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Abstract—The amount of data generated by numerical simula-

tions in various scientific domains led to a fundamental redesign

of how the analysis and visualization of simulation outputs are

performed. The throughput and capacity of storage subsystems

have not evolved as fast as the computing power in extreme-scale

supercomputers, making the classical post-hoc approach highly

inefficient. In situ processing has then emerged as a solution in

which simulation and data analysis/visualization are intertwined

for better performance and greater interactivity.

Determining the best allocation, i.e., how many resources to al-

locate to simulation and analysis respectively, mapping, i.e., where

and at which frequency to run the analysis/visualization, and data

transfer mode is a complex task whose performance assessment

is crucial to the efficient execution of in situ processing. However,

such a performance evaluation of different strategies usually

relies either on directly running them on the targeted execution

environments, which can rapidly become extremely time- and

resource-consuming, or on resorting to simplified models of the

components of an in situ application, which can lack of realism. In

both cases, the validity of the performance evaluation is limited.

In this paper, we present SIM-SITU, a framework for the

faithful performance evaluation of in situ processing strategies.

We designed SIM-SITU to reflect the typical features of in situ

processing systems. Thanks to its modular design, SIM-SITU

has the necessary flexibility to easily and faithfully evaluate

the behavior and performance of various allocation, mapping,

and data transfer strategies. We illustrate the capabilities of

SIM-SITU on a Molecular Dynamics use case. We study the

impact of different strategies on performance and show how users

can leverage SIM-SITU to determine interesting tradeoffs when

adding analysis/visualization components to their application.

I. INTRODUCTION

The tremendous volumes of data generated by numerical
simulations in various scientific domains such as nuclear
engineering, climate modeling, biology, or astrophysics, led to
a fundamental redesign of how the analysis and visualization
of simulation outputs are performed. Due to the growing
discrepancy between storage subsystems performance and
computing power in extreme-scale supercomputers, moving
large volumes of data from computational resources to disks
may have a dramatic impact on performance [1].
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This makes the classical post-hoc analysis/visualization, i.e.,
once all simulation outputs are stored, highly inefficient. To
overcome these issues, the in situ processing approach came as
solution that intertwines simulation and analysis/visualization
to process data as it is generated. Then, the final outcome of
the whole execution will be much smaller to store. A beneficial
side effect if in situ processing has been to provide scientists
with better insights about the evolution of the simulation as it
runs, and thus better command-and-control options. Over the
last decade, many software frameworks have been developed
for efficient in situ processing, covering a broader scope than
the initial and literal meaning of the in situ term [2].

A common challenge to these tools is to decide what is
the best allocation, i.e., how many resources to allocate to the
simulation and analysis/visualization components respectively,
mapping — where and at which frequency run the data analy-
sis/visualization, and data transfer mode, i.e., how to exchange
data between the components. These are complex tasks whose
performance assessment is crucial to the efficient execution of
in situ processing. However, such a performance evaluation
of different strategies usually relies either on directly running
them on the targeted execution environments or on resorting
to simplified models of the components of in situ applications.
The former requires to tune the framework with regard to
the hardware and software available on the target machine
and thus can rapidly become extremely time- and resource-
consuming, while the latter can lack of realism. In both cases,
the validity of the performance evaluation is usually limited
to a narrow set of configurations.

In this paper, we present SIM-SITU, a framework for the
faithful performance evaluation of in situ processing systems.
SIM-SITU builds on the popular SimGrid toolkit [3] and bene-
fits of several key features of this versatile framework. SimGrid
enables the simulation of large-scale distributed applications
in a way that is accurate (via validated performance models),
scalable (ability to run large scale instances on a single com-
puter with low compute, memory, and energy footprints), and
expressive (ability to simulate arbitrary platform, application,
and execution scenarios). We designed SIM-SITU to reflect
the typical structure of in situ applications with three distinct
modules that respectively, (i) simulate the unmodified simula-
tion component of the application; (ii) mimic the behavior of
an underlying Data Transport Layer (DTL); and (iii) abstract
the analysis/visualization component.
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Thanks to this modular design, SIM-SITU has the necessary
flexibility to easily and faithfully evaluate the behavior and
performance of various combinations of in situ processing
system features [2]. We illustrate the capabilities of SIM-
SITU and study the impact of different allocation and mapping
strategies on performance and show how users can leverage
SIM-SITU to determine interesting tradeoffs when adding
analysis/visualization components to their application.

The remaining of this paper is organized as follows. Sec-
tion II presents the related work. In Section III, we describe
the architecture of SIM-SITU and detail its different features
and advantages. In Section IV, we use SIM-SITU to evaluate
different strategies for in situ processing with a Molecular
Dynamics (MD) application. Finally, Section V summarizes
our contributions and presents some future research directions.

II. RELATED WORK

The performance evaluation of in situ processing, and in
particular that of allocation and mapping strategies for both
the simulation and data analysis/visualization components, is a
complex and multi-parametric problem. Different approaches
have been proposed in the literature to ascertain the perfor-
mance gains brought by on-node or off-node in situ processing
of data produced by a numerical simulation and determine
the best deployment of the in situ application on a given
target platform. We distinguish these approaches depending
on whether they rely on actual experiments [4]–[8] or resort
to simulation [9]–[11] to evaluate the performance of in situ
processing. The former is intrinsically time- and resource-
consuming while the latter may suffer from simplification bi-
ases when abstract versions of the components are developed.

