
An Exploration of Online-simulation-driven
Portfolio Scheduling in Workflow Management Systems

Jesse McDonalda,∗, John Dobbsa, Yick Ching Wonga,
Rafael Ferreira da Silvab, Henri Casanovaa

a University of Hawai‘i at Mānoa, Information and Computer Sciences Dept.,
Honolulu, HI, USA

b National Center for Computational Sciences, Oak Ridge National Laboratory,
Oak Ridge, TN, USA

Abstract

Workflow Management Systems used to automate the execution of scientific workflow applications on parallel and distributed
computing platforms must make scheduling decisions at runtime. A large number of workflow scheduling algorithms have been
proposed in the literature, but often these algorithms are evaluated based on simplifying assumptions that may not hold in practice.
Furthermore, published algorithm evaluation and/or comparison results are necessarily only for a subset of all possible scenarios,
and thus may not include scenarios relevant to particular use-cases. Consequently, it is difficult for Workflow Management Systems
(WMSs) developers to decide which scheduling algorithm should be implemented. To obviate this difficulty, one possible approach
is to implement a portfolio of scheduling algorithms and select the most effective algorithm at runtime. One method for performing
this selection is to run an online simulation for each algorithm in the portfolio. The algorithm that leads to the best performance, in
simulation, is selected for future use.

The above simulation-driven portfolio scheduling (SDPS) approach has been proposed in a few parallel and distributed comput-
ing contexts. The main objective of this work is to evaluate the feasibility and potential merit of SDPS if implemented in WMSs.
We perform this evaluation using simulated WMS executions, where the simulations are instantiated from real-world platform and
workflow configurations. Our main finding is that SDPS is on par with or outperforms an approach in which a single algorithm is
used, where this algorithm is the one that performs best on average across all our experimental scenarios. Furthermore, we find that
SDPS remains an attractive proposition even in the presence of high levels of simulation error and for simulators with relatively
low levels of sophistication. In many of our experimental scenarios we find that mitigating simulation error at runtime can further
improve performance. Finally, we show that simulation overhead can be made sufficiently low for SDPS to be feasible in practice.

Keywords: Scientific Workflows, Workflow Management Systems, Portfolio Scheduling, Simulation

1. Introduction

Scientific workflow applications have been used by compu-
tational scientists to support some of the most significant dis-
coveries of the past several decades [1], and are executed daily
to serve a wealth of scientific domains. Many workflows have
high computational demands and are executed in production on
platforms that range from single HPC clusters to federations of
such clusters and clouds. Setting up, orchestrating, monitoring,
and optimizing workflow executions on these platforms is man-
aged by runtime systems often called Workflow Management

∗Corresponding address: University of Hawai‘i at Mānoa, Information and
Computer Sciences Department, POST Building, Rm 317, 1680 East-West
Road, Honolulu, HI 96822, USA
∗∗This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-

AC05-00OR22725 with the US Department of Energy (DOE). The publisher acknowl-
edges the US government license to provide public access under the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

Email addresses: jamcd@hawaii.edu (Jesse McDonald),
jmd386@hawaii.edu (John Dobbs), wongy@hawaii.edu (Yick Ching
Wong), silvarf@ornl.gov (
Rafael Ferreira da Silva), henric@hawaii.edu (Henri Casanova)

Systems (WMSs) [2, 3]. These systems automate application
execution including (i) selecting hardware resources; (ii) pick-
ing application configuration options (e.g., numbers of cores
to be used by multi-threaded tasks); (iii) allocating resources
to application activities; and (iv) monitoring application execu-
tions. It is widely accepted that the scheduling decisions should
be made by using appropriate scheduling algorithms so as to
optimize performance, monetary cost, energy consumption, re-
liability, etc. The past decade has witnessed a proliferation of
WMSs [4], but there is no consensus on which scheduling al-
gorithms should be implemented in these systems.

Scheduling problems are generally NP-hard, and thus most
proposed algorithms employ non-guaranteed heuristics. The
design of scheduling algorithms for workflow applications has
received an enormous amount of attention [5–13]. Most of the
proposed algorithms reuse ideas and principles from the exten-
sive DAG (Directed Acyclic Graph) scheduling literature [14].
Yet, when examining existing WMSs, there is a clear discon-
nect between research and practice. Given the complexity of
hardware platforms on which workloads are to be executed and

Preprint submitted to Journal of Parallel and Distributed Computing July 5, 2024

http://energy.gov/downloads/doe-public-access-plan

the complexity of workflow applications themselves, schedul-
ing research results are typically obtained relying on simplify-
ing assumptions so that scheduling problems are rendered more
formalizable and tractable. Furthermore, published evaluation
results cannot cover all relevant situations a WMS could en-
counter in practice. The literature is thus rife with scheduling
algorithms that have been evaluated within the scope of their
underlying assumptions, but whose potential effectiveness in
practice for particular use-cases remains unquantified. Given
the above, there is little incentive for developers of WMSs to
pay close attention to scheduling research. Our own observa-
tion of current and popular WMSs has shown that often naive,
and thus possibly vastly suboptimal, scheduling algorithms are
implemented, such as simple greedy algorithms.

