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ABSTRACT
As fault recovery mechanisms become increasingly important in
HPC systems, the need for a new recovery model for workflows
on these systems grows as well. While the traditional approach
in which each system component attempts its own independent
recovery after a fault works well at each individual application
level, this model does not scale to the new level demanded
by workflow-level exception handling. As today’s workflows
must often run many components simultaneously (e.g., workflow
manager components, many simulation instances, data analytics
etc), any uncoordinated model can quickly result in redundant
or contradictory recovery actions. In this paper, we propose a
multi-level cooperative exception model (MCEM), a novel exception
handling approach that solves this coordination challenge for HPC
workflows. We present our model, describe how it can be applied
to common system faults and other workflow specific exceptions,
and demonstrate how it reduces redundant I/O in the case of a
file-system quota exception.
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1 INTRODUCTION
With the current push towards exascale systems, the HPC
community anticipates a dramatic increase in the rate of fault
occurences, shrinking the mean-time-between-failures (MTBF)
from days to hours [1]. Existing techniques like checkpoint-restart
will no longer be sufficient at these short MTBF timescales.
Additional resilency strategies will need to be deployed to ensure
applications can make meaningful progress in spite of the frequent
faults.

Moving beyond application-centric resilency strategies and
adding fault-tolerance throughout a system hierarchy presents
challenges of its own. In particular, today’s large HPC workflows
employ different distributed components, and when each of
them tries to recover from the same fault, redundant, or worse,
contradictory recovery operations can arise. As HPC systems
grow larger, with more levels of hardware and software, a more
holistic fault-tolerance approach is necessary. Workflow as well as
system’s components on future exascale systems must cooperate
to collectively detect, isolate, and recovery from faults, rather than
relying on the existing uncoordinated approaches.

In this paper, we present a novel workflow exception model
for HPC systems. Our model enables more efficient recovery by
coordinating the recovery efforts of system components to avoid
redundant and contradictory recovery actions. We present our
model and its design principles, how it can be implemented on
top of modern resource managers, and how it can be applied to
common system faults.We evaluate how ourmodel can be leveraged
to reduce the I/O performed by up to 90% during the recovery from
one of those common faults, a file system quota exception.

The paper is organized as follows. Section 2 provides background
on fault-tolerance primitives and two motivating examples for our
work. Section 3 presents our novel workflow exception model,
MCEM. We present our evaluation and results in Section 4. Section
5 outlines related work and is followed by a summary of the work
in Section 6.
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2 BACKGROUND AND MOTIVATION
In this section, we provide background on fault-tolerance primitives
(i.e., detection, isolation, and recovery) and two motivating
examples that demonstrate the state of the practice of workflow
exception handling in HPC. We present the state of the practice
through the common-place examples of a node failure and
exceeding a file system quota. We show how these exceptions are
currently handled in a production LLNL workflow manager, the
UQ Pipeline (UQP) [2].

2.1 Fault-Tolerance Primitives
The three fault-tolerance primitives relevant to parallel or
distributed systems are detection, isolation, and recovery. Here
we define each term:
Detection: the observation of a fault, error, or degradation
Isolation: the identification of the root cause of the detected fault
Recovery: the remediation of the fault by affected components

In the current state of the practice in HPC, each individual
system component is responsible for independently implementing
its own detection, isolation, and recovery. This lack of coordination
produces suboptimal results as each component only has limited
knowledge. With only limited knowledge, a failure may be
attributed to the wrong root cause or missed entirely. Considerable
effort has gone into improving the fault-tolerance primitives
within a single component of the system (e.g., parallel runtime
or resource manager) [3–6], but ideally, system components
would synchronize their knowledge and coordinate their recovery
efforts. Some state-of-the-art work enables system components
to coordinate their fault detection and isolation [7–9]. While
other work focuses on coordinating recovery between two specific
system components, like the parallel application and the resource
manager [10, 11]. Unfortunately, none of these works directly
handles the coordination of recovery for workflows across arbitrary
levels of system components.

2.2 Motivating Example
Many types of failures can occur for HPC workflows that range
from system to application- or workflow-level exceptions (e.g., mesh
tangling, normal simulation completion whose results do not add
to the overall workflow objectives, etc). We focus on two common
failures, compute node failure and the exhaustion of disk quota, as
motivating examples. The node failure is a local fault, while the
disk quota error is a global fault. Both of these failure have huge
impacts on the performance of the HPC system.