To limit the cost of the experiments required to conduct
performance evaluations, some works focused on the Data
Transport Layer (DTL) that connects the simulation and the
analysis/visualization components. In such cases, series of
experiments are conducted either using the real application [4]
or by leveraging data access traces to mimic the application
behavior [7], [8]. Another approach consisted in reducing the
experimental configuration space to a selected set of promising
configurations. For instance, Malakar et al. tackled the allo-
cation and mapping of in situ processing as an optimization
problem expressed as a Mixed-Integer Linear Program [5],
[6]. Solving this optimization problem results on a set of
feasible in situ analyses whose performance has been assessed
through experimentation in an actual platform. Lorhmann et
al. leveraged surrogate models (i.e., proxy-applications) of ex-
pensive numerical simulation codes [9] to abstract application
models. While this approach substantially reduces the cost of
the experiments, it still captures the most important features
of the considered application.

Only a few recent attempts has leveraged simulation to
enable the exploration of the in situ parameter space. Aupy et
al. designed a numerical simulator [10] that measures evalua-
tion metrics for scheduling decisions by solving optimization
problems on resource allocation and partitioning for an in
situ analysis set. The simulator used a predetermined set of

parameters to study the impact of the in situ analyses that are
scheduled on the performance of the entire in situ execution. In
a previous work, we created a synthetic MD application based
on the extrapolation of benchmarking performance of realistic
MD engines [11]. This synthetic MD application replaced
computational kernels by delays, hence did not perform any
heavy computing operations.

To the best of our knowledge, this is the first work that
proposes a faithful and scalable simulation framework that
models the behavior of various combinations of features of
in situ processing systems.

III. SIM-SITU ARCHITECTURE

The term “in situ” initially described a way for a data
analysis/visualization component to consume and apply dif-
ferent routines on the scientific data periodically produced
by a numerical simulation component directly where it is
generated without moving it. In other words, the simulation
and analysis/visualization codes run on the same computing
resources and share a common memory space. However, the
meaning of the in situ term has then evolved to describe the
more generic concept of “processing data as it generated”
and cover a broader range of possible execution scenarios.
To address the confusion caused by this semantic evolution, a
group of over fifty experts proposed a terminology to describe
in situ processing systems [2]. They proposed six axes, and
terms defining them, to better distinguish currently available
in situ processing systems. Before detailing the architecture
and design choices of the SIM-SITU framework, we briefly
review these axes and their associated terms.

The integration type axis defines how the analysis and
visualization routines are integrated into the simulation code.
We focus on the Application-aware integration type, in which
the simulation code explicitly calls a multi-purpose API to
interact with the analysis/visualization component.

The data access axis by the analysis/visualization routines
can either be direct, through deep or shallow copy of the data
in a shared memory space, or indirect, when data is exchanged
over the network or through a file system.

The proximity axis refers to deciding whether the anal-
ysis/visualization has be performed on-node, i.e., within a
shared memory space and without data movement, off-node,
e.g., dedicating a set of nodes on the same machine to
analysis/visualization which implies data transfers over the
network, or using distinct computing resources.

The division of execution axis specifies how compute
resources are shared between the simulation and analy-
sis/visualization components. A space division means that dis-
joint sets of resources are used simultaneously to generate and
process data, while with a time division the same resources
alternate between the generation and processing activities.

The output type axis describes which operations can be
performed on the simulation data before it is processed by the
analysis/visualization component. Three categories have been
identified depending on whether the data size if reduced (Sub-

set), increased (Derived), or remains the same (Transform).



The last axis is about operation controls and describes
whether some human-in-the-loop interactions are needed
before the simulation can resume or the analysis/visualization
component runs in a automatic way. We only consider the
latter in the design of SIM-SITU, but with the capacity to be
adaptive and change the complexity of the analysis process
as the simulation runs, if needed.

Figure 1 shows what could be the architecture of a generic
in situ processing system according to this terminology. The
objective of the proposed SIM-SITU framework is to enable
the study of various combinations the available options for
allocation, mapping, and data transfer. In the following we
distinguish the following main components:

• The numerical simulation component that performs
domain-specific computations, generally in an iterative
process. This component periodically, i.e., after a prede-
fined number of iterations, produces some scientific data;

• One or multiple analysis/visualization components that
consume the data generated by the numerical simulation
and may send back new data to that component;

• A Data Transport Layer (DTL), whose complexity de-
pends on the degree of coupling between the two former
components and the resources they are allocated to, is
responsible for efficient data movements.

Fig. 1. Architecture of a generic in-situ processing system.

To faithfully simulate such a generic in situ processing
system, SIM-SITU builds on several features of SimGrid [3],
which is an open-source versatile framework for developing
simulators of distributed applications executed on heteroge-
neous distributed platforms. One of the key strengths of
SimGrid is to not trade accuracy for scalability. Its fast per-
formance models have been theoretically and experimentally
evaluated and validated [12] and make it possible to run large-
scale instances on a single machine.

Numerical Simulation Component. To maximize the realism
of the study of a parallel application, an appealing approach
is to directly consider its unmodified code. This ensures that
it does not only capture the computations executed on the
different processes but also the exact communication pattern
of the application. This approach is at the origin of SMPI [13]
that comes with the SimGrid distribution.