A way to resolve the disconnect between scheduling re-
search and scheduling practice is to obviate the challenge of
picking a particular scheduling algorithm to implement in a
WMS. Instead, one can implement a set of scheduling algo-
rithms, estimate how each algorithm would fare for the partic-
ular use-case at hand at runtime, and select the most desirable
algorithm. This approach has been termed “portfolio schedul-
ing” [15] in the scheduling literature. In this work, we con-
sider WMSs that automate the execution of workflow applica-
tions that perform I/O, communication, and computation op-
erations that use and contend for various hardware resources.
In this context, determining how a scheduling algorithm would
perform using an analytical model to compute application ex-
ecution metrics is challenging, due to the need to account for
complex phenomena such as disk bandwidth contention, net-
work sharing, network protocol effects, overlap between com-
putation, I/O, and network communication activities, etc. An
alternative is to use discrete-event simulation by which the be-
havior of a particular workflow application when executed on a
particular hardware platform emerges from simulated discrete
events. Relevant metrics can then be easily computed from the
produced event trace. This does not, however, mean that such
a simulation is necessarily perfectly (or even moderately) accu-
rate.

In this work we make the following contributions:

• We propose to use simulation-driven portfolio scheduling
(SDPS) as part of Workflow Management Systems;

• We investigate the following questions: (i) What is the
potential improvement of SDPS over the traditional one-
algorithm approach in which a single scheduling algo-
rithm is used throughout the execution? (ii) What level
of simulation error is tolerable? (iii) Is it useful to miti-
gate simulation error at runtime? (iv) What is the impact
of the sophistication of the simulation? (v) Is simulation
overhead sufficiently low for SDPS to be practical?;

• We develop an experimental methodology to answer the
above questions, which entails implementing SDPS as a
part of a simulated WMS that can quickly simulate the
execution of arbitrary workflow specification on arbitrary
multi-cluster platform specifications.

• We find that SDPS can be on par with, and often outper-
form, the one-algorithm approach even in the presence of
significant simulation inaccuracy.

A shorter version of this work appeared in [16]. This works im-
proves on the experimental methodology, summarizes and/or
complements some of the findings for questions (i), (ii), and
(v), and answers questions (iii) and (iv), which were not con-
sidered in [16]. Section 2 discusses related work. Section 3 de-
scribes SDPS, which we evaluate via the experimental methods
described in Section 4. Section 5 presents experimental results.
Finally, Section 6 summarizes our contributions and discusses
future work.

2. Related Work

2.1. Portfolio Scheduling
Several authors have proposed to select, at runtime, a schedul-

ing algorithm or the parameter values that define a particular in-
stantiation of a scheduling algorithm. Approaches for perform-
ing this selection have been investigated in various parallel and
distributed computing domains and are often termed “portfolio
scheduling”. The key question is that of the mechanism that
should be employed to select the best algorithm among those
included in the portfolio. Authors have proposed different an-
swers to this question by using one of three approaches, which
we review in the next sections: online performance monitoring,
offline simulations, or online simulations.

2.1.1. Online Performance Monitoring
Some previously proposed approaches perform algorithm

selection via online performance monitoring of the algorithms
in the portfolio. In [17] the authors use such an approach in
the context of batch scheduling for HPC clusters to dynami-
cally select one among 12 different batch queue reordering poli-
cies. Their approach keeps track of how well each policy has
fared over previous time windows in terms of job wait times,
and selects the policy for the next time window using reinforce-
ment learning. Specifically, an ϵ-greedy strategy is employed to
achieve both exploitation (select with high probability the pol-
icy that has worked best in the past) and exploration (select with
low probability a policy at random). Reinforcement learning is
also used in [18] for selecting one among 10 loop scheduling al-
gorithms in the context of iterative distributed-memory parallel
applications. The authors define a metric that captures the ro-
bustness of a scheduling algorithm to variations in the execution
time of the loop iteration. Using this metric as a reward they
then evaluate the effectiveness of several reinforcement learning
techniques for selecting the loop scheduling algorithm. In [19],
the authors propose an approach for selecting one among 12
scheduling algorithms in the context of OpenMP parallel loops.
Based on online monitoring of the load imbalance after each
iteration they propose several methods for selecting the algo-
rithm to use for the next iteration, including a method based on
fuzzy logic. These works are for different application contexts
but they all rely on the same assumption: observing how al-
gorithms have fared over time windows or application steps in

2

the near past makes it possible to determine which algorithm is
best for the near future. This is clearly a reasonable assumption
for the iterative applications considered in [18, 19]. In [17] this
assumption is more questionable since batch scheduling deci-
sions can have long-term implications, which explains why the
results therein show that a simulation-based approach leads to
better results. In this work we focus on workflow applications
for which it is difficult to assess the effectiveness of a schedul-
ing algorithm based on its past performance. The particular task
graph structure of a workflow can cause early scheduling deci-
sions to have significant long-term (positive or negative) im-
pact on the overall execution time. As a result, and as observed
in [16], although a particular scheduling algorithm may seem
efficient (e.g., in terms of amount of computational work per-
formed per time unit) during an early phase of the execution,
other algorithms that are similarly or less efficient during that
phase can lead to significantly shorter execution times overall.
This provides a clear motivation in this work to use simulation
to assess future algorithm performance instead of online moni-
toring of previously observed performance.

