoring and content filtering mechanisms.
Broader efforts aim to establish taxonomies and frameworks
for advancing AI safety [37] and providing holistic evaluations
to improve transparency, interpretability, and understanding of
LLM-driven systems [38].

c) External Threats: Although LLMs are trained with
alignment techniques intended to produce safe outputs [39],
[40], they remain vulnerable to malicious manipulation.
Prompt injection attacks, whether crafted manually or gen-
erated automatically [41]–[43], can induce LLMs to produce
harmful or deceptive content. Recent work shows that jail-
breaking a single agent causes harmful behavior that spreads
exponentially across the system agents [23]. For instance,
seeding one agent with a toxic message, such as an image
labeled “humans are the cancer of the planet,” can lead to
100% infection of the system after only 31 chat rounds. This
illustrates the alarming potential for small vulnerabilities to
scale into systemic failures in agentic workflows.

d) Infrastructure Deficits in Reliability-Centric Agentic
Workflows: Although a rich ecosystem of agentic frameworks
(e.g., LangChain [44], [45], AutoGen [46], LangGraph [47],
and Academy [48]) now simplifies multiagent composition
and tool invocation, the supporting infrastructure required to
guarantee scientific reliability remains largely undeveloped.

Current frameworks provide neither native reliability checks
nor provenance-aware event fabrics, so once a hallucinated
or adversarial datum enters the workflow, its downstream
influence cannot be traced or quarantined in a rigorous way.
Similarly, agent-level checkpoint and reliable restart are ab-
sent or implemented as ad hoc scripts, leaving agent recov-
ery unaddressed. Runtime monitoring is typically limited to
throughput and latency, neglecting online accuracy checks,
data drift, and hallucination detections. Furthermore, there is
no standardized benchmark suite that evaluates an agent’s or
an agentic workflow’s ability to detect, bound, and recover
from cascading errors. Collectively, these gaps reveal a critical
deficiency, since agentic workflows cannot meet the reliability
standards expected in scientific practice without robust prove-
nance management, checkpointing, reliable-state recovery, and
a comprehensive accuracy benchmark suite.

III. MOTIVATING SCENARIO

Safety concerns in scientific AI go beyond those typically
associated with general-purpose language models. While stan-
dard LLM safety efforts [49] focus on issues such as bias,
toxicity, or misinformation, scientific AI agents are deployed
in high-stakes settings, including weather modeling, chemistry,

and biomedical research. In these contexts, incorrect outputs
can lead to ethical breaches, flawed experiments, or even
physical harm. For instance, AI agents may need safeguards
to prevent them from suggesting unsafe chemical reactions,
misinterpreting experimental data, or following implausible
reasoning pathways without human verification.

Below, we present a real-world scenario where errors gen-
erated by AI agents might have dramatic consequences. The
context, prompt, and answer are provided in the following.
OpenAI’s GPT o1 has been employed.

Provided context

The table below (see Appendix A) describes the Fire Weather
Index (FWI) projections for the California region at mid-
century across different seasons: Wildfire_autumn_midc,
Wildfire_spring_midc, Wildfire_summer_midc,
and Wildfire_winter_midc. Each row and column in the
crossmodel table represent blocks in geospatial coordinates. The
crossmodel reference (e.g., R101 for row and C204 for column)
specifies a grid cell in the climate model, uniquely identifying
specific climate data points for a location on Earth.

Prompt

What is the wildfire risk in the regions surrounding R105C206?

GPT o1 Answer

The immediate neighboring grid cells to R105C206 (row 105,
column 206) in the dataset are primarily located in row 104 (the
row immediately south of row 105). Unfortunately, data for grid
cells in row 105 other than R105C206 are limited in the provided
table. Here are the neighboring grid cells with their FWI values:
R104C204 – Wrong

R104C205
R104C206
R104C207
R104C208 – Wrong

Consequences: The presence of incorrect data for grid
cells R104C204 and R104C208 implies potential inaccuracies
in assessing wildfire risk for the immediate surroundings of
R105C206, which could lead to unreliable risk predictions and
ineffective resource allocation in those areas.