SMPI allows to compile and run unmodified MPI programs
written in C, C++, or FORTRAN. For instance, assuming the
program is written in C, one simply compiles it with smpicc,

instead of mpicc, and executes it with smpirun, instead of
mpirun. This causes the code of the MPI application to be
executed as is, but the MPI ranks actually execute as threads in
a single process, and thus share the same address space. Each
time an MPI function is called, control is handed off to SMPI
where network operations are replaced by simulated delays.
These delays are computed using the performance models at
the core of SimGrid [14]. Each block of code in between two
MPI calls is benchmarked on the machine where SMPI runs.
This is possible because, with SMPI, MPI ranks execute as
threads in mutual exclusion. These benchmarked execution
times can then be scaled and simulated as compute delays that
correspond to the compute speeds of the nodes in the simulated
platform. In this way, SMPI simulates both communication
and computation operations as computed delays.

The only difference with a classical MPI execution is
that smpirun takes one extra command-line argument,
-platform, which allows the user to describe the hardware
platform on which the execution of the MPI program is to
be simulated. This platform description specifies a network
topology between compute nodes, where network links have
specified latencies and bandwidths, and compute nodes have
specified compute speeds and numbers of cores.

As part of its integration testing effort1 SMPI simulates the
execution of multiple proxy- and full-scale applications and
HPC runtimes. It is thus a natural candidate in the design of
SIM-SITU to handle the numerical simulation component in
the context of in situ processing.

Data Transport Layer. Among the fifteen in situ processing
systems characterized in [2], eleven follow the application-
aware approach, i.e., rely on an API for the integration of
analysis/visualization with a numerical simulation. Moreover,
five of these systems focus on data movements between
components and implement a data transport layer [15]–[19].
As this is considered as the most flexible, extensible, and
efficient way to implement in situ processing, we decided to
simulate such a DTL in SIM-SITU.

This implementation exposes a simple API to ease the
integration of the DTL into application code. Following the
Publish/Subscribe messaging model, the simulation compo-
nent can put data into the DTL in an asynchronous way,
and proceed with its computation. The analysis/visualization
component(s) can then get this data and apply their own code
to it. If the simulation component needs to retrieve the results
of an analysis to continue, the same put/get mechanism can
be used in the other direction. Such a feedback from the
analysis/visualization component through the DTL can also
be used to easily implement a time division of execution.

The DTL implementation of SIM-SITU also proposes to
declare different channels to exchange different types of data
or connect different components. For instance, two different
channels can be used to implement a two-way exchange
between the simulation and a data analysis component: one
for the simulation data, the other for the analysis results.

1https://framagit.org/simgrid/SMPI-proxy-apps
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Another advantage of such a simulated DTL is that it allows
users to compare the performance of different data access
modes, i.e., shallow or deep memory copy, transfer over the
network, or using files, without having to modify the code to
interact with the DTL. This becomes a configuration parameter
of the different channels of the DTL.

To simulate the behavior of a shallow memory copy while
respecting the flow dependencies between the producers and
consumers, the DTL of SIM-SITU includes an implementation
of the message queue that does not induce any advance of the
simulated clock. This mode can also be used to artificially
remove all the overhead caused by data movements and thus
focus on the impact of different allocation and mapping
schemes only on the compute part of in situ processing.

To simulate both deep memory copy and data transfer over
the network, SIM-SITU leverages the mailbox concept used by
SimGrid to implement inter-process communications. It acts
as a rendez-vous point between a producer and a consumer
processes. When both meet on that rendez-vous point, the
actual communication starts. SimGrid mailboxes use a queue
internally to store unmatched communications, i.e., when one
side is waiting for the other, which ensures the respect of flow
dependencies. An interesting feature of this mailbox concept
is that the mapping of the producer and consumer processes
determines the data access mode. If both are mapped on
the same compute node, and thus sharing a memory space,
the deep memory copy of data between in situ components
can be simulated as a “on-node” communication through the
node loopback. Conversely, if producer and consumer are on
different nodes, the simulated communication will go over the
interconnection network. This process allocation is given to
SIM-SITU in a configuration file, thus allowing to change the
data access mode without any code modification.

Analysis/Visualization Component(s). The data analysis and
visualization routines that can be performed in conjunction
with a numerical simulation are usually specific to a given
scientific study or even to a given run of the application.
Moreover, the complexity of these versatile components can
vary greatly depending on what knowledge scientists want
to extract from the simulation data. It can range from a
simple computation of a variable derivative to help steer the
simulation to a more complex parallel computation, or a full
visualization of the current state of the simulation.

To enable the study of such diverse behaviors, we decided
to abstract them in SIM-SITU using one or several SimGrid
actors. A SimGrid actor corresponds to a simulated process
that can consume some simulated resources (e.g., CPU time,
network bandwidth, or storage space) by performing some
simulated activities (e.g., executing a computation, commu-
nicating with another actor, or doing some I/O).

Isolating and abstracting the data analysis/visualization
components within actors out of the MPI world offers a great
flexibility to SIM-SITU. For instance, changing the proximity
of the analysis/visualization from on-node to off-node is trivial
with SIM-SITU. Indeed, a simulated actor can be started

on any node of the simulated computing infrastructure, that
execution location being specified at the creation of the actor,
or predefined in a configuration file describing an initial
deployment of the different actors. Moreover, it is possible
to spawn new actors, stop existing ones, or even migrate them
from one node to another while SimGrid is running. SIM-
SITU could then be used to study complex scenarios where
the analysis load evolves along time.

Users can act on many parameters when designing and
executing their in situ experiments. Depending on what they
want to observe or steer during the execution of the simu-
lation component, the compute cost and complexity of the
analysis/visualization routines, the volume of data to transfer
from simulation to analysis, and the frequency of the analysis
can change from one run to another. Combining these variable
parameters leads to interesting questions such as “Is it more
efficient to run frequent but light analyses or scarce but
heavy ones?”. Moreover, opting for a given configuration will
have a direct impact on performance and may benefit of a
particular allocation and mapping scheme. Abstracting the
analysis/visualization as a combination of simulated activities
executed by one or several actors, in a independent or coordi-
nated way, allows SIM-SITU to easily reflect all the versatility
of this important component of in situ processing.