2.1.2. Offline Simulations
Several authors have proposed using results from offline sim-

ulations to drive portfolio scheduling decisions at runtime. In [20],
the authors focus on batch scheduling for HPC clusters and
study the problem of picking the batch queue ordering policy
at runtime. They generate large numbers of synthetic work-
load datasets and run offline simulations of their executions for
permutations of the job scheduling order. The goal is to deter-
mine a score that, based on a job’s characteristics, quantifies
the impact of scheduling that job first. They then use a machine
learning technique (nonlinear regression) to derive a model of
that score. At runtime, the queue ordering policy is decided
by predicting the score for each job in the queue and picking
the job with the best predicted score. Also in the context of
batch scheduling for HPC clusters, in [21] the authors conduct
offline simulations of the execution of several real-world work-
load datasets using two different queue ordering schemes. The
simulation results show that the average job parallelism can
be used to decide on which scheme to select at runtime. The
proposed approach consists in defining a time window length,
computing the average job parallelism over that time window,
and using the computed value to pick which of the two queue
ordering schemes should be used for the next time window.
In [22], the authors propose to use a supervised learning ap-
proach for selecting which dynamic loop scheduling algorithm
to use at runtime. The training dataset consists of simulated
executions for various problem sizes, hardware platform speci-
fications, and workload and resource variability ranges. At run-
time, the trained model can then be used to decide which algo-
rithm in the portfolio (which in the presented results consists of
eight algorithms) should be selected. The main challenge for
these approaches is to determine what kind and what amount
of training data should be used to obtain good results in prac-
tice. In some cases, the setting is simple enough that only a few
parameters are to be considered (e.g., 4 parameters in [22]). It
is then reasonable to expect that even a relatively small train-

ing set can produce good results. But this is not always the
case. For instance, in the context of batch-scheduling, there are
many kinds of possible workloads with different distributions
of job arrival times, levels of parallelism, requested durations,
actual durations, and correlations between all these features. It
is thus likely that in [20, 21] better results could be achieved
with larger and/or more diverse datasets.

This work focuses on portfolio scheduling to be implemented
in Workflow Management Systems. These systems must sup-
port applications that have a large space of possible configura-
tions in terms of task graph structures (number of tasks, number
of levels, distribution of parallelism across these levels, density
of dependency edges), task compute volumes, and data com-
pute volumes; and execute these applications on platforms that
also have a large space of possible configurations in terms of
scale, heterogeneity, network topologies, and storage architec-
tures. As a result, only a very large training dataset could po-
tentially lead to good results. But obtaining a sufficiently large
real-world dataset is prohibitively difficult in the general case.
An alternate approach could be to generate a synthetic dataset
from large numbers of offline simulations. In this work we em-
ploy an online simulation approach instead.

2.1.3. Online Simulations
Using online simulation for portfolio scheduling can be seen

as a compromise between online performance monitoring and
offline simulation approaches. Like the former it does not re-
quire any a-priori model of which algorithms in the portfolio
will perform well in particular situations, and like the latter it
uses simulation to capture long-term impact of scheduling de-
cisions. In [23] the authors propose to simulate periodically at
runtime the execution of iterative parallel applications when us-
ing one of 13 possible dynamic loop scheduling algorithms, and
pick the best algorithm to use for the next time period. Their
main objective is to adapt to changing platform conditions. The
key difference between this work and that in [23], besides the
targeted application domain, is that the authors therein assume
that simulation error is low (below 2%). This assumption makes
sense in their context due to the focus on compute-intensive ap-
plications for which the influence of possibly complex mem-
ory hierarchies, network protocols and network topologies are
small. In this work, instead, we consider the execution of dis-
tributed applications for which network and I/O usage can drive
the overall performance. As a result, simulation error can be
higher since simulating complex network and I/O behaviors ac-
curately is challenging. Furthermore, unlike in [23], and as ex-
plained at the end of Section 2.1.1, we must simulate the appli-
cation execution until its completion, meaning that simulation
errors are likely to accumulate. For this reason, in this work
we consider simulation error up to 100%, and one of our key
results is that portfolio scheduling is feasible even with high
simulation error.

Most previous works that have employed online simulation
for portfolio scheduling are in the context of batch schedul-
ing for HPC clusters. The works in [15, 17, 21, 24, 25] all
propose similar approaches by which a portfolio of standard
batch scheduling algorithms is considered. At runtime, while

3

scheduling is done using a particular scheduling algorithm dur-
ing the current time period, all other algorithms are also used to
also compute the schedule during that time period. At the end
of the time period, the schedules produced by all algorithms
are compared using metrics such as average job wait time or
bounded slowdown, and the best performing algorithm is se-
lected for the next time period. The work in [26] proposes to
use online simulation to tune the parameters of a single batch
scheduling algorithm at runtime, using genetic algorithms to
determine optimal parameter values. The fitness function evalu-
ation entails running simulations of the recently executed work-
load. In all these works, because jobs are submitted to the HPC
cluster by users, at the time the next algorithm must be cho-
sen the future workload is unknown. Therefore, online simu-
lations are used to simulate the past workload, assuming that
it is representative of the future workload. In this work we
use online simulation to simulate the future workload. This is
because the future workload is known (as the workflow appli-
cation is fully specified) and because, as explained at the end
of Section 2.1.1, the performance of a scheduling algorithm in
earlier phases of the execution may not be indicative of its per-
formance overall. Another major difference between this work
and [15, 17, 21, 24–26] is that in those works the “simulation”
is not a discrete-event simulation but is instead merely the exe-
cution of each algorithm to compute a schedule. That is, there
is no actual simulation of the hardware platform, but merely
a computation of a Gantt chart of the schedule based on job
sizes (number of compute nodes) and durations (requested by
the user). The only source of inaccuracy in this computation is
the job durations requested by the users. This does not, how-
ever, correspond to the standard notion of simulation inaccu-
racy, which stems from the fact that the simulation is only an ap-
proximating of a real-world system. Instead, the inaccuracy in
these works is in the input to the simulation, which is no differ-
ent from the inaccuracy of the input to the real system. The one
exception among the works cited above is [17], in which after
the schedule has been computed so as to estimate the wait time
of all the jobs, then a random uniformly distributed noise (up to
20%) is added to each job wait time. In this work we also inject
random noise to experiment with various levels of simulation
accuracy. In our context, unlike in the HPC context, simulation
inaccuracies arise because the simulation cannot perfectly cap-
ture the behavior of a complex system in which an application
workload performs communication, I/O, and computation ac-
tivities that use and contend for distributed hardware resources.
Furthermore, information on the current state of the execution,
on the platform configuration, and on the application’s behav-
ior, which are all needed to instantiate a simulation, is not per-
fect. As a result, simulation models are inherently biased and
simulation inaccuracy can be large. For this reason, and unlike
all the aforementioned works, we also investigate the possibility
of mitigating simulation error at runtime.