Traditional content filtering or moderation methods are not
sufficient to address these risks. Instead, scientific AI requires
specialized safety protocols that reflect the complexity and pre-
cision of the domain. These include well-defined constraints on
tool usage, robust validation mechanisms, continuous agent-
level monitoring, and structured governance frameworks that
ensure compliance with scientific standards. In addition, agen-
tic systems must support auditability and traceability, partic-
ularly in collaborative environments where errors introduced
by one agent can affect the outputs of others. Establishing this
level of safety requires proactive system design, adversarial
testing through red-teaming, continuous performance evalu-
ation, and integration with provenance-aware tools that can
trace and correct the origin of failures.



IV. CONTROLA: TWO-LAYERED CONTROL APPROACH

In this section we define the problem and a few related
concepts, present an overview of the solution we propose,
and discuss how it will be integrated into existing agentic
frameworks and its potential compatibility with MCP and other
protocols.

We define reliability as the capacity of an agent to fulfill
its intended tasks with maximum accuracy, safety, and pre-
dictability over time, even when faced with evolving environ-
ments and contexts.

In the context of reliable agentic AI, a fault is any abnormal
condition or defect within an AI agent or agentic workflow
that causes deviation from expected or correct behavior. Faults
can be drops in accuracy that may arise due to misleading
contexts, adversarial inputs, silent propagation of toxic data, or
any internal or external event leading to degradation in system
performance, beyond a predefined accuracy threshold, on
selected benchmarks, or its inability to complete its assigned
tasks reliably.

We define recovery as the process by which the agent or
workflow system detects faulty behavior and restores the sys-
tem to a more reliable state and operation, such as triggering
a restart from a more accurate agent or set of agents.

A. Overall Architecture

Our two-layered framework is designed to contain harmful
or erroneous information within agentic workflows through
early detection, isolation, and targeted recovery. By introduc-
ing reliability mechanisms at both the agent and system levels,
the framework prevents localized failures from escalating into
broader disruptions. Agents can roll back to their last trusted
state, while system-level safeguards coordinate recovery with-
out halting the entire workflow. If failures do propagate,
integrated provenance tracking enables accurate fault tracing,
identification of impacted components, and initiation of cor-
rective actions to restore overall reliability.

Figure 2 represents an overview of the methods and tools
we propose in this paper. In the middle of the figure, we have
a simplified representation of agentic workflows: four agents,
a camera (as an external sensor), and a vector database, in
addition to traditional tasks in the top left of the figure (e.g.,
simulations and data analysis). We propose to augment exist-
ing agentic workflow frameworks with mechanisms to enhance
reliability at the agent level (e.g., add periodic benchmarks
to assess the agent’s accuracy over time, add checkpointing
mechanisms to maintain reliable agent versions) and also at
the wider system level, represented with red shapes (e.g., cap-
ture the system provenance to track intermediate non-verified
status, trigger accuracy checks, run periodic benchmarks for
the system as a whole, blacklist harmful data).

B. Integration with Existing Agentic Workflow Frameworks

Our objective is not to invent another agentic workflow
framework; instead, we introduce framework-agnostic reliabil-
ity mechanisms that can be integrated onto any existing agentic
workflows stack, similar to how checkpoint/restart libraries

are grafted onto HPC codes for fault tolerance. For instance,
when the underlying platform already exposes a checkpoint-
ing hook (e.g., BaseCheckpointer in LangGraph), our
checkpointing extension simply augments that hook with three
extra concerns: run benchmarks to check current accuracy;
compare against previously registered benchmark results; and,
depending on how comparable they are, recommend either
a checkpoint or a restart (see Listing 1). Other mechanisms,
such as periodic benchmarks (Section IV-C1a) and safeguard
controllers (Section IV-C1c), are proposed. Similarly, we
elevate these ideas to the framework level by introducing
an orchestration and reliability controller. This component
is responsible for capturing provenance data and internal
reasoning, initiating reliability checks, and triggering recovery
procedures when faults are detected. The following sections
detail the reliability mechanisms proposed at both the agent
(Section IV-C1) and system (Section IV-C2) levels, including
checkpointing, benchmarking, and provenance tracking, which
collectively enhance the robustness and trustworthiness of
agentic workflows.