The behavior of a generic and abstract analysis/visualization
component in SIM-SITU can then be summarized as starting
n actors (n � 1) that: (i) get some data from the DTL;
(ii) simulate some computation; and (iii) may produce results
which can be either put into the DTL or send to another actor.
We can derive multiple scenarios from this simple structure.

SIM-SITU users can easily create sequential or parallel
components, whose mapping on computing nodes is described
in a file similar to the MPI hostfile. The complexity and
computation and communication patterns of these actors is
then expressed through the S4U API of SimGrid. In its first
version, SIM-SITU comes with two analysis actor implemen-
tations. In the former, each spawned actor just performs a
single Execution activity by calling the following method:
s4u::this_actor::execute(workload). This cor-
responds to simulating the execution of the amount of work
given as parameter at the compute speed of the node the
actor is mapped on. In the latter, n actors are involved in
a coordinated analysis. Each actor splits the execution of its
own workload in s steps, and at each step exchanges some
data with the other actors through an All-to-All collective
communication operation. Such a parallel analysis component
allows us to investigate the perturbation of the simulation com-
ponent caused by the communications of analysis/visualization
component when network resources are shared.

The workload an actor has to compute is determined by
the product of the values of three parameters: (i) the number
of “elements” coming from the simulation components it gets
from the DTL; (ii) an analysis cost per element; and (iii) and
a compute scaling factor. This last parameter allows us to
artificially increase the analysis cost to study what-if scenarios.
Similarly, for the data movements between components, users



can specify an element size and a data transfer scaling factor
to artificially change the transferred data size (i.e., simulate
subset, transform, or derived output types). This workload
parameter can also derive from a performance model [20].

Finally, it is possible to compose several actor types to form
a more complex analysis workflow. For instance, to simulate
the aggregation of some quantities individually produced by
the analysis actors before sending back some metrics of
interest to the simulation component, we implemented the in
situ workflow depicted in Figure 2.

Fig. 2. Implementation of an in situ workflow with several actor types.

First, the MPI ranks running the simulation component put
the data they have generated into the DTL in a fire-and-forget
mode and immediately proceed with the next iteration of the
main simulation loop. In this scenario, they will later block to
retrieve the analysis results, after several iterations, i.e., before
having to start a new analysis.

Each analysis actor runs an infinite loop in which it waits
for data to analyze to be available in the DTL. When it is the
case, the actor simulates the execution of the corresponding
workload as described above. Then each actor asynchronously
sends dummy results to the metric collector actor, and waits
again for new data to be available in the DTL.

The metric collector actor simply waits for having received
as many individual analysis results, or metrics, to accumulate
as there are ranks executing the simulation component. As
the number of analysis actors can be smaller than the number
of MPI ranks, an actor can send more than one metric to the
collector. Once all the metric values for a given analysis phase
have been collected, this metric collector puts as many copies
of the final analysis results into the DTL, so that each MPI
rank can retrieve one set of metrics and pursue its execution
of the simulation component.

Here, the DTL is organized around two distinct channels.
The former stores the current system states sent by each of
the MPI ranks to the analysis actors (plain arrows) while the
latter stores the metrics computed by the analysis actors and
aggregated by the metric collector that are sent back to the
MPI ranks (dashed arrows). The communications between the
analysis and metric collector actors rely on a standard SimGrid
mailbox (dotted arrows), and are thus outside the MPI world.

This communication scheme allows us to decouple the
needed synchronization between the simulation and the anal-
ysis/visualization components from that needed for the simu-
lation itself. It also improves the flexibility of SIM-SITU by
allowing users to start any number of analysis actors without
any code modification.

IV. EVALUATION OF IN-SITU PROCESSING SCENARIOS
WITH SIM-SITU

To illustrate the capacities and flexibility of SIM-SITU, we
consider the application of in situ processing to Molecular Dy-
namics (MD) simulations. Studying the evolution of molecular
systems at the atomic scale is one of the most prominent types
of simulations currently running on extreme-scale systems. A
reproducibility artifact for this paper is available online [21].

A. Experimental Setup

Application. More precisely, we relied for our experiments
on the ExaMiniMD proxy-application [22], [23] which is
part of the Exascale Computing Project Proxy App Suite
v4.0 [24]. ExaMiniMD captures both the computation and
communication schemes that are implemented in the classi-
cal MD code LAMMPS [25]. As other proxy-applications,
ExaMiniMD shows a good balance between having a compact
and manageable code and representing the main performance
concerns of MD applications. ExaMiniMD belongs to the fam-
ily of the all-atom MD simulations. It computes floating-point
intensive pairwise atom-atom unbounded interactions over a
certain period of time. The simulated system corresponds to
a set of particles distributed in a 3D volume. The main loop
computes the trajectories of the particles according to a Verlet
time integration method and the short-range forces between
particles as a Lennard-Jones potential. The parallelization of
this MD problem follows a typical domain decomposition
approach. Each MPI rank manages a sub-volume and a halo
to exchange with its neighbors periodically. All the data
exchanges in the simulation component rely on point-to-point
MPI communications with asynchronous receives.