Node-level failures are becoming increasingly common on
large-scale HPC systems and can happen for many reasons,
including an OS crash, system reboot, or power loss. In the current
state of the practice, after the node fails, several components will
detect, isolate, and recover from the failure in an independent and
uncoordinated way. First, the cluster’s resource manager will detect
the unresponsive node, most likely through a heartbeat timeout,
isolate the failure to that particular node, and prevent future jobs
from running on the node. Second, if the failed node was part of
a parallel application, the application will detect an unresponsive
rank during communication, isolate the failure to the node that
the unresponsive rank is running on, and begin recovery specific

to the application (e.g., restart from a checkpoint). Unfortunately,
this detection method is susceptible to false positives from, for
example, a slow or failed network link, resulting in unnecessary or
suboptimal recovery. Third, if the node failure causes the application
as a whole to crash, the workflow manager will detect the failed
application but will be unable to isolate the cause to any particular
node. In the UQ Pipeline specifically, if a node is involved in a
failure three separate times, then the UQP estimates that the node is
unreliable or failed and prevents that particular node from running
any of the remaining work in the workflow.

This example highlights a current lack of coordination between
system components, resulting in each component having its own
mechanism to detect, isolate, and recover from failures, with some
of these mechanism being more accurate and consistent than
others. Ideally, when any system component detects and isolates an
exception, it would notify the other components of the exception
and begin a coordinated recovery. In this ideal scenario, the resource
manager would detect the node failure and notify the parallel
application and workflow manager. The parallel application would
now be confident that the unresponsive rank was indeed due
to a failed node, rather than just a slow network link, and the
workflow manager would have the information necessary to isolate
the problem to a single node. We re-visit this example in more detail
in Section 3.4.

Another common fault on large-scale HPC systems is I/O write
failures due to exceeding file system quotas. Many HPC centers
impose limitations on the total disk space and the total number
of files that can be owned by any one user on a given file system.
This increases fairness amongst users and ensures that a single
user cannot monopolize an entire file system, creating write faults
for other users, but these quotas pose a challenges for workflows
that generate large amounts of data or files. Users with these data
intensive workflows must be careful not to exceed their quotas and
to spread their data across multiple file systems when necessary.

In the current state of the practice, when a user exceeds their
quota, all of their applications’ writes immediately begin to fail,
which from an application’s perspective, is indistinguishable from
a total file-system failure. At this point, the user’s applications
will either crash or hang until their wallclock time is exceeded
and they are killed. In some cases, the application may be able to
copy it’s data from the primary file system that is full, over to a
secondary file system that has space available, and then continue
execution. Unfortunately, with enough simulations performing this
action in an uncoordinated fashion, the storm of data movement
to the secondary file system can create a cascading failure due to
performance degradation or the exceeding of another quota.

Ideally, when a user is approaching their file-system quota, a
soft exception would be raised to notify system components of an
impending hard exception that will occur once the quota is exceeded.
In this ideal scenario, the workflowmanager would coordinate with
the user’s running simulations to only migrate the minimal subset
of simulations necessary for every simulation to continue running
without exceeding the primary file system’s quota. This would not
only minimize the I/O load placed on the secondary file system, but
it would also eliminate the possibility of a cascading failure due
to uncoordinated recovery attempts by the individual simulations.
We re-visit this example in more detail in Section 4.



3 MCEM: MULTI-LEVEL COOPERATIVE
EXCEPTION MODEL

In this section, we give a description of our exceptionmodel, MCEM,
that enables coordinated recovery amongst all components within
the system software stack. This includes our fault model as well as
how we forsee MCEM being implemented in real systems.

3.1 Fault Model
We consider both hard faults, like a process segmentation fault
or a node power off, and soft faults, like network performance
degradation or a file system that is nearly full. We only consider
permanent faults and temporary faults whose effects last long
enough to be reliably detected, isolated, and recovered from (i.e.,
effects lasting on the order of minutes rather than seconds). We
make no assumptions about the sources of faults other than there
exists a technique for isolating the fault to the point of origin.
Said another way, our model is general enough to account for
faults originating from anywhere in the system, including hardware
and software. Figure 1 depicts an example system with various
distributed components, potential faults, and where the faults may
occur within the system. We refer to exceptions that affect only a
single node or job, like a segmentation fault or ECC error, as local
exceptions, and we refer to exceptions that affect an entire system
or workflow, like network performance degradation or exceeding
PFS quotas, as global exceptions.

3.2 Coordinated Exception Recovery via
MCEM

MCEM takes the idea of exceptions in languages like C++ or
Java and extends them to an entire distributed system. After a
software component has detected and isolated a fault, system
components can begin a coordinated recovery through MCEM.
MCEM starts exception recovery at a single component, which
then has the option of “re-raising” the same exception or raising
a new exception (i.e., creating a chained exception), which is then
propagated to the next component in the system software hierarchy.
Chaining exceptions is useful in scenarios where the current
software component is unable to accomplish a full recovery by itself
and needs help from other components in the system. For example,
in the case of a process crashing due to a segmentation fault, the
resourcemanager may partially recover by re-launching the process
and then re-raising the exception so that the parallel application
can complete the recovery by wiring the newly launched process
into the application.