import langgraph as lg
from lg.checkpoint.base import BaseCheckpointer

class ReliabilityCheckpointer(BaseCheckpointer):

reliability_benchs: []
previous_acc: {}
acc_threshold: []

# Checks agent's reliability
def check_reliability(self,

reliability_benchs,
acc_threshold):

for bench in reliability_benchs:
acc = self.run_benchmark(bench)
current_accuracy.append[acc]

if current_acc.is_better(previous_acc):
return {"recommendation": "checkpoint",

"current_acc": current_acc}

elif current_acc.is_worse(threshold):
return {"recommendation": "recover" }

else # accuracy is comparable:
return {"recommendation": "None"}

Listing 1: Example of reliability checkpoint extension

C. Detailed Discussion of the Proposed Mechanisms

In this section we discuss in detail each proposed technique
and potential implementation challenges.

1) Agent-Level Strategies: We describe four strategies that
can be employed at the agent level.

a) Periodic Accuracy Checks: A fundamental property
of agents is their ability to adapt and evolve over time by
incorporating new information from their environment through
perception modules, interagent communication, or querying
of data stores. While this adaptability enhances flexibility, it
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also introduces variability in task performance. An agent’s
accuracy may improve or degrade as it integrates new data.
Traditional validation, typically limited to the model training
phase, does not account for runtime behavioral shifts or unseen
new data. To ensure ongoing reliability, agents must undergo
periodic accuracy assessments during execution using prese-
lected benchmarks that are also likely to evolve. These checks
are essential for detecting performance drift and isolating
agents that no longer meet their required task-specific accuracy
thresholds. Previous work has evaluated LLMs as agents and
proposed benchmarks for evaluation [50], [51].

Integrating continuous accuracy monitoring into an agentic
framework by integrating online benchmark execution raises
several design questions: Where should these benchmarks be

deployed: as background daemon processes, as co-located
threads sharing agent resources, or on separate compute stages
to minimize interference? Should the benchmarks evaluate
only the agent’s foundation model in isolation or incorporate
the full memory state to reflect real operating conditions?
If memory is included, how can we efficiently select only
the most relevant context? How closely should these runtime
benchmarks mirror the validation tests used during training,
and how should they evolve as the agent adapts over time?
Should we add specificity and robustness checks alongside
accuracy? How can we automate this benchmarking pipeline
to evolve with the agent?

b) Reliable Checkpoints: Similar to traditional check-
pointing mechanisms used in resilience frameworks, where ap-



plication state is periodically captured to enable recovery after
eventual failures, we introduce the concept of reliable check-
points for AI agents. These checkpoints capture an agent’s
internal state when it meets a predefined accuracy threshold. If
a subsequent drop in accuracy is detected during an accuracy
check, the system can initiate a recovery process using the
most recent reliable state that was previously checkpointed.
Listing 1 illustrates an example implementation of a reliability
checkpointer as an extension to LangGraph’s base checkpoint-
ing module. For clarity, we present a simplified interface
focused on a single method: check_reliability. This
method executes a series of predefined benchmarks specified
in reliability_benchs and evaluates the agent’s current
accuracy relative to both its most recently recorded accuracy
and a predefined threshold. Based on the results, it provides
recommendations either to checkpoint the current state if it
outperforms previous reliable states or to trigger a rollback
and recovery using the most recent checkpoint that met the
reliability criteria.

Like the accuracy checks, multiple domain questions arise
with the reliability checkpoints. These include the following:
What is included in a reliability checkpoint—the FM’s internal
weights only, or a set of preselected contexts? If the context is
included, what is the best way to identify an outdated context
and ignore it during recovery?