The authors in [27] use online simulation for the purpose of
workflow scheduling. The authors propose to use simulation to
improve the decisions made by a single scheduling algorithm.
A workflow scheduling algorithm makes decisions regarding
which task should be scheduled next based on task finish time

estimates. These estimates are traditionally obtained based on
analytical models of task compute, I/O, and/or communication
times. Given the complexity of current platforms, developing
accurate analytical models is a steep challenge, especially if
needing to account for contention and network protocol effects.
The authors in [27] propose to obtain network transfer time esti-
mates at runtime using discrete-event simulation, thereby devel-
oping in essence a simulation-enhanced scheduling algorithm.
A major difference with this work is that the purpose is not
to perform portfolio scheduling. But both this work and that
in [27] share a key motivation for using simulation for schedul-
ing workflows on distributed computing platforms: the ability
afforded by simulation to estimate network (and in our case also
I/O) times more accurately than would be possible with only
analytical models.

Finally, note that the idea of driving scheduling decisions
using online simulations has been explored by authors outside
the field of parallel and distributed computing, such as for man-
ufacturing and logistics (e.g., to solve versions of the job shop
scheduling problem for cyber-physical systems). A cursory re-
view of that literature shows that simulation-driven scheduling
has been proposed and used since at least the early 1990’s.
To take just one recent example, the work in [28] proposes
simulation-driven scheduling in the context of wind farms op-
eration.

2.2. Simulation of parallel and distributed systems

Many simulation frameworks have been developed for par-
allel and distributed computing domains [29–39]. The objec-
tive of these frameworks is to ease the development of simu-
lators in these domains. To do so they implement and provide
convenient interface to discrete-event simulation models. The
particular implementations of these models in each framework
achieve different compromises between accuracy and speed.
At one extreme are fine-grained models that capture “micro-
scopic” behaviors of hardware/software systems (e.g., packet-
level network simulation, block-level disk simulation, cycle-
accurate CPU simulation), which favor accuracy over speed.
At the other extreme are coarse-grained models that capture
“macroscopic” behaviors via mathematical formulations. While
these models lead to fast simulation, they must be developed
carefully if high levels of accuracy are to be achieved [40]. This
work is completely agnostic to the user’s implementation of the
simulator. As part of our experimental methodology, described
in Section 4, we implement a simulator using the SimGrid [37]
and WRENCH [39] frameworks. We selected SimGrid because
it is has a large user base (it has been used to obtain simulation
results for over 630 research publications to date [41]), because
its simulation models have been extensively validated, and be-
cause these models are macroscopic and thus enable fast sim-
ulations of large platforms and applications. WRENCH builds
on SimGrid to provide high-level simulation abstractions that
make it possible to implement simulators of complex systems,
including WMSs that execute workflows on distributed comput-
ing platforms, in only a few hundred lines of code, especially
for simulators of workflow executions [39].

4

3. Proposed Approach

Consider a distributed computing platform with hardware
resources (compute, storage, network) accessible via various
software services for starting computations, storing data, and
moving data. A runtime system is used to automate the ex-
ecution of some application workload, for which it must make
decisions regarding the allocation of application activities to the
hardware resources in time and space. The goal is to optimize
user-defined metrics of performance. In this work we focus on
Workflow Management Systems (WMSs) that are runtimes sys-
tems for executing workflow applications.

In this context, we propose simulation-driven portfolio schedul-
ing (SDPS) by which the application execution is simulated at
runtime for each scheduling algorithm in a portfolio. A descrip-
tion of the application and of the available hardware resources
is constructed based on (likely imperfect) available information,
so as to instantiate a simulator of the upcoming application exe-
cution. Simulations are then executed for each algorithm in the
portfolio, assuming in each case that the considered algorithm
is used until application completion. These simulations are ex-
ecuted on the host on which the runtime system itself executes
(typically some multi-core host that orchestrates the application
execution on other “remote” resources). Each simulation pro-
duces a trace of time-stamped simulated discrete events, from
which execution metrics can be computed. The scheduling al-
gorithm that achieves the best such metrics (in simulation) is
then selected and used for making scheduling decisions at run-
time from then on.

