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Abstract—Climate Science models are flagship codes for the
largest of high performance computing (HPC) resources, both in
visibility, with the newly launched Department of Energy (DOE)
Accelerated Climate Model for Energy (ACME) effort, and in
terms of significant fractions of system usage. The performance
of the DOE ACME model is captured with application level
timers and examined through a sizeable run archive. Performance
and variability of compute, queue time and ancillary services
are examined. As Climate Science advances in the use of HPC
resources there has been an increase in the required human
and data systems to achieve programs goals. A description of
current workflow processes (hardware, software, human) and
planned automation of the workflow, along with historical and
projected data in motion and at rest data usage, are detailed.
The combination of these two topics motivates a description of
future systems requirements for DOE Climate Modeling efforts,
focusing on the growth of data storage and network and disk
bandwidth required to handle data at an acceptable rate.

Index Terms—Climate Science, High Performance Computing,
Performance Analysis, ACME.

I. INTRODUCTION

Scientific workflows that run on high performance comput-
ing (HPC) systems can be very expensive in terms of both
time and data [1]–[4]. In the Climate community, to complete a
single instance or ensemble of high-resolution simulations can
take on the order of six to nine months and generate hundreds
of Terabytes (TB) of data. This time span is due to many
different types of tasks and factors. Obviously compute time
is a factor, but so is the time spent in the queue waiting to run,
due to both competing jobs and machine down time. Having
produced model output is only a partial goal; there are many
other data management issues that take significant amounts of
time, including generating analysis and archiving model output
to long-term storage. These time spans will increase over
the coming years due to the increase in spatial and temporal
model resolution leading to better quality simulations. In this
work, we examine this workflow process with the help of
instrumentation, and look for areas where improvements can
be made.

There are several scales at which development happens in
climate models, from an individual equation or feature to how
that feature interacts with the component model, and finally
how all of the components interact together. The amount of
computation and timeline for each of these start small on the
development end, where modifications are happening on the
minute to hour scale and seconds to minutes of computations

to full scale simulations that take months and tens of millions
of hours of computing. At every scale of development issues
are identified. The faster one can do experiments at all scales,
and especially at the large production scale, the faster the
quality of the model can be improved.

A. Related Work

Performance evaluation and optimization of HPC applica-
tions is common practice, enabled by a variety of available
tools and libraries (e.g., TAU [5], CrayPat [6], HPCToolkit [7],
gptl [8], Vampir [9], etc). However, science productivity rarely
comes from running a single application, but rather requires
executing a series of tasks. These other tasks also consume
resources and take time, which can be a significant factor [10]
in the total time to solution. There are a number of science
endeavors that exhibit these characteristics. Examples include
those with a large data fusion component, e.g. astronomical
data, those with a large data analysis component, e.g. data from
large instruments such as accelerators, or those conducting
large parameter sweeps, where monitoring and controlling the
subtasks is itself a critical task.

One non-climate example that has taken an approach similar
to what is described, and proposed, here, is Bellerophon.
Bellerophon [11] is an n-tier software system built to support
a production-level HPC application called CHIMERA, which
simulates the temporal evolution of core-collapse supernovae.
The CHIMERA team’s workflow management needs are met
with software tools that enable real-time data analysis and
visualization, automate regression testing, dynamically gen-
erate code repository statistics, monitor the current status of
several supercomputing resources, and integrate with other
workflow tools utilized by the group. In addition, monitoring
tools built into Bellerophon allow users to keep tabs on
important quantities such as current physical time, wall time,
and simulation progress.

The large computing centers also provide tools and method-
ologies for supporting workflows, and for center-wide man-
agement. For instance, the DOE National Energy Research
Scientific Computing Center (NERSC) actively shows queue
wait time [12] and provides history functionality. They are
doing queue time data collection on a large scale. Workload
archives [13]–[17] are widely used for research in distributed
systems to validate assumptions, to model computational ac-
tivity, and to evaluate methods in simulation or in experimental
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conditions. These workloads mainly capture information about
job executions, but lack detailed information for the applica-
tions, such as the separation between the initialization and run
phases. Analyses of HPC workload characteristics including
system usage, user population, and application characteristics
have been conducted in [2], [18]. However, these analyses are
focused on the overall workload, and not on the performance
of a specific application.