Experimental Platform. Our experiments were conducted on
the dahu cluster of the Grid’5000 experimental testbed. This
cluster consists of 32 nodes that comprise two Intel Xeon Gold
6130 CPUs with 16 cores each and 192 GiB of memory.
These nodes are interconnected through a 10 Gb/s Ethernet
network. We leverage an existing thorough calibration of the
SMPI network model for this same cluster [26] to ensure our
simulated results are accurate. This calibration runs a series of
tests on a limited number of nodes to assess the performance
of point-to-point communications and saturate a switch. It can
then be used to extrapolate the size of a given cluster beyond
its actual number of nodes.

We used the git version of ExaMiniMD, compiled with g++
v8.3.0 and linked to Kokkos v3.3.01 and OpenMPI v3.1.3. We
used the Serial Kokkos device with one rank per core. To
simulate ExaMiniMD, we relied on SimGrid v3.29. SIM-SITU
is implemented as a shared library built against SimGrid and
linked to ExaMiniMD at compile time.

B. Performance of the Simulation Component
In this section, we analyze the simulated execution of the

unmodified code of the target application. This only requires
minimal modification to the Makefile file to indicate that
the compiler to use is smpicxx.



Additional, yet optional, modifications of the application
code can be made to drastically reduce the execution time of
the simulated version. SMPI offers to replace time-consuming
computational parts of the simulated application by delays
which are estimated by sampling the execution time of a given
kernel or loop body either for a predefined number of times
or until the standard deviation of the samples is under a given
threshold. All the subsequent calls are then replaced by the
average execution time of these samples. This sampling can
be done either at a local scale, i.e., each MPI rank determines
its own delay from the samples it executed, or at a global scale,
i.e., the delay is determined from samples executed by all the
MPI ranks. SMPI also provides a mechanism to reduce the
application memory footprint by sharing memory allocation
among simulated MPI ranks.

We used this feature on the most time-consuming kernel of
ExaMiniMD that represents 69% of the execution time of the
application [27]. This corresponds to a 1-line modification of
the code to call the sampling macro with its parameters. We
chose to run 150 samples with a standard deviation threshold
of 0.002 in our experiments.

Cost. First, we compare the cost, in core ⇥ hours, of running a
representative instance of ExaMiniMD with SIM-SITU to that
of an actual run. Figure 3 shows the results of this comparison
for different numbers of MPI ranks. We map an MPI rank per
core and use a single Kokkos thread per MPI rank. Error bars
show the standard deviation over five runs.
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Fig. 3. Time to run or simulate (with or without kernel sampling) a
representative instance of ExaMiniMD. Each rank runs a single Kokkos thread
and is mapped on a different core.

We can see that the number of core ⇥ hours needed to
solve this problem instance remains stable as the number of
MPI ranks increases, i.e., the actual execution completes faster
with higher rank counts. SIM-SITU runs on a single core
and takes the same time to complete whatever the number
of MPI ranks used. This time is commensurate to that of
the actual execution, but uses much less computing resources.
Activating the kernel sampling, either local or global, in SIM-
SITU reduces the time to solution by a factor of 5, thus results
can be obtained in about 25-30 minutes instead of 2.5 hours.

Execution vs. Simulated time. Then, we compare the time
returned by SIM-SITU to that of an actual run of ExaMiniMD
and assess the impact of kernel sampling. Figure 4 shows that
SIM-SITU correctly reflects the performance evolution trend of
the simulated application with less variability and a reasonable
error. Activating the kernel sampling, be it local or global,
slightly degrades the accuracy of SIM-SITU. However, this
degradation remains stable as the number of ranks increases
and can thus easily be taken into account when assessing the
performance of a given in situ processing strategy.
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Fig. 4. Execution vs. simulated time of ExaMiniMD (with or without kernel
sampling) when varying the number of MPI ranks.

On larger core counts, scaling up to the full size of the
target platform (i.e., 32 nodes and 1,024 cores) and for a larger
problem instance, Figure 5 shows that the accuracy of the local
sampling version drops from 512 cores while the versions with
global sampling and without sampling remain accurate.
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Fig. 5. Execution vs. simulated time of a larger instance of ExaMiniMD
(with or without kernel sampling) when varying the number of MPI ranks.

C. Assessing the Performance of In Situ Processing Scenarios
In this section, we describe some of the many in situ

processing scenarios that can be simulated with the proposed
SIM-SITU framework. Each of the following subsections cor-
responds to a design choice faced by users who want to couple
a numerical simulation to analysis/visualization routines. We
show how the flexibility of SIM-SITU easily allows users to
investigate different performance tradeoffs by simply changing
some configuration parameters.



On-node processing: Space vs. Time Division of Execution.

One of the first question to answer when coupling an anal-
ysis/visualization component to a numerical simulation is to
determine whether the analysis can be done inline with the
simulation, i.e., keeping data in place in memory and pausing
the simulation to perform the analysis, or should be offloaded
to other computing resources, i.e., staging data and allowing
the simulation to continue its execution.

Such a decision is an intrinsically multi-parametric choice
as it depends on the duration of the analysis component, the
amount of data to exchange between the components, and the
time between two analyses. Thus, it translates into a complex
optimization problem whose main objective is often to avoid
blocking the progress of the simulation component.