In what follows we discuss implementation considerations,
discuss when SDPS should be used at runtime, and state the
specific research questions that we investigate in this work.

3.1. Implementation Considerations

For a WMS to implement SDPS it needs to: (i) make it pos-
sible to implement and activate different scheduling algorithms;
(ii) have access to information regarding the platform, the ap-
plication and the current state of the execution to instantiate a
reasonable (but not necessarily perfectly accurate) simulation
of the remainder of the execution; and (iii) include an imple-
mentation of a simulator of this execution instantiated based
the available information. We discuss these three requirements
in the next three sections.

3.1.1. Scheduling algorithms
All WMSs provide ways for users to specify workflow tasks

and task control- and data-dependencies. Information provided
to the WMS about each task can include resource requirements
(in terms of compute cores, memory, and disk space), amounts
of CPU and I/O work, and/or traces from previous executions.
To execute a workflow WMSs are configured with or can dis-
cover the resources provided by the platform on which the work-
flow is to be executed. At runtime, WMSs keep track of which
tasks are ready, running, or not ready, and can also keep track of
where application data is stored. All the above information can

be used to automate resource management decisions and to im-
plement scheduling algorithms (the more information is avail-
able the larger the number of algorithms that can conceivably
be implemented). Hundreds of WMSs have been developed
over the last decades [4] and a comprehensive survey is outside
the scope of this work. Our own observation of some current
and popular WMSs has shown that often only baseline naive
scheduling algorithms are implemented (such as random greedy
algorithms). However, in some cases scheduling algorithms
can be implemented by users as external plug-ins or modules
(e.g., StreamFlow [42], Dask [43]). In some other open-source
projects, we have determined that replacing the default schedul-
ing algorithm would be straightforward (e.g., Parsl [44], Pega-
sus [45]). Consequently, in these WMSs it is feasible to imple-
ment a portfolio of algorithms. SDPS can then be implemented
as a new scheduling algorithm that, whenever invoked by the
WMS, either invokes the currently selected algorithm from the
portfolio or selects a new algorithm and invokes it.

3.1.2. Information to instantiate a simulation
Instantiating a simulation of a workflow execution requires

a workflow description, an execution platform specification, and
the current state of the execution. As explained above, most
WMSs are configured with and/or maintain such information.
At a minimum, the information necessary to instantiate a simu-
lation for SDPS includes: task dependencies, estimates of CPU
and I/O work for each task, hardware specifications or bench-
mark results for compute, network, and I/O resources, set of
completed, ongoing, and to-be-executed tasks, locations of ap-
plication data file replicas. The challenge is that this informa-
tion is never perfectly accurate nor complete. Particular values
may not be perfectly known and only rough estimates may be
available (e.g., CPU speeds, disk bandwidths). Structural in-
formation could also be incomplete. For instance, the precise
network topology of the platform is typically not known to the
WMS. Instead, the WMS may only be provided with informa-
tion regarding network interface bandwidth hardware specifica-
tions, or previously observed data transfer rates on that topol-
ogy. In this case, a simulation will necessarily abstract away
the real-world network topology, for instance as a single net-
work link with some well-chosen bandwidth. The challenge of
simulation instantiation is well-recognized and can be allevi-
ated by performing simulator calibration based on ground-truth
data [46]. That is, high simulation accuracy can be achieved by
computing a simulation instantiation that minimizes simulation
error with respect to logs of previous and representative work-
flow executions. In this work we do not assume high accuracy
and instead evaluate the usefulness of SDPS in the presence of
simulation inaccuracy.

3.1.3. Simulator implementation
The onus of implementing and maintaining the simulator

used for SDPS falls on the WMS developers as only they have
all the necessary knowledge about the functional behavior of
their system. Developing a simulator of distributed computing
systems, applications, and platforms from scratch is a tall order.
For this reason, simulation frameworks have been developed

5

that make it possible to implement such simulators relatively
easily (see Section 2.2). The simulator can be provided to the
WMS as a stand-alone program or implemented directly in the
WMS using the simulation framework’s API. In this work we
use WRENCH [39], which was originally designed for the spe-
cific purpose of simulating WMSs. As a result, the core of the
simulator used in this work, which corresponds to what a WMS
developer would have to implement, is under 300 lines of C++
code (code available on GitHub [47]).

3.2. When to apply SDPS
SDPS necessarily executes a round of simulation at the on-

set of the application to pick a scheduling algorithm, but other
rounds of simulations could be conducted throughout the exe-
cution. One reason for doing so is to handle dynamic behav-
ior of the workflow or the platform, which may make different
scheduling algorithms better suited at different times.

Dynamic workflow changes occur when new tasks are cre-
ated at runtime based on the output generated by other tasks.
Note that in our previous work [16] we have found that, even
for static workflows, using more than one algorithm during the
workflow execution can sometimes bring marginal benefits. This
is because different workflow levels can have different charac-
teristics (e.g., different task granularity, different ratios of data
to compute volumes) and can be better served by different schedul-
ing algorithms. Dynamic platform changes occur for shared
platforms on which resources that can be used for executing
the workflow exhibit variable performance or availability (e.g.,
due to external load, to resources being reclaimed/released by
a provider, to resources being acquired by the user). To han-
dle these dynamic changes, rounds of simulations could be per-
formed continuously throughout the execution (in the extreme
at each scheduling decision) provided the frequency at which
they are performed is feasible given the simulation overhead
(see Section 5.4).