B. Problem Statement

The climate modeling process involves a sequence of steps:
1) model configuration, 2) compilation, 3) model execution,
4) diagnostic analysis, 5) archive of model output and analysis
to tape (e.g., HPSS), and 6) publication of model output
to a content management system (e.g., Earth System Grid
Federation (ESGF)). As part of this process there are some
operations that use a shared file system and others that require
data transfers (DTN) between file systems.

In projects like the DOE Ultra High Resolution Global
Climate Simulation project [?] and the Accelerated Climate
Modeling for Energy (ACME) project [19], where the goal
is to exercise and analyze high resolution climate models,
large amounts of simulation output are generated. The process
of generating these data can take a significant amount of
time, and not just the expected large amount of compute
time. The workflow for producing a finished climate product
involves many steps across several machines, and involves
many people, with an associated cost in both people and pre-
and post-processing time.

Given the nearly year long time frame for performing a
20 year high resolution simulation or running several hundred
simulation years of moderate resolution simulation [20], there
are likely places where optimization to reduce time to solution
can happen. One of the goals of this work is to highlight where
time is being spent in the workflow so that the process can be
optimized.

Data volume in climate science is on the order of hundreds
of TB of data produced yearly. For example, given this amount
of data, the analysis that needs to be performed, transfer
for distribution and archiving operations all take significant
amounts of time. Automation of some tasks might help with
this workload.

II. EXAMINING PERFORMANCE

A. Data Captured

In this work, we examined performance data for runs of the
Community Earth System Model (CESM) and of the DOE
ACME branch of the CESM over the period 2012–2015 on
the Jaguar (Cray XT5) and Titan (Cray XK7) supercomputers
hosted at Oak Ridge Leadership Computing Facility (OLCF).
The CESM is equipped with workflow and model computer
performance instrumentation, and this was further augmented
for these studies. This augmentation is native to ACME, and
we will refer to both ACME and this modified version of
the CESM as ACME in the rest of this paper. We recorded
various performance-related attributes (timings and configu-
ration information), as well as timespans for some pre- and

post-processing events. Captured configuration information
includes model specific parameters, simulation period, and
number and location of processing elements, MPI tasks, and
OpenMP threads. Examples of recorded values are rates at
which the components of the coupled model integrated and
total throughput rate. Examples of recorded timesspans are
when the model entered the queuing system, when a run
started, etc. The information that was recorded changed over
the 4 year period being examined, leading to a varying
population size in the data presented here, dependent on the
particular attribute we are examining.

ACME is a coupled model made up of several components.
The components correspond to the physical domains to be
modeled, i.e. atmosphere, ocean, land, sea ice, land ice, and
rivers (river transport model). A case is a specific model
configuration with input files, resolution, choice of actively
simulating a physical domain or just reading in data, selection
of physical processes and numerical methods to enable in
each component, etc. The data called out in single cases
here is for two resolutions: t341 and t85, with ne120
and n30 cases also being run. t341 is 0.35◦ resolution
(512x1024 latitude/longitude points) and t85 is 1◦ (128x256
latitude/longitude). Both of these use a spectral Eulerian
numerical method for evolving the dynamical equations in
the atmosphere, and both use 26 vertical levels. The ne120
resolution is 0.25◦ and ne30 is 1◦. The ne numbers cor-
respond to using a spectral element based numerical method
for the atmosphere dynamics, and also both use 30 vertical
levels. When a case is referred to as high resolution this
currently refers to the t341 and ne120 resolutions, while
low resolutions refers to the t85 or ne30 resolutions. The
other part of the case name describes the model configuration.
For example a leading F indicates that data read from a file are
used for the ocean forcing communicated to the atmosphere,
as opposed to B configurations where the ocean forcing is
produced by an active ocean simulation. The AMIP vs 1850
runs are specific model configurations that differ in their initial
input files and internal parameters. The desired simulation
duration for high resolution runs is on the order of a few
decades, while 100+ years is the target for the low resolution
simulations.