To illustrate how SIM-SITU can be leveraged to obtain
objective and faithful performance indicators and guide the
design of potentially complex in situ workflows, we consider
the following experimental scenario where a user has only ac-
cess to a single node with 32 cores to execute a MD simulation
and perform some analysis (using the non-coordinated version
of the analysis actors) and has to choose between a space
division of execution (i.e., simulation and analysis components
can run concurrently on 16 cores each) or a time division of
execution (i.e., simulation and analysis components alternate
their executions using 32 cores). We start from a baseline
scenario in which the respective overall execution times of the
simulation and analysis components are well balanced using
a space division of execution. Then, we scale (up and down)
the amount of analysis to perform and show in Figure 6 the
impact of this modification on the active and idle times of
each component and the overall execution time. For the sake
of simplicity, we ignored the time to stage data to the memory
of the cores dedicated to the analysis with a space division
of execution by using the message queue implementation of
SIM-SITU’s DTL.
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Fig. 6. Evolution of the active and idle times of the simulation and analysis
components and of the overall execution time (black solid line) with the
amount of analysis to perform, under space and time divisions of execution.

Scaling down the amount of analysis to perform causes the
overall execution time to be dominated by the duration of the
simulation component. In such configurations, i.e., for 25%
to 75% of the baseline cost, opting for a time division of

execution leads to shorter overall execution times, as more
resources can be allocated to the simulation component and
inline the analysis remains affordable.

When the analysis cost is scaled up to become dominant,
we observe different consequences. With a time division, each
component has to wait for the other and is often idle, but
both complete at the same time. With a space division, each
component needs more time to execute its workload, as it runs
on less resources, but the simulation component can finish
earlier and release its resources. Moreover, the duration of
the simulation component is not impacted by the volume of
analysis in this configuration, which makes it more predictable.
However, if the completion time of both components is the
performance metric to optimize, a time division of execution
should be favored.

More factors can influence the choice of division of ex-
ecution which are not included in this simple illustrative
study. For instance, alternating between components with a
time division can cause cache trashing and thus impact the
performance of both components. When both simulation and
analysis perform intense communications, a space division
may lead to competition for the network and also degrade
the performance of both components if no care is given to
the mapping of the analysis actors. In that particular case,
the coordinated analysis actors of SIM-SITU can be used to
estimate the effects of such network interference and determine
the best mapping for the different components.

On-node processing: Impact of Simulation to Analysis Core

Allocation Ratio. When the analysis/visualization component
is executed on the same resources as the simulation compo-
nent with a space division of execution, a key performance
parameter is to determine a good simulation to analysis core
allocation ratio R, defined as the number of cores allocated to
the simulation component over the number of cores allocated
to the data analytics components [28]. As our target cluster
has 32 cores per node, we consider 5 values for this ratio as
shown in Table I. Then, we run simulations for 1, 2, 4, and 8
nodes (i.e., 32, 64, 128, and 256 cores).

TABLE I
CONSIDERED SIMULATION TO ANALYSIS CORE ALLOCATION RATIOS.

R # simulation cores # analysis cores

1 16 16
3 24 8
7 28 4

15 30 2
31 31 1

Then we consider a user who would like to perform a
constant amount of analysis during the execution of their sim-
ulation and know, for a given number of cores, what would be
the most efficient simulation to analysis core allocation ratio to
use. This user can act on two parameters to execute the desired
amount of analysis: the frequency and the cost of one execution
of the analysis/visualization component. For instance, if the
main simulation loop is executed 8,000 times and 400 units of



analysis have to be performed, (at least) four (frequency, cost)
configurations can be envisioned: (20, 1), (200, 10), (500, 25),
and (1000, 50). The (500, 25) configuration means that 25
units of analysis work are performed every 500 iterations.
Thanks to the flexibility of SIM-SITU, varying the analysis
cost simply amounts to changing the value of the computing
scaling factor parameter.

To compare the performance of the different (frequency,
cost) configurations, we define an efficiency ratio ⌘ as:

⌘ = 1� I

m
, (1)

where I is the sum of the idle times experienced by both the
simulation and analysis/visualization components, i.e., when
one component is waiting for the other to proceed with its
execution, and m is the makespan, or completion time, of the
overall in situ processing.

Figure 7 shows the achieved efficiency for these four
combinations of frequency and analysis costs and two core-
allocation ratios (R = 15 and R = 31). The other ratios lead to
lower efficiency for any core count and are thus not displayed
for the sake of readability.

It shows some interesting trends and tradeoffs. We can see
that the (frequency, cost) configuration that leads to the best
efficiency is not the same for every core count. As the number
of cores available for the execution of the in situ process-
ing increases, it appears to be more efficient to reduce the
frequency and increase the cost of the analysis/visualization
component. This is confirmed by the trends of the (20, 1)
and (200, 10) configurations with R = 31 whose efficiency
steadily decreases with the increase of the number of cores. For
these configurations, the analysis actors do not have enough
work to process and thus are idle most of the time. As the
total core count grows, more analysis actors are started, hence
amplifying this phenomenon. A similar trend can be seen for
larger analysis cost, but the tipping point where the efficiency
starts to drop is for larger core counts.

We also observe a generally decreasing trend for the ef-
ficiency as the number of cores grows with R = 15, but

0.25

0.50

0.75

32 64 128 256
Number of cores

η

(20, 1), Ratio = 31

(20, 1), Ratio = 15

(200, 10), Ratio = 31

(200, 10), Ratio = 15

(500, 25), Ratio = 31

(500, 25), Ratio = 15

(1000, 50), Ratio = 31

(1000, 50), Ratio = 15

Fig. 7. Efficiency of ExaMiniMD in situ workflow in four (frequency, cost)
configurations for two core allocation ratios.

over a narrower range. Moreover, the (200, 10) configuration
appears to be consistently achieving good efficiency for this
core allocation ratio, for all total core counts. This better
stability might be preferred by users when they have to adapt
their executions to the number of currently available cores
they have access to and do want to risk to loose efficiency by
selecting the wrong configuration.