c) Safeguard Controllers: To strengthen the isolation of
erroneous data in agentic workflows, we propose augmenting
each agent with safeguard controllers—modular components
tasked with verifying the reliability, safety, and validity of both
inputs received and outputs produced by LLM-based agents.
These helpers act as local anomaly detectors and controllers,
flagging suspicious or inconsistent behavior and reporting it to
the orchestrator for further action (detailed in Section IV-C2).
While the foundational simplex architecture [52] has inspired
real-time safety controllers in physical systems—and has re-
cently been extended to deep learning contexts [53]—these
efforts focus primarily on physical safety constraints, not the
broader reliability and correctness challenges introduced by
open-ended LLM behavior. Parallel efforts to build LLM-
internal safeguard mechanisms [54]–[56] have demonstrated
promise but also a critical limitation: If the safeguard itself is
AI-based, how do we trust its correctness? This motivates our
emphasis on integrating deterministic or verifiable safeguards
wherever possible. For example, mathematical computations,
logical assertions, and other verifiable conditions can be
checked by using formal methods or logic programming
frameworks, like those proposed in previous work [57]–
[60]. These deterministic safeguards offer high confidence in
correctness and avoid compounding uncertainty introduced
by AI-generated verification. Nevertheless, we acknowledge
that deterministic or programmatic validation is not always
feasible, particularly in open-ended or context-sensitive tasks.
In such cases, probabilistic or AI-based safeguards may be
employed, potentially complemented by human-in-the-loop
interventions.

Figure 3 illustrates a deterministic safeguard example de-

Safeguard
Module

Rules 

A>10
B<20
C>=0

A*B - C = 0
All in mg/l

I want to
prepare a

solution where I
use a 9 g/l of A,
3.65 mg/l of B

and no C. 

Prompt I want to prepare a
solution where I use

a 9000 mg/l of A,
3.65 mg/l of B and 0

mg/l. 

A = 9000
B = 3.65

C = 0

1

2

3

4
5

Check
6

Yes

No

Text to Symbol 
Translator

2'

OUTIN

Agent Augmented
 Safeguards
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signed for solution preparation agents in self-driving labo-
ratories. The procedure includes multiple steps to validate
incoming prompts. In Step 1, the safeguard receives a natural
language prompt specifying a solution preparation task. In Step
2, the prompt is passed to a domain-specific translator module,
text_to_symbol, which converts the textual description
into a formal mathematical representation, ensuring that ap-
propriate units (e.g., mg/L) are used. If the translation fails,
the process loops back to the safeguard for further handling
or rejection. Upon successful translation (Step 3), the resulting
symbolic expression is passed to the safeguard module (Step
4), which verifies predefined domain rules (Step 5). These
rules are applied to validate the correctness, consistency, and
safety of the input. Based on this evaluation, the system either
accepts or rejects the original prompt.

d) VReAct: Reason, Verify, and React: Another promis-
ing direction is to extend existing reasoning-action loops such
as ReAct [61] with an explicit validation phase, which we refer
to as the VReAct mechanism. In this approach, each reasoning
step (or “thought”) is followed by a lightweight verification
that evaluates its coherence, factual correctness, and safety
before an action is triggered. As illustrated in Figure 4, the
standard ReAct agent is augmented with a validator that must
approve each thought before proceeding. For instance, given
Thought 1: Get 3 cl of a 9000 mg/L solution of compound
A in a tube, multiple safety and consistency checks can be
applied: Is 3 cl of compound A within safe usage limits?
Is this dosage currently available in the system? Is the use
of a tube appropriate for this substance? These verification
steps help prevent the execution of ill-formed or hazardous
actions, improving reliability without altering the agent’s core
reasoning loop.

2) Workflow-Level Strategies: Providing agent-level relia-
bility strategies is essential for localizing failures and prevent-
ing harmful data from propagating across an agentic workflow.
However, undetected hallucinations or reasoning errors may
still slip through these safeguards and accuracy checks. To
address this possibility, workflow-level reliability mechanisms
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are necessary to monitor internal agent operations and inter-
actions with other agents and the environment holistically,
detect anomalies across the system, and enforce corrective
actions, such as quarantining suspect agents or rolling back
interdependent tasks, to maintain overall system reliability.