Some of the data presented in this paper are from model runs
done on the Jaguar system, which does not use Graphical Pro-
cessing Units (GPU). The Titan system includes both a multi-
core processor and a GPU accelerator in each computational
node, but the GPUs were not used in the ACME runs reported
on here.1

B. Data Capture Infrastructure

The ACME model has an extensive system of control scripts
that manage correctness checks and workflow tasks related
to running the model. These scripts have been modified to
include code that records the timestamp of particular events,

1The ACME science cases require a monotone limiter for tracer transport,
which had not been ported to the GPU accelerators at the time of these
experiments.
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and archives this and other performance data in a project-
specific central repository. Some of these data are captured
only when the model run completes successfully, resulting in
a selection bias in the presented performance data.

C. Analysis Techniques

Computer performance is typically measured at the climate
simulation level using the inverse time metric Simulated Year
per Day (SYPD), that is, how many simulation years can be
computed for the particular configuration being measured if
it ran for 24 hours straight. This metric is convenient for the
climate scientists when specifying performance requirements
as it relates directly to required productivity. This is also a
sufficient metric if only application performance is of concern,
as when tuning, or if the simulation is running on a dedicated
system. In this paper, we also use a time to solution metric
that takes into account all steps to a solution when run on
shared resource systems.

Total time to solution is made up of several components
(Fig. 1): Configure, Build, Queue (Fig. 1.a), Run (Fig. 1.b),
Diagnostic Analysis, Transfer, and Archive. There are several
other tasks that are required for provenance and output data
archiving in a complete workflow, but the results of these
tasks are typically not consumed directly and thus are not
time critical for the initial results and will be ignored in our
workflow optimization analysis. Another issue that can take
significant time occurs when the model terminates abnormally.
Currently, failed jobs are not automatically resubmitted to the
queue, and progress is halted until a user resubmits the model
(Fig. 1.c). Another situation when time can be spent waiting
for a human to intervene is when a model finishes running
and analysis and data transfers are required (Fig. 1.d).

The Configuration step is primarily limited by the principal
investigators, who can take months to years to decide how
to configure the model so as to best test a hypothesis. In
contrast, the computer time required for configuration is on
the order of several minutes. The build step takes on the
order of tens of minutes, with 20–30 minutes being typical.
This step needs to occur when there are changes to core
system libraries, changes to the number of processors that
are used, and for every new science configuration (case).
Currently, builds happen infrequently except during debugging
or performance optimization. Even though the configure and
build steps are on the critical path and time blocking to a
solution, given the infrequent nature of each step (typically
once per case) and their relatively small cost, they will be
ignored for this analysis.

D. Results

In this section, we examine model run time (Fig. 1.b),
various aspects of queue time (Fig. 1.a), and the impact of
human factors (Fig. 1.c). Data transfer time and archive time
will be dealt with in the data section.

Performance vs time (single cases): Here we examine the
computer performance of the model over time to see if there
are changes or if it is fairly consistent. Seemingly small

configuration changes can make large differences. When there
is a case being run to answer a science question the model
is typically run in a fixed configuration, including with a
fixed number of MPI tasks and OpenMP threads. Comparing
performance between configuration cases does not make sense
unless it is the identical configuration either on the same
system or when comparing performance between systems.
What we will be looking at in this sub-section is several
individual cases that have been run many times over a period
of time, and comparing performance internally over time.

The initialization phase of ACME does a parallel I/O read of
restart files and does a further distribution of that data, using
a subset of the MPI tasks for I/O and then reordering the
data from the output format to that used during computation
before distribution to the rest of the tasks. The run phase of
the program advances the simulation in time, serially in the
time direction but exploiting parallelism spatially during the
computation for each time step. Model history is also output
periodically during the run phase, with data being gathered and
reordered by the I/O tasks before being written out. Table I
shows the statistical summary for both phases on three cases
for a total of 247 runs.

Initialization Run
Mean (s) 86.31 5,276.98
Standard deviation (s) 87.63 628.34
Coefficient of variation 1.02 0.12
Count 118 118
Max (s) 962.22 6,817.39
Min (s) 55.10 76.17

(a) t85 FAMIP

Initialization Run
Mean (s) 547.82 17,899.15
Standard deviation (s) 206.55 869.54
Coefficient of variation 0.38 0.05
Count 42 42
Max (s) 1,735.69 19,990.46
Min (s) 407.01 16,822.68

(b) t341 FAMIP

Initialization Run
Mean (s) 585.14 16,264.20
Standard deviation (s) 178.44 1,006.05
Coefficient of variation 0.30 0.06
Count 87 87
Max (s) 1,450.79 19,686.51
Min (s) 455.04 15,054.04

(c) t341 F1850

TABLE I: Statistical summary of the ACME initialization and
run phases.