Figure 8 shows a different view of the (1000, 50) config-
uration, i.e., the evolution of the active and idle times of the
simulation and analytics components when the core allocation
ratio and the total number of cores increase2.
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Fig. 8. Evolution of the active and idle times of the simulation and analytics
components when increasing the core allocation ratio and the total number of
cores for the (1000, 50) scenario.

In this scenario, we can see that the respective active times
of the simulation and analysis/visualization component follow
opposite trends. For small core allocation ratios, the execution
time is completely dominated by the time to execute the
simulation. Then, the time to execute the analysis component
increases linearly with the ratio, as less cores are allocated to
execute the same amount of analysis, until a tipping point is
reached where the simulation waits for analysis (R = 31).

We also see that some “sweet spots” can be found, typically
for R = 15, where the active times of the simulation and
analysis/visualization components are both efficient and well
balanced. It is interesting to note that it is in contradiction with
the efficiency metric that indicates a better efficiency with a
core allocation ratio of 31 from 64 cores.

These results illustrate how SIM-SITU can be used to
determine a good core-allocation ratio for a given cost of
analysis and number of nodes and that it is important for users
of the SIM-SITU framework to leverage all the metrics the tool
can provide them while configuring their in situ processing .

On-node vs. Off-node processing: Impact of data staging.

Another design choice faced by users of in situ workflows is
to decide of the mapping of the resources allocated to the
data analytics component. In other words, the question is:
“would it better to adopt an on-node strategy, i.e., mapping

2The lack of values for 256 cores and R = 7 is due to a crash of ExaMiniMD
for this particular instance with 224 MPI ranks (w/ or w/o SIM-SITU). It seems
to come from a badly handled division by 0 in ExaMiniMD’s code.



the analytics resources on the same nodes as the simulation
resources, or an off-node strategy, i.e., dedicating some node(s)
to the analytics?”. The former has the advantage of minimizing
the cost of data exchanges between simulation and analytics
thanks to a shared memory space, but the scattering of
the analysis resources over multiple nodes may hinder the
performance of this component (e.g., communication intensive
analysis/visualization routine). Conversely, the latter benefits
of having all the analysis located on a single, or small num-
ber of dedicated nodes, but induces a larger communication
overhead to exchange data with the simulation component.

To illustrate how SIM-SITU can help users to evaluate
the relative performance of on-node and off-node proximity
schemes, we consider the following scenario. The simulation
component still corresponds to the main loop of the target
application. The analysis/visualization component now corre-
sponds to a routine that involves all the analysis resources and
whose performance is impacted by the number of nodes onto
which these resources are allocated, i.e., its execution time
increases with the resource scattering. Finally, the user can
decide of the volume of data produced by the simulation to
transfer to the analysis.

Simulating such a performance study is made easy by
the features of SIM-SITU. Switching from an on-node to
an off-node mapping simply amounts to change the analysis
hostfile, while changing the volume of transferred data or
the performance profile of the analysis/visualization routine
can be done by modifying some parameter values. Figure 9
shows the evolution of the execution time of the simulation
component when the volume of data to exchange with the
analysis component is scaled up to a thousand times. The
applications is executed on 16 nodes and two execution modes
are considered. The on-node mapping uses a core allocation
ratio of 15, i.e., two cores per node are allocated to the
analytics component while a full node is dedicated to the
analysis in the off-node mapping.
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Fig. 9. Evolution of the execution time of the simulation component when
the volume of data transfer is scaled up in the on-node and off-node execution
modes with 16 nodes and R = 15.

We can see that the scattering of the analysis resources
across nodes makes the on-node execution mode less efficient
than the off-node execution mode when a small amount of
data is exchanged. However, as we increase this volume of

transferred data, the execution time of the off-node mode starts
to increase linearly, while the on-node execution mode is only
slightly impacted as the data exchanges are done through a
shared memory space. Such studies may help users in the
design of their analysis/visualization component by showing
them where lies the tipping point between off-node and on-
node mappings for a given configuration of their in situ
processing.

V. CONCLUSION AND FUTURE WORK

Analyzing or visualizing the data produced by large-scale
numerical simulations as they are produced is an appealing
alternative to the classical post-hoc approach that is more
and more impacted by the increasing discrepancy between the
relative performance of computing and storage subsystems in
extreme-scale supercomputers. However, the development of
such in situ processing raises several challenging questions,
such as “what amount of analysis can be done and at which
frequency?”, “how many resources can be taken off of the
execution of the simulation to execute the analysis?”, or “Is it
better to perform on-node or off-node analysis/visualization?”.

Determining answers to these questions that do not cause
the performance of in situ processing to be worse than the
classical “simulation then analysis” approach usually falls
down to evaluating the performance of different allocation,
mapping, and data movement strategies for different input con-
figurations. However, the state-of-the-art on the performance
evaluation of in situ processing shows that it relies either on
time- and resource-consuming experiments on a limited set
of scenarios or on the execution of abstracted versions of the
initial applications that may lack of realism.

In this paper, we introduced the SIM-SITU framework, a
generic framework for in situ processing based on the popular
SimGrid toolkit. The modular design of SIM-SITU faithfully
captures the features of state-of-the-art in situ processing
systems. We illustrated its capacities on a Molecular Dynamics
use case. With only a few minor code modifications, we
showed how SIM-SITU could be used to study different exe-
cution scenarios of in situ processing and highlight important
performance tradeoffs.