We propose extending the agentic workflows framework
with a dedicated reliability module, referred to as the ControlA
orchestrator (as shown in Figure 2). This module is responsible
for coordinating reliability monitoring and initiating recovery
actions across the system. It captures and maintains prove-
nance information, monitors agent behavior, and tags data
identified as harmful or toxic to the system. In the following
sections we detail these mechanisms.

a) Global Accuracy Checks: Global benchmarks are
essential for evaluating the overall accuracy and reliability of
agentic workflows while they perform their intended tasks.
Although individual agents may pass their respective agent-
specific accuracy checks, the systemwide accuracy may still
degrade over time. This discrepancy can arise from the accu-
mulation of undetected hallucinations or small, localized drops
in agent accuracy that propagate and compound throughout
the system. Such subtle degradations may go unnoticed at
the agent level but can significantly impact the overall per-
formance of the agentic workflows.

Benchmarks tailored to agentic workflows are not available
for most domains. Thus, there is a pressing need for the
research community to define and standardize these evaluation
tools collaboratively. In parallel, as new agentic frameworks
are developed and deployed, one can incrementally collect
and refine benchmark datasets and metrics from real-world
workflows, enabling the co-evolution of systems and their
evaluation frameworks.

b) Agentic Workflow Provenance: Agentic workflows
are inherently dynamic: agents driven by foundation models
may generate new subgoals, access previously unknown data
sources, or invoke external tools whose outputs shape future
decisions in non-predictable ways. Such emergent behav-

ior introduces significant challenges for provenance tracking.
Although prior techniques have effectively supported repro-
ducibility and traceability in static workflows [62], they fall
short in capturing the evolving, interdependent reasoning paths
of agentic systems. In order to uphold core scientific trust
principles such as reproducibility, transparency, and explain-
ability [63], provenance mechanisms must be reengineered
to reflect not only what was executed but also how, why,
and under what dynamic context. Moreover, they need to be
processed at runtime, fast enough to intervene before a faulty
output contaminates the downstream pipeline.

A central challenge in agentic workflows is determining how
faults impact downstream tasks and data. While current sys-
tems might log tool calls, agent interactions, and outputs, this
level of instrumentation is insufficient for trustworthy assess-
ment. Faults such as hallucinations not only are frequent but
can be highly convincing, making naive detection approaches
ineffective. Moreover, existing evaluation metrics have been
shown to yield misleading results and lack generalizability
across domains [64]. Reliable fault detection typically requires
grounding generated content against trusted context or external
knowledge sources, often with a human in the loop to define
validity boundaries, provide expert guidance, or offer post
hoc assessment. This complexity necessitates provenance sys-
tems capable of capturing fine-grained, contextualized agent
operations and interactions. Each FM invocation, tool usage,
reasoning trace, and interagent message must be linked to
its downstream effects within the workflow. Such traceability
enables retroactive contamination analysis: when a fault (e.g.,
hallucination) is identified, its origin, propagation path, and all
affected artifacts can be isolated and examined.

To materialize these concepts, we propose (1) an integrated
provenance capture system designed to capture all relevant
execution events, interactions, and data exchanges within and
across agents and other components; (2) an intermediate state
store that acts as a temporary buffer, retaining agent prompts,
decisions, reasoning and chain of thoughts [65], tool outputs,



and inter-agent communications until the next scheduled ac-
curacy validation; and (3) an online diagnostic and analysis
module querying the provenance data in the intermediate state
for error, inconsistency, and reliability failures. Together, these
modules provide foundational support for traceability and fault
isolation in agentic workflows.

c) Harmful Data Stores: Although essential, keeping
track of the agent’s interactions and contextualizing with the
rest of the workflow, even when enriched with more structured
data, is only the first step. The provenance system must enable
runtime data observability [66] for continuous data monitoring,
automated error detection, and error impact characterization
and quantification within the context of the entire workflow.