The initialization time for the t341 cases are similar with
t85 being smaller. This makes sense as there is less data to
read in for the lower resolution t85 case. By visual inspection
(Fig. 2), there appears to be a good deal of variation in the
t341 cases, but further inspection with the coefficient of
variation in the t341 cases is 0.37 and 0.30 respectively, with
t85 being 1. This indicates that there is less relative variability
for the t341 cases compared to t85.

Fig. 3 shows the distribution of run time for the three
cases. There are few outliers in the run time dataset. The
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Fig. 1: Manual experiment and diagnostic workflow.

Fig. 2: Initialization time for the t341 cases and the t85
case (247 runs).

low run time outlier in the t85 case is near the beginning of
the run sequence and terminates almost immediately. Likely,
this is early termination from a case misconfiguration. In
comparing the variability in the performance between the run
time and the initialization time, we note that the coefficient
of variations are much lower (0.05, 0.11, 0.06 respectively)
compared to the initialization times. The ratio between run
time and initialization time is 30 for the t341 cases, and 60
for the t85 case showing that initialization time is only 1.5%
to 3% of total run time. Even though the initialization time
has a large amount of variability, the contribution to total time
is small, thus the contribution to variability is also small.

Queue time vs job size (bulk statistics): Fig. 4 shows 485 runs
from 2014 (1/11 to 11/20). From this diagram we can see that
almost all requests are under 20k core hours and they are run
within a day of being submitted. For the large requests there
appears to be a uniform distribution with large range for how
long the jobs take to be serviced, anywhere from seconds to
a few weeks.

There is a question about what caused the larger runs to have
such a range of queue wait times. Looking at the plot of queue
wait time compared to the date of submission (Fig. 5), we can
see several interesting things. There is a spike in wait times
in March/April. The DOE INCITE (The Innovative and Novel
Computational Impact on Theory and Experiment program)
allocation period runs from January 1st to December 31st of

Fig. 3: Run time for the t341 cases and the t85 case (247
runs).

Fig. 4: Job queue time per job size (485 runs from 2014).

every year, with DOE ALCC (Advanced Scientific Computing
Research Leadership Computing Challenge program) running
July 1st to June 30th. Conventional wisdom suggests that
projects are trying to use large portions their allocation near
the end of those periods. However the spike we are seeing
is not associated with either of those timeframes. What this
queue wait time spike appears to be is projects doing large runs
in preparation for major conferences such as SuperComputing
(with full paper submission due April 11th, 2014), or Gordon
Bell Prize attempts that were due May 1st.
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Fig. 5: Job queue time per submission date (485 runs from
2014).

Queue request time vs actual run time: Queue time is on the
order of a day while requested run time is on the order of 6
hours. The model run time is the component that is making
progress, so we want to make sure that we are using as much
of the requested time once it has been given to the process.
Looking at the same t341 and t85 cases discussed above,
the mean amount of requested time used for the cases was
74% for t85, 88% for t341 FAMIP, and 81% for t341
F1850.

For the t85 case with a 2 hour request window using 74%
of the request window means that there is 31 minutes left at the
end of the run. Looking at the two standard deviations for the
initialization and run time gives 24 minutes for 95% of the runs
to finish. There is an additional buffer of 7 minutes past the two
standard deviations model run time. Given the variability and
the short request window a mean of 74% utilization is fairly
good. A similar analysis with the t341 based models shows a
similar result for t341 FAMIP, but an extra 34 minutes for
F1850.

Time spent waiting for people i.e. not running, not in queue:
Another possible cause of additional time in completing a case
is when a job fails and needs to be restarted manually, or when
a job is stopped on purpose. We define the metric for the time
spent waiting for people to respond as the timespan between
when one job is expected to end and when the next job in
a series is created. A positive value indicates that the next
job is submitted after the expected run time of the projected
job, which characterizes a delay in the execution. A negative
value indicates that the next job in the sequence is submitted
before the expected job deadline. The former is the expected
outcome, since ACME resubmits itself to the queue once a run
is succeeded, and on production infrastructure the walltime is
often overestimated. Fig. 6 illustrates a situation where the
metric would yield a negative value.