As part of our future work, we plan to further demonstrate
the capacities of SIM-SITU by investigating more allocation
and mapping strategies on different use-case applications.
We will particularly focus on off-node processing where
nodes are dedicated to analysis/visualization. Studying such
strategies would be a first step in evaluating the impact of
data transfers and network performance on in situ processing.
We also plan to extend the capacities and realism of SIM-
SITU by developing more complex versions of the Data
Transport Layer component that mimic the behavior of popular
implementations such as ADIOS [15], DataSpaces [18], or
Dimes [19]. The objective is to provide SIM-SITU users with
the capacity to easily select which flavor of the DTL they want
to use for their in situ processing. Finally, we plan to leverage
SIM-SITU to carry out performance evaluations in scenarios
that would be hardly possible to evaluate through actual



experiments on supercomputers. For instance, the necessity of
running series of simulations in ensembles broadens the range
of feasible in situ configurations and raises new allocation
and scheduling challenges. Moreover, the modularity of the
SIM-SITU framework offers enough flexibility to envision the
online evaluation of scheduling decisions in the context of an
adaptive sampling process [29].
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[10] G. Aupy, B. Goglin, V. Honoré, and B. Raffin, “Modeling High-
Throughput Applications for In Situ Analytics,” IJHPCA, vol. 33, no. 6,
pp. 1185–1200, 2019.

[11] T. M. A. Do, L. Pottier, S. Caı́no-Lores, R. Ferreira da Silva, M. A.
Cuendet, H. Weinstein, T. Estrada, M. Taufer, and E. Deelman, “A
Lightweight Method for Evaluating In Situ Workflow Efficiency,” Jour-
nal of Computational Science, vol. 48, p. 101259, 2021.

[12] P. Velho, L. M. Schnorr, H. Casanova, and A. Legrand, “On the Validity
of Flow-Level Tcp Network Models for Grid and Cloud Simulations,”
ACM TOMACS, vol. 23, no. 4, Dec. 2013.

[13] A. Degomme, A. Legrand, G. Markomanolis, M. Quinson, M. Stillwell,
and F. Suter, “Simulating MPI applications: the SMPI approach,” IEEE
TPDS, vol. 18, no. 8, pp. 2387–2400, 2017.

[14] P. Bédaride, A. Degomme, S. Genaud, A. Legrand, G. Markomanolis,
M. Quinson, M. Stillwell, F. Suter, and B. Videau, “Toward Better
Simulation of MPI Applications on Ethernet/TCP Networks,” in Proc.
of the 4th Intl. Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems, Denver, CO, 2013.

[15] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer,
J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck, A. Huebl,
M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta, G. Ostrouchov,
M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta, K. Takahashi,
N. Thompson, S. Tsutsumi, L. Wan, M. Wolf, K. Wu, and S. Klasky,
“ADIOS 2: The Adaptable Input Output System. A framework for high-
performance data management,” SoftwareX, vol. 12, p. 100561, 2020.

[16] M. Larsen, A. Woods, N. Marsaglia, A. Biswas, S. Dutta, C. Harrison,
and H. Childs, “A Flexible System for in Situ Triggers,” in Proc. of the
Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization (ISAV’18), Dallas, TX, 2018.

[17] M. Dorier, G. Antoniu, F. Cappello, M. Snir, R. Sisneros, O. Yildiz,
S. Ibrahim, T. Peterka, and L. Orf, “Damaris: Addressing Performance
Variability in Data Management for Post-Petascale Simulations,” ACM
Transactions on Parallel Computing, vol. 3, no. 3, oct 2016.

[18] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: an Interaction and
Coordination Framework for Coupled Simulation Workflows,” Cluster
Computing, vol. 15, no. 2, pp. 163–181, 2012.

[19] F. Zhang, T. Jin, Q. Sun, M. Romanus, H. Bui, S. Klasky, and
M. Parashar, “In-memory Staging and Data-Centric Task Placement for
Coupled Scientific Simulation Workflows,” Concurrency and Computa-
tion: Practice and Experience, vol. 29, no. 12, p. e4147, 2017.

[20] M. Larsen, C. Harrison, J. Kress, D. Pugmire, J. S. Meredith, and
H. Childs, “Performance Modeling of in Situ Rendering,” in Proc. of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, Salt Lake City, UT, 2016.

[21] V. Honoré, T. M. A. Do, L. Pottier, R. Ferreira da Silva, E. Deelman,
and F. Suter, “Reproducibility artifact for the ”sim-situ : A framework
for the faithful simulation of in-situ processing” paper,” Jul 2022.
[Online]. Available: https://doi.org/10.6084/m9.figshare.20416008

[22] A. Thompson and C. Trott, “A Brief Description of the Kokkos imple-
mentation of the SNAP potential in ExaMiniMD,” Office of Scientific
and Technical Information, Tech. Rep. 1409290, Nov. 2017.

[23] “ExaMiniMD Proxy Application GitHub Repository,” [Online] https:
//github.com/ECP-copa/ExaMiniMD, May 2021.

[24] O. Aaziz, C. Vaughan, J. Cook, J. Cook, J. Kuehn, and D. Richards,
“Fine-Grained Analysis of Communication Similarity between Real
and Proxy Applications,” in Proc. of the 10th IEEE International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems, Denver, CO, Nov. 2019.

[25] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular
Dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1–19,
1995.

[26] T. Cornebize, “High Performance Computing: towards better Perfor-
mance Predictions and Experiments,” Ph.D. dissertation, Université
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