Another reason for running at least one other round of simu-
lations, even when there are no dynamic workflow and platform
changes, is that simulations, and in particular those executed at
the onset of the execution, are necessarily inaccurate. During
the execution, it becomes possible to compare the real execu-
tion to its previously simulated counterpart, determine causes
of simulation inaccuracies, and thus improve the simulation’s
instantiation for better future accuracy. We term this process
simulation error mitigation.

In the case study for this work (described in Section 4) we
consider static workflows that execute on resources reserved
and dedicated for the workflow execution. Because we do not
assume accurate simulations, we investigate the effectiveness of
running a simulation round after some fraction of the execution
has completed for the purpose of simulation error mitigation.

3.3. Research Questions

Our objective in this work is to determine whether SDPS
has merit in the context of WMSs. To this end, we seek to
answer the following research questions (RQs):

RQ#1: What is the potential improvement over the tradi-
tional approach? We wish to quantify the improvement that
SDPS can afford over using a single scheduling algorithm.

RQ#2: What level of simulation accuracy is necessary? No
simulation is perfectly accurate and we wish to determine the
level of accuracy needed for SDPS to outperform or at least be
comparable to the traditional approach.

RQ#3: Is it useful to mitigate simulation inaccuracy at run-
time? At runtime it is possible to apply corrective measures
to mitigate simulation error and apply SDPS again to select a
scheduling algorithm. We wish to determine whether perform-
ing such simulation error mitigation is worthwhile.

RQ#4: What is the impact of the sophistication of the simu-
lation? Simulators range in their sophistication as they can opt
to use more or less naive models for simulating components of
the target real-world system. We wish to determine whether a
less sophisticated simulator still allows SDPS to rank candidate
algorithms effectively.

RQ#5: Is simulation overhead sufficiently low? For SDPS
to be feasible in practice, the simulation overhead should be
sufficiently low when compared to the workload execution time.

4. Case Study

We evaluate the effectiveness of SDPS via a broad case
study. We consider the execution of scientific workflow appli-
cations on a multi-cluster platforms, i.e., platforms that com-
prise one or more commodity clusters (with all computes nodes
within the same cluster being homogeneous) connected over a
wide-area network. The scheduling objective is to minimize
overall execution time, or makespan.

In what follows we describe our experimental methodology
(which relies exclusively on simulations), the platform configu-
rations and workflow instances that we use to drive our simula-
tions, and the scheduling algorithms we include in our portfolio.

4.1. Experimental Methodology

To perform a sound evaluation of SDPS we need: (i) an
implementation of a WMS that executes workflows on multi-
cluster platforms; and (ii) an implementation of a simulator of
these executions that can be invoked at runtime by the WMS.
We face two main technical difficulties. First, to answer RQ#2
in Section 3, we need to experiment with different levels of
simulation (in)accuracy, including quantifying the best-case ef-
fectiveness when simulations are 100% accurate. This would
not be possible with a real-world implementation since a given
simulator is necessarily inaccurate and its inaccuracy is typi-
cally unknown or at least uncharacterized. Second, we wish
to evaluate SDPS on a large spectrum of workflows, platforms,
and algorithms. For instance, in this work we consider a port-
folio of 48 individual algorithms, plus SDPS, for 3 × 9 = 27
experimental scenarios (3 platform configurations, 9 workflow
instances), for a total of 1,323 different application executions.
Furthermore, we evaluate many different versions of SDPS and

6

different random samples so that, overall, we obtain results for
over 375,000 application executions. It would be prohibitive to
obtain all these experimental results in a real-world setting, not
only in terms of time and energy consumption, but also in terms
of repeatability.

Given the above, we perform our experiments entirely in
simulation. We implement a simulator of a WMS that exe-
cutes workflows on multi-cluster platforms as an analog of a
production WMS implementation for which SDPS can be im-
plemented. That is, during its simulated execution, the WMS
runs a simulation of its own future execution for each algorithm
in the portfolio. This is done using the fork system call to clone
child processes, where each child process simulates the full re-
maining execution of the workflow using a particular algorithm
and reports the observed makespan to the parent process, i.e.,
the WMS. The WMS then picks the algorithm that achieved
the lowest simulated makespan for future use. Once the work-
flow execution completes the simulator outputs the workflow
makespan.

Our simulator is implemented using the WRENCH [48] (v2.1)
and SimGrid [49] (v3.32) simulation frameworks. Simulator
code, raw experimental data, and scripts to analyze this data and
generate plots are publicly available on GitHub [47]. It takes as
input a platform configuration and a workflow instance, as de-
scribed in the next two sections. Although we base our platform
configurations and workflow instances on real-world use cases,
not all required information is available. As a result, we aug-
ment the available information using reasonable assumptions,
as described in the next two sections. This, however, does not
invalidate our evaluation results since our ground truth is based
on simulated executions using this same augmented informa-
tion.