Using the same 485 instances of production runs as previ-
ously, we identified 7 occurrences of positive values (delays)
from the above analysis, which represent about 1.4% of the
total case runs. The delays range from hours to a few days in
most cases, with two instances of multi-week delays. These

Fig. 6: Typical sequence of events in queue.

delays have been explained as occasions when the model run
did not complete successfully, but, when resubmitted, runs
to completion and continues running. Possibly this is caused
by a hardware fault, but no information was archived that
allows us to confirm this at this point in time. (At the time
of a failure, the job id can be used to query system logs
and identify possible causes for failures.) Even if these were
hardware failures, they occurred only intermittently and had a
low impact on throughput. The small hours to day delay likely
is from when the person minding the run is not alerted that the
run has failed and it is restarted only when they notice that it
is no longer running. The longer delays are from a case where
model output analysis showed that the simulation was starting
to drift in an undesirable direction. The simulations were then
halted while the source of the issue could be identified and a
solution formulated.

III. DIAGNOSTIC ANALYSIS

While the model is running, analyses are computed to track
the progress of the simulation. These can be, for example,
single values such as RESTOM, which measures the rate
at which energy is entering or leaving the model, summary
statistics and plots of cloud layers, and/or extent of ice sheets,
all to ensure that the simulation is not “nonphysical”. It is
important that these analyses are carried out in a timely manner
so corrections can be made, or the simulation can de discarded.

There are standard analysis packages used for each of
the components. The available data is exclusively for the
Atmosphere diagnostics, of which there are two software
packages. One is the Atmosphere Model Working Group
(AMWG) diagnostics package, which is based on NCAR
Command Language (NCL) analysis tools [21]. The other
package replicates the behavior of AMWG with additional
calculations being performed. This second package is based
on the python CDAT library, which is part of the UV-CDAT
package [22].

Time (hr)
NCL AMWG 6.45
UV-CDAT Total 58.74

UV-CDAT climatologies 55.79
UV-CDAT diagnostics 2.95

TABLE II: Analysis operations timespan.

These operations can run in parallel, but are critical for
feedback about how the model is progressing.

IV. TRANSFER TIME

As part of the end-to-end workflow model, output data needs
to be archived as well as being published to the ESGF system.
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The allocation of long term storage and infrastructure for
publication is often located at a different site from the compute
allocation. Hence, data transfer across different networks is
required. We have two sets of transfers: 1) wide area–between
two national laboratories; and 2) local area–internal to a
single laboratory but between security zones and different disk
systems. All transfers under one gigabyte have been removed
from the data set as they have little impact on total time and
are typically log files of negligible scientific use other than
for reporting such as this paper. Table III shows the statistical
summary of the two data transfer sets.

Rate (Mbit/s) Size of Transfer (GB)
Mean 591.0 430.7
Standard deviation 621.8 872.2
Coefficient of variation 1.05 2.02
Count 34 34
Max 2,2210.1 5,110
Min 1.58 1.0

(a) Transfer from one national laboratory to another (wide area)

Rate (Mbit/s) Size of Transfer (GB)
Mean 642.3 2166.2
Standard deviation 405.7 2259.7
Coefficient of variation 0.63 1.04
Count 38 38
Max 1330.8 5930
Min 19.3 7.2

(b) Transfer internally across security zones (local area)

TABLE III: Statistical summary of data transfers.

Typical setup of these transfers is a model case needing to
be copied. A transfer session per model component or transfer
per file type (multiple filetypes per component) are started.
These transfers run in parallel.

At this point we don’t have enough data to provide sta-
tistical information, but enough to make an estimate. A high
resolution simulation with coupled ocean model can produce
130TB of data. If all of this information is transferred at one
time, instead of as it is generated, and if there is only one
transfer process working, this example would take 19.6 days.
If there are four parallel transfers the transfer time drops to 5
days. Transferring the data as it is generated does not add to
the total amount of time to run an experiment as the transfers
can happen in parallel to the case running.