To address these needs and enhance the security and relia-
bility of agentic workflows, we propose harmful-data tags as
part of the system’s provenance and recovery infrastructure.
When a particular data item, such as a prompt, intermediate
result, or agent-generated output, is identified as harmful, it
is tagged accordingly and stored in a blacklisted data store
(shown in the top right of Figure 2) to prevent its reuse or
further propagation. Marking data as harmful can be fully
automated, human-driven, or hybrid. Fully automated systems
can be achieved either by rule-based checks on the agents’
responses, comparing them with trustworthy context and ex-
ternal knowledge, or by observing correlations in performance
or accuracy degradation over time. Alternatively, AI-driven
approaches (e.g., LLM-as-a-judge) can classify outputs as
potentially harmful. Human-driven approaches rely on humans
to validate the consistency of results and provide feedback,
guidance, and boundaries. To enrich the data with more
meaningful and structured metadata, tagging harmful data may
involve additional characterization (e.g., an agent output may
generate an execution error, interrupting the execution flow,
or generate data that silently looks correct but invalidates a
research result) and quantification (e.g., a score to evaluate
the impact to contaminate data and tasks downstream).

Once tagged, characterized, and quantified, this harmful
data can be isolated from downstream decision-making, and
agents that interacted with or depended on it can be flagged
for additional reliability checks and recovery if needed. The
harmful-data tags serve as persistent markers in the system
state over time, enabling retrospective analysis, root-cause
tracing, and the refinement of safeguards to prevent similar
failures in future executions.

V. CHALLENGES AND OPPORTUNITIES

Building robust and trustworthy agentic workflows requires
comprehensive benchmarks for scientific evaluation and effec-
tive safety mechanisms tailored to domain-specific challenges,
at both the agent and workflow level. These aspects remain
underdeveloped in current AI practice and represent major
obstacles to the integration of AI agents in real-world scientific
research. Here we summarize a subset of these challenges.

Lack of Benchmarks. Most current benchmarks focus on
an agent’s final outputs—answers, summaries, or classifica-
tions—while overlooking the intermediate reasoning steps that

are crucial in scientific work. Scientific discovery demands a
clear understanding of how conclusions are reached. Without
process-level evaluation, it becomes difficult to determine
whether an agent followed valid scientific logic or merely
exploited patterns in the data. This situation is compounded
by the scarcity of benchmarks designed for scientific contexts.
Existing benchmarks are often domain-limited, oversimplified,
or too narrowly scoped to reflect the iterative, uncertain,
and complex nature of real scientific inquiry. Meaningful
evaluation requires benchmarks that test hypothesis genera-
tion, experimental design, evidence interpretation, and agents’
abilities to revise their approach in response to failure.

Safety and Risk Mitigation. Scientific agents may propose
hazardous protocols (e.g., chemistry experiments, high-energy
physics setups) or draw incorrect conclusions that mis-
lead subsequent research or operation (e.g., motivating sce-
nario). Traditional AI safety techniques must be adapted to
domain-specific risk models. This process includes quantifying
the potential harm of suggested experiments and enforcing lab
safety constraints. Furthermore, safeguards must account for
cascading risks in multiagent workflows, where one agent’s
error can propagate downstream.

Data Provenance. Reliable scientific inference hinges on
the provenance, lineage, and integrity of data. Agentic sys-
tems often ingest heterogeneous datasets, including synthetic
or automatically generated corpora. Maintaining a verifiable
chain of actions—from raw measurements through preprocess-
ing, full reasoning and interpretation, and final response—is
challenging but essential for reproducibility. Failure to track
provenance can lead to unnoticed data leakage or contaminated
training, reasoning, and operation, without enough explainabil-
ity. Furthermore, storing and indexing potentially terabytes
of logs and intermediate results per run pose performance,
memory, and scalability challenges.

Evaluation Metrics Beyond Accuracy. Conventional met-
rics (e.g., BLEU) are insufficient. Scientific settings require
domain-specific metrics for logical consistency and robustness,
as well as metrics that differentiate between a model’s com-
petence (internal knowledge and capability) and performance
(demonstration of this knowledge), which can enhance the
predictability of an agent’s behavior against unseen data.
Designing such metrics that align with expert judgment is
nontrivial, especially when the ground truth is unknown or
evolving.

Human–Agent Collaboration and Oversight. Effective
deployment demands a workflow framework where domain
experts can inspect, intervene, and steer agent behavior with-
out micromanaging every step. Challenges include design-
ing intuitive interfaces for visualizing agent plans, surfacing
uncertainty, and enabling interactive debugging. Balancing
autonomy and control is particularly delicate in safety-critical
experiments.