4.2. Platform Configurations
We consider platforms that comprise commodity clusters

with different numbers and types of compute nodes. Each clus-
ter is homogeneous and its compute nodes are connected via a
100GbE interconnect. Each cluster is connected to the Inter-
net via a network path with some bottleneck bandwidth. The
compute nodes at each cluster have access to shared storage lo-
cal to the cluster (network-attached storage, parallel file system,
etc.) with some bounded aggregate I/O bandwidth. Whenever
a compute node in a cluster needs to write application data, it
writes it to the cluster’s shared storage. Whenever a compute
node in a cluster needs to read application data, it does so from
the cluster’s shared storage if possible. Otherwise, the data is
read from a remote location (the user’s machine, where all input
data is located initially, or another cluster’s storage) and then
cached locally. We assume that storage capacity at each cluster
is large enough to hold all application data if necessary. This is
the case in practice when executing the workloads described in
the Section 4.3. Considering storage capacity constraints would
simply amount to removing some clusters from consideration
when using the scheduling algorithms described in Section 4.4.
Finally, in all our experiments we assume that the platform is
dedicated to the application’s execution and delivers constant
performance throughout this execution (e.g., no external load

or transient behaviors). In practice, this is achieved by reserv-
ing resources in some shared platform (starting virtual machine
instances in cloud platforms, submitting pilot jobs to batch-
scheduled clusters, etc.).

In [16], we conducted simulation experiments for 9 syn-
thetic, arbitrarily generated platform configurations that com-
prised 1, 2, or 3 clusters. The preliminary results therein showed
no clear trends or discernible patterns depending on the spe-
cific platform performance characteristics. The only observable
trends were for the number of clusters in the platform (e.g., with
a single cluster in the platform, algorithms that only differ in the
way they select a cluster will necessarily be indistinguishable).
Given those preliminary results, in this work instead, we base
our platform configurations on an actual hardware platform, the
Grid5000 [50] testbed.

Grid5000 comprises many clusters distributed over a wide-
area network, and we consider three of these clusters: Ecotype,
Dahu, and Neowise. Table 1 lists the clusters’ hardware char-
acteristics, most of which are derived based on advertised hard-
ware specifications in [50]. Core speeds are from benchmark
results obtained for an N-body physics simulation executed on
each cluster’s particular core type (Intel Xeon E5-2630L v4 for
Ecotype, Intel Xeon Gold 6130 for Dahu, and AMD EPYC
7642 for Neowise). We do not have benchmark information
regarding storage system bandwidths at these clusters, and we
simply assume 100 Gbps for all clusters, which is typical of
real-world platforms. Finally, these clusters are deployed on a
wide-area network with 10Gbps end-to-end bandwidths. The
bandwidths shown in Table 1 correspond to a particular obser-
vation on the Grid5000 platform (which provides a real-time
network weather map) in which there is some background net-
work traffic to/from the Dahu and Neowise clusters.

We consider 3 platform configurations, P1, P2, and P3, where
Px corresponds to using the first x clusters from left to right in
Table 1 (see the bottom row). These configurations correspond
to different test cases for our approach in terms of platform het-
erogeneity and scheduling decision complexity going from P1
(fully homogeneous) to P3 (most heterogeneous).

4.3. Workflow Instances

We drive our simulations using 9 workflow specifications
based on real-world scientific applications, as listed in Table 2,
8 of which are from the Bioinformatics domain, in which work-
flows (or “pipelines”) are common-place. The Cycles workflow
comes from the Agroecosystem domain. These workflow in-
stances are provided by the WfCommons project [51] and were
constructed based on logs from actual executions [52]. Each
workflow instance defines a set of tasks, with specified execu-
tion times, and a set of files, with specified sizes. Each file can
be input to and/or output from tasks, thus creating data depen-
dencies. The metrics shown in the table show that our work-
flow instances are diverse, with different structures and differ-
ent computation-data ratios. Overall, we expect that different
scheduling algorithms will fare differently across these work-

7

Table 1: Cluster configurations

Cluster Ecotype Dahu Neowise
Number of nodes 48 32 10
Number of cores per node 10 16 48
Core speed (Gflop/sec) 3.21 4.01 6.48
Storage r/w bandwidth (Gbps) 100 100 100
Internet bandwidth (Gbps) 10 7 8
Used in platform configurations P1, P2, P3 P2, P3 P3

Table 2: Workflow instances, indicating for each the application name (“Name”), the number of tasks (“#Tasks”), the sequential compute time on a single
3.21Gflop/sec core (“Work”), the number of data files (“#Files”), the sum of all data file sizes (“Footprint”), the length of the longest path in the workflow’s
task graph in number of tasks (“Depth”), and the maximum number of tasks that can be executed in parallel (“Max Width”).

Workflow Name #Tasks Work #Files Footprint Depth Max Width

W1 1000Genomes 328 6h02m 352 24.72GB 3 216
W2 BLAST 303 8h45m 907 471.79KB 3 302
W3 BWA 1004 3h44m 3012 56.79MB 3 1002
W4 Cycles 874 5h13m 6930 6.18GB 4 652
W5 Epigenomics 1095 5h40m 1370 8.26GB 9 542
W6 RNA-Seq 197 0h43m 680 290.80MB 10 121
W7 SoyKB 156 6h47m 321 2.83GB 11 121
W8 SRA-Search 22 5h16m 48 16.51GB 3 21
W9 Viralrecon 203 0h42m 877 270.79MB 18 52

flow instances. 1.
WfCommons workflow instances specify task execution times

in seconds, and give the specifications of the processors on
which tasks where executed. None of these processors corre-
spond to the processors of the clusters in the Grid5000 clus-
ters described in the previous section. Furthermore, some of
the platforms on which workflows were executed are heteroge-
neous, meaning that different tasks ran on different kinds of pro-
cessors. In this work, we arbitrarily assume that the execution
time for each task in the WfCommons workflow instances is for
execution on a compute node of the Ecotype cluster, the cluster
with the slowest nodes in our platform configurations (see Ta-
ble 1). In our experiments, if a task is executed on the Dahu,
resp. Neowise, cluster, then its execution time is scaled down
by a factor 4.01/3.21 = 1.25, resp. 6.48/3.21 = 2.02, i.e., the
task execution time is proportional to the core speed. Scaling
the execution times by different factors would lead to different
data-intensiveness of the workflows (but our workflows already
span a spectrum of data-intensiveness).