A. Current Dataset Size

The amount of data generated by climate related projects
over the course of their year long duration can be quite
sizeable. From three climate projects one of the authors
participated in, final data volume saved to tape archive was
of 161 TB, 53 TB, and 252 TB.

V. PERFORMANCE SUMMARY

To this point we have detailed several contributions to total
experiment run time. The summary of that information is
presented here:

• Queue time: progress through the queue happens in under
a day in 94.6% of the cases in our record. There is some
variability around busy times of computer usage;

• Model performance is fairly consistent. Approximately
20% of the variability comes from the model initialization
phase with the remainder in the rest of the model which
includes numerical algorithms, communication, and writ-
ing of restart and history files;

• Diagnostic Analysis: the process consumes from a quarter
day to two days;

• Transfers in parallel after simulation is complete take ∼5
days. Transfers as the model is running happen in parallel
with the simulation.

VI. PROJECTIONS

In this section, we examine parameters and planned changes
that impact overall workflow performance. In particular, we
observe how changes to the model, along with the platforms
that run the experiments, can influence the experiment perfor-
mance.

A. Relationship between data size and compute time

The amount of computing time awarded to a project has
an impact on the ability of the project to generate data. In
particular, the above mentioned projects received: 33.5 million
hours (Mh) for t341 FAMIP; 116 Mh for t85 FAMIP; and
50 Mh for t341 F1850. These were allocation hours on
Jaguar. The data intensity in TB per million allocation hour
for each project was: 4.8, 0.5, and 5.0, respectively. The two
projects with high data intensity for the amount of allocation
were focused on high resolution production runs and looking
at data output at a high frequency with respect to simulation
time.

B. Changes in simulation impacting compute intensity

The ACME climate model is changing atmospheric models
from CAM4 to CAM5. CAM5 is more computationally expensive
than CAM4 due to enhanced physics, increased aerosols, and
improved cloud properties, which significantly increases the
amount of time simulated (i.e., more compute intensive). In
practice, CAM5 is 2–4x more computationally expensive for
the same amount of data, with the range of performance
depending on the exact configuration [23]. Also impacting the
computation data balance, the DOE community standard con-
figuration is moving to higher spatial resolution (1◦ to 0.25◦).
In the atmosphere, the theoretical computational impact of
the resolution change represents an increase of 16x (4 times
the resolution in the horizontal dimensions). The number of
vertical levels is independent to the horizontal resolution, and
it is only modified for experiment concerns. In practice, when
comparing the performance of CAM5 ne30 to ne120 config-
urations, there is a 27x difference in performance. Combining
this with the 16x increased size of the output data fields, the
amount of required computation is once again scaling faster
than the data output, in this case by nearly 1.7x given the
single sample size for this estimate.
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Additional physical details can be revealed by increasing
the temporal resolution of the output. Increasing the output
frequency allows more physics to be simulated from the gov-
erning equations as opposed to being represented by physical
parameterizations. This leads to more realistic interactions
between the different simulated scales in the simulation. Ex-
amples include precipitation, wind speed, tropospheric mois-
ture convection, Atlantic storm tracks, and eddy fluxes. For
instance, increased output frequency (e.g., daily or hourly)
may be required in simulations where the number of hurricanes
is examined. These properties lead to the ability to generate
better simulations, and do more detailed analysis, which leads
to better founded paper or a greater volume of papers. How far
the balance is pushed towards gathering more data is largely
controlled by available storage resources, with the later being
an ongoing discussion.

Increasing the output frequency reveals more realistic in-
teractions between the different scales in the simulation, for
example, in precipitation, wind speed, tropospheric moisture
convection, Atlantic storm tracks and eddy fluxes. An example
is needing more frequent output than monthly if the number
of hurricanes in a simulations is to be examined. Thus, more
frequent output enables more detailed analysis, which leads to
better founded experiments, and investigating a greater number
of science questions from the same experiment. How far the
balance is pushed towards gathering more data is largely
controlled by available storage resources, with the latter being
an ongoing discussion.

C. Machine Changes

Future generations of supercomputers at the Leadership
Computing Facilities are aiming to be 5-10x more capable than
current generation machines, with the follow on generation
another 5-10x again. [24] The percentage allocation that
Climate Science has on these large systems has been fairly
consistent historically.