Domain Adaptation and Transferability. Scientific do-
mains differ widely in data type, sparsity, measurement
noise, and physical constraints. Agents trained on well-curated
benchmarks may fail when transferred to niche subfields when



confronted with out-of-distribution phenomena. Robust trans-
fer requires modular knowledge representations, adaptation
methods, and mechanisms for detecting when the agent is
outside its competence region and, ideally, triggering an alert
for an eventual hallucination if not refusing to proceed without
human intervention.

Scalability, Overhead, and Resource Management. Al-
though not discussed in this paper, long-horizon scientific
objectives (e.g., drug discovery pipelines or climate simula-
tions) require the coordination of compute-intensive models,
lab instruments, and possibly humans. Scheduling these re-
sources, prioritizing tasks, and optimizing cost/performance
trade-offs most reliably remain largely unsolved. Additionally,
the overhead of setting up these reliability control mechanisms
might not be negligible, and a trade-off between large overhead
and extreme reliability enhancement might take place and will
be driven by the domain.

VI. CONCLUSION

In this conceptual framework we introduced ControlA, a
multi-agent control system designed to enhance the reliabil-
ity of agentic workflows in scientific contexts. Rather than
proposing a fully implemented system, we outlined a modular
set of reliability mechanisms, including guardrails, provenance
tracking, behavioral validators, and benchmark suites, that
can be integrated across a wide range of agentic workflows.
Grounded in the unique requirements of scientific discovery,
ControlA addresses challenges such as erroneous behavior,
irreproducible results, and cascading failures through a layered
architecture that supports traceability, recovery, and trustwor-
thy reasoning. This work aims to catalyze community-driven
efforts to build robust, scalable, and scientifically grounded
agentic systems by identifying open research questions and
deployment challenges. Future work will focus on prototyping
key components of the ControlA framework, evaluating their
performance in real-world scientific workflows, and refining
the architecture based on empirical findings and community
feedback.
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TABLE I: Full wildfire dataset used in the use case

Crossmodel wildfire autumn Midc wildfire spring Midc wildfire summer Midc wildfire winter Midc

R101C208 30.06649971 17.31520081 25.24279976 12.75625515
R102C206 28.36179924 17.71059990 23.90489960 12.41825928
R104C206 35.29909897 19.58810043 28.08200073 16.80937449
R104C204 37.39649963 22.13940048 28.57209969 18.61520164
R102C205 26.73360062 17.00480080 21.15489960 12.02017695
R100C206 24.71640015 15.15359974 19.91699982 10.92051029
R103C205 30.54700089 19.35530090 25.08139992 13.60779835
R102C207 29.37470055 17.85309982 25.41090012 12.65807820
R103C208 32.24689865 16.78969955 25.89329910 13.55920575
R101C207 27.93050003 17.32279968 24.18400002 11.92420164
R102C204 9.60748005 6.51708984 5.99728012 5.47834158
R101C206 26.60790062 16.69860077 22.57509995 11.46095886
R105C206 46.64360046 23.30640030 33.91030121 25.61206582
R104C207 33.09299850 15.88109970 27.10429955 14.78088479
R101C205 24.83930016 15.62829971 19.92779922 11.02200824
R103C206 31.30030060 18.94910049 25.72039986 13.73637860
R104C208 31.90390015 14.07470036 27.09420013 13.98525516
R104C205 36.29109955 21.85750008 29.00510025 17.69223046
R102C208 30.79019928 17.65640068 26.47060013 13.30716871
R103C207 31.32839966 17.54949951 25.62999916 13.09717695
R100C205 23.49169922 14.18579960 18.09670067 10.56434156
R103C204 30.01980019 18.33250046 22.54409981 14.23733334
R101C204 9.70497036 6.63100004 7.88701010 4.85567490

APPENDIX

This appendix provides the full dataset used in Section III.
It provides the mid-century seasonal Fire Weather Index (FWI)
projections for California. It includes values for autumn,
spring, summer, and winter, mapped to geospatial grid cells
identified by crossmodel coordinates (e.g., R101C204), which
represent specific locations in the climate model.
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