Ideally, recovery would start at the exception’s point of origin,
but exceptions can affect components such that they cannot
participate in recovery (e.g., total node failure). We must determine
which component should begin the recovery process and which
direction chained exceptions should propagate. While entirely
configurable, we present a possible configuration that determines
the starting component and propagation direction based on the
properties of the exception. This configuration is depicted in
Figure 1. In the case of a local exception, we propose starting
recovery at the lowest software component still alive/unaffected
by the exception. Chained exceptions should then propagate up
the system hierarchy. This is illustrated in Figure 1a. In the case of

a global exception, we propose starting recovery at the highest
software component in the system hierarchy affected by the
exception and then propagating chained exceptions down the
system hierarchy. This is illustrated in Figure 1b.

3.3 Implementation
In order to implement MCEM and the fault detection and isolation
that MCEM relies on, the various components in the system
hierarchy need a reliable mechanism for communication. Each
of the black arrows in Figure 1 represents a point-to-point
communication that can occur between components during a
chained exception. The communication mechanism must support
point-to-point communication between system components and
should be itself tolerant of most faults that occur on the system.
One option is to implement MCEM on top of a resource manager
(RM) like Flux, which supports communication via RPCs as
well as event publication and subscription [12]. Implemenation
within or on top of an RM is natural since RMs must also be
resilient to node-failure and other common exceptions. Using the
communication mechanisms provided by an RM like Flux, system
components could chain exceptions by sending an RPC with the
exception information to their parent in the system hierarchy.

3.4 Application
In the case of a node-failure, which we detailed in Section 2.2,
MCEM can coordinate the recovery amongst components so that
no contradictory or redundant actions are taken. While recovery
would typically begin at the exception’s point of origin, in this
case, the node-failure exception originates at the failed node; so
the exception recovery begins at the next level up in the system
hierarchy. In the configuration that we proposed in Section 3.2,
the next component is the parallel job. If the job uses a parallel
runtime, like Charm++ [13], or checkpointing library, like SCR [14],
that automatically and independently recover from single-node
failures, then the job marks the exception as handled and recovery
is complete.

If the job cannot completely recover independently, it must
re-raise the exception so that other system components participate
in the recovery. To continue the example, the chained node failure
exception propagates up to a workflow manager, which may
determine that the job’s preliminary results are uninteresting
and kill the job, completing the recovery. Alternatively, the
workflow manager may deem the job important enough to warrant
re-launching the job on new nodes, completing the recovery. If
the workflow manager is unable to independently complete the
recovery, it must re-raise the exception, propagating it up to the
system scheduler, where the process repeats. Without MCEM and
a coordinated recovery, the parallel job may be restoring from a
checkpoint at the same time that the workflow manager begins
re-launching the job on new nodes, which could result in redundant
work in the best case and data corruption in the worst. In the next
section, we discuss how MCEM can coordinate the recovery of a
file system quota exception.



(a) Local exceptions that are configured to propagate up the system
component hierarchy, from the narrowest scope that they affect to
the broadest.

(b) Global exceptions that are configured to propagate down the
system component hierarchy, from the broadest scope that they
affect to the narrowest.

Figure 1: Examples of chained handling of local and global exceptions in MCEM

4 EVALUATION
The need for generating a set of simulations (i.e., an ensemble of
simulations) on HPC systems has become an integral component of
science and engineering research. An ensemble may be composed
of a few tens of simulations and can scale to the tens of thousands
of simulations. An ensemble is used to study the behavior of a set
of output responses as related to the perturbation of a set of input
variables, sensitivity analysis, and uncertainty quantification.

A unique challenge for high performance computing and the
use of ensembles is the amount of disk space required and the
number of files generated. The multi-physics simulation used in this
study consumes 47.34GB of disk space and approximately 24,000
files are created. Out of the 47.34GB, 47.32GB is used to store the
restart dumps, each of which consumes 565MB on average and is
created every 21.68sec wall clock on average. Each restart dump
consists of 288 files. The disk space requirements for a simulation
can vary greatly depending the complexity of the simulation such
as the types of physics simulated and the number of materials
in the simulation and their respective properties, requiring much
more disk space. Also, the disk space requirements for supporting
simulation files can occupy a greater percentage of the total disk
space needs.

An evaluation of the uncoordinated approach and the MCEM
approach in the event of a disk quota expiration demonstrates
advantages of MCEM from the perspective of disk usage. The
ensemble manager receives a notification that the user disk quota
is expiring and, in response, moves the sets of simulations and
the contents of each simulation to another file system to continue
the generation of the ensemble. In an uncoordinated recovery, the
ensemble manager and each simulation receives the notification
and acts accordingly by recreating the simulation run directory on
the secondary target file system and populating the simulation run
directory with the required files to continue the simulation on the
secondary file system from where the simulation last made its own
restart checkpoint on the primary file system.