From the Summit announcement we have seen machine
computational performance scale up with I/O rates staying
constant, albeit with a change in technology. If the delivered
performance to rated performance stays constant with these
changes in technology we will continue to see widening gaps
between the computation and I/O. However, looking back at
the model changes we see that the model is changing in a
similar way, with a larger increase in computation than in I/O.

D. Projections of compute and data given projected machine
speeds

In the previous section the transition from CAM4 to CAM5
gave a 2-4x increase in computational demands, while the
resolution change needed 27x the amount of computation with
a 16x increase in data volume. To analyze higher resolution
model behavior the I/O output volume needs to increase, but
is limited by available storage space.

VII. AUTOMATION

Much of the reporting (simulation status) and ancillary tasks
(publication of data, archival storage) for these experiments

can happen in parallel with the simulation, but currently con-
sumes large amounts personal time while being time sensitive.
To alleviate the time demands on staff, improve consistency
and reduce need for high speed sub-systems automation has
been introduced into the experimental process.

A. First Attempt

OLCF operates as a moderate security data processing
facility. This imposes restrictions such as using two factor
authentication to login, submit jobs, or start data transfers
from external locations. Also, there are no reliable facilities
for running daemon processing internally to OLCF, motivating
early attempts to automate the ACME workflow within OLCF
to use a novel one-sided workflow (see Fig. 7). This method
consisted of commands being issued outside of OLCF from the
Compute and Data Environment for Science (CADES) infras-
tructure with one time passwords and the processes running in
OLCF doing automated reporting of status. This arrangement
has been abandoned due to the inability to directly gather
information about process status, this being critical when
exceptions occur. Other considerations include the inability
to start transfers that moved simulation output from OLCF
to CADES Open Research in an automated fashion, and the
dependence on fragile scripting to carry out complex tasks
across several machines.

B. Current Path

Pegasus is a workflow management system that is targeted
at large scale workflows on large resource. It uses a file based
task and flow configuration system with a web based UI for
status and reporting. The Pegasus system is highly portable,
performance oriented, scaleable to large numbers of tasks
and resources utilized, automatically captures provenance, pro-
vides reliability in workflow execution and has error recovery.

We have encoded the core ACME workflow (Configuration,
Build, Run and periodic Analysis) into a Pegasus Workflow
as a demonstration of capability. This simulation has run
successfully at NERSC. At OLCF and CADES Open Research
workflow nodes have been installed into the infrastructure
on an experimental basis with the intent of transitioning to
production ready systems. The ACME workflow is currently
being ported to these new Pegasus workflow instances.

As demonstrations of capability and portability for the
ACME project are made, additional capabilities will be added
to the workflow such as the data transfers, ESGF publication
and archiving to HPSS.

C. Automated Workflow Impacts

Up to now we have been doing mass processing of data that
has required days to weeks to transfer data between systems
and store it to HPSS. With automation, treating this as a single
event where a large volume of data is moved through the
system and injected to the end points can end. Instead as
progress is being made each small piece of data can be handled
as it is being generated.

Taken very approximately we see that the model runs once
per day, with a requested run time of 6 hours, actually running
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Fig. 7: One sided workflow

for 4.5 to 5 hours of the 6 hour allocation. Half an hour of that
time is spend doing I/O at a rate of approximately 50MB/s.
The network transfer rates are about 80MB/s, thus needing 20
minutes per day to stream the data to the destination machine.
The OLCF HPSS system ingests data at around 200MB/s,
again only needing minutes once the proper tapes are loaded.
Moving to a processing flow where each step is incrementally
updated results in lower demand on hardware and human
resources.

VIII. CONCLUSION AND FUTURE WORK

The ACME model is changing to become more compute and
data intense with the ratio of the two leaning towards becoming
more compute intense. Machine performance is moving in a
similar way. As there is little information at this point on
future machine performance it is impossible to quantify how
the changes in machine balance compare to model balance,
but they are moving in similar directions.

Increase the number of places where performance informa-
tion is captured, such as the transfer and publication times.
Increase the number of fields captured Gather data and build
an analytic model for increased queue request time vs longer
queue wait time

Reduce run time of applications: Optimize run time where
appropriate, Automate where appropriate
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