The problem with this approach is no coordination between
the individual simulations and the ensemble manager occurs. The
simulation will populate its own simulation run directory that
is separate from the ensemble manager. The ensemble manager
meanwhile will create its own directories and populate those
directories with files including directories and files required for the
ensemble to continue generation on the secondary file system. In
effect, duplicate simulation directories and files are created, thereby
increasing the load on the file system.

Using the example simulation, the size of the duplicate and
unneeded data that is copied is a function of the simulation setup
data, in this case 0.02GB, and the number of restart dumps, each of
which is 565MB in size and is composed of 288 files. Significant time
could be saved in not needing to perform duplicate data in the file
transfer and the load of the file system would also be reduced. Also,
if only a subset of the ensembles can be moved due to limitations
on the secondary file system, then the ensemble manager will
have to counteract the independent recovery actions of some of
the simulations, cancelling them and restarting them back on the
primary file system.

With the MCEM approach and its multi-level model, the
ensemble manager receives notification of the exception first and
then responds by coordinating with each simulation to stop the
evolution of the simulation and transfer all of the required files to
the secondary file system. If only a subset of the ensembles can be
moved, then the ensemble manager will only move that exact subset
over to the secondary file system, minimizing the cost of recovery.
Figure 2 depicts a model of the reduction in file system I/O (i.e.,
metadata operations, bandwidth, and storage) when using MCEM’s
coordinated recovery rather than an uncoordinated recovery.

To explain the results of our model, we explore two cases
in Figure 2: when 100% and 10% of jobs must be moved to a
secondary filesystem. In the first case, a hard quota exception has
occurred and 100% of an ensemble of jobs must be moved to a
secondary filesystem in order to continue execution. In this case,
under the uncoordinated approach, the ensemble manager and the
simulations will both perform the transfer simultaneously, resulting



Figure 2: Reduction in I/O performed during recovery when
using MCEM rather than an uncoordinated approach

in double the I/O than is necessary. The MCEM model avoids this
redundancy, reducing the I/O performed by 50%. In the other case,
a soft quota exception has occurred and only 10% of the jobs need
to be moved to the secondary filesystem to avoid exceeding the
quota. Under the uncoordinated approach, every simulation will
move its data to the secondary filesystem, and to avoid a cascading
failure, the ensemble manager will kill the 90% of simulations that
should not have migrated and restart them on the original, primary
filesystem. The MCEM approach enables the ensemble manager to
coordinate the migration of exactly 10% of the simulations, avoiding
the back-and-forth of simulations between filesystems and reducing
the total I/O performed by 90%.

5 RELATEDWORK
Many workflow management systems have been developed for
improving the efficiency of large-scale applications on distributed
systems. They span domains such as HPC, Grid, Cloud, among
others. To cope with failures, several fault-tolerance mechanisms
were developed [15–19], e.g. replication, checkpointing, and also
the use of ML-based approaches to identify and mitigate faulty
conditions; however only few works have actually focused on
exception handling.

An attempt to handle exceptions in workflow managers is
presented as an extension to Kepler for enabling resilient execution
of bionformatics workflows [20]. There, exception handling is
performed at the collection level, subset of computing tasks, in
which a collection-aware actor that catches an external application
error (or other exception) may add an exception token to the
collection that caused the error. This actor may then proceed to
operate on the next collection. A downstream exception-catching
actor can filter out collections that contain exception tokens.
Exception handling in workflows was also addressed in the form of
QoS violations [21]. In their approach, workflow exceptions were

tackled via workflow rescheduling: once low performance was
detected (defined by a threshold derived by empirical experiments),
the system would reschedule the workflow to meet its QoS
constraints.

In [22], an adaptive exception handling for workflow managers
tackled multi-level exceptions: workflow, middleware, and resource.
Exceptions were classified into patterns, which guided system
decisions, inspired by modular programming language, to replace
the faulty element by another one at runtime. In our proposed
model, rather than isolating exception into patterns, we define
chains of exceptions that can be handled at different levels of the
system stack.

To the best of our knowledge this is the first work that proposes
workflow exception handling in HPC platforms by coordinating
the recovery efforts of system components.

6 CONCLUSIONS
In this paper, we presented a novel workflow exception data
model that can enable coordinated recovery amongst the many
components in an HPC system. Using an example of a file system
quota exception, we showed how the MCEM model can reduce
the I/O performed during recovery by 90% over an uncoordinated
recovery. Future work includes implementing MCEM on top of a
resource manager like Flux and comparing the recovery latency
to an uncoordinated approach and state of the art approaches like
CIFTS.
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