WfCommons workflow instances do not include informa-
tion about the execution of workflow tasks on multiple cores,
but only give a single execution time t. Due to this lack of

1In previous work [16], we used a WfCommons instance of the Montage
workflow, but have removed it from this study as that particular instance had
many tasks with sub-second execution times, making execution on a distributed
multi-cluster inadvisable in the first place unless task aggregation is performed
(in this work we execute each WfCommons workflow instance as is).

information, we assume that this time t was measured for a
single-threaded task execution on a single core, and we assume
an Amdahl’s Law parallel speedup behavior [53]: a task that
executes in time t on 1 core executes in time α · t/n + (1 − α) · t
on n of these cores. We sample α uniformly between 0.5 and
0.9 for each workflow task. This ensures that our experiments
include a broad range of parallel multi-core performance be-
haviors. Note that this model is general enough to correspond
to any notion of a processing elements with a parallel speedup
behaviors, such as GPUs for instance. Although our experi-
ments are for platform configurations that comprise multi-core
hosts and workflow executions on such platforms, our results
are not specific to the underlying processor architecture.

4.4. Algorithms

As discussed in Section 2.1.3, scheduling driven by online
simulations has been proposed in the context of batch schedul-
ing for HPC clusters. In that specific context, a few classical
algorithms are prevalent and lead to a natural portfolio. By
contrast, in the the context of scientific workflow scheduling
a very large number of scheduling algorithms have been pro-
posed over the years, which has prompted many survey arti-
cles [5–13, 54]. The vast majority of algorithms proposed for
makespan minimization perform list-scheduling [55] for select-
ing ready tasks and compute resources. The algorithm is in-
voked whenever there is at least one ready task and at least one
available compute resource. Given our case study’s application

8

and platform models list-scheduling consists in:
1. Selecting a ready task using some criterion (C1);
2. Selecting a cluster with at least one idle core using some

criterion (C2);
3. Selecting a number of cores for the task execution using

some criterion (C3);
4. Scheduling the selected task on the selected cluster using

the selected number of cores.
Many options have been proposed in the literature for defin-

ing the above criteria, resulting in an enormous number of pos-
sible algorithms that could be included in a portfolio. An yet,
as discussed in Section 3.1.1, most of these algorithms are not
implemented in production WMSs. One of the reasons is that
many proposed algorithms are difficult to implement in produc-
tion systems because they rely on performance models to be de-
signed and implemented by WMS developers. For instance the
classic Heterogeneous Earliest Finish Time (HEFT) algorithm
prioritizes tasks by an estimate of their earliest finish times.
Implementing this algorithm thus requires that a performance
model be implemented to compute this estimate. Developing
accurate performance models is challenging due to the need
to account for a range of complex phenomena (e.g., network
contention effects, data locality). The effectiveness of sophisti-
cated scheduling algorithms implemented based on inaccurate
performance models is questionable. Furthermore, the infor-
mation necessary to implement accurate performance models is
not necessarily available in the first place. Given all the above,
for this case study we have opted to build a portfolio of list-
scheduling algorithms that can be implemented in current pro-
duction WMSs solely based on available information about the
workflow specification, the platform, and the current state of
the execution, without relying on any performance model. This
is the same information necessary to instantiate a simulation for
SDPS, as explained in Section 3.1.2. Specifically, we consider
the following options for each of the above criteria:
• Criterion C1 (task selection):

– 0: Pick the task with the largest bottom-level (i.e.,
prioritize tasks on the critical path);

– 1: Pick the task with the largest number of children
tasks;

– 2: Pick the task with the largest amount of input and
output data (in total bytes);

– 3: Pick the task with the largest computational load.
• Criterion C2 (cluster selection):

– 0: Pick the cluster with the fastest cores.
– 1: Pick the cluster with the larger number of idle

cores;
– 2: Pick the cluster with the most idle compute ca-

pacity (number of idle cores multiplied by the core
speed);

– 3: Pick the cluster that holds the largest amount of
task input data (in total bytes) in its shared storage;

• Criterion C3 (number of cores selection):
– 0: Pick as many cores as possible while ensuring

that the task’s parallel efficiency is above 90%;
– 1: Pick as many cores as possible while ensuring

that the task’s parallel efficiency is above 50%;

– 2: Pick as many cores as possible.

We denote each algorithm as Ax, where x = 12 × C1 + 3 ×
C2 +C3, which gives us 48 different algorithms (A0 to A47). All
above criteria, or variations thereof, have been proposed time
and again in the scheduling literature. For instance, the first
option for criterion C1 corresponds to the classic idea of priori-
tizing tasks on the critical path [56] and the second option cor-
responds to the classic idea of generating as much parallelism
as quickly as possible [57]. Although many other options could
be considered, these 48 algorithms provide us with a sufficiently
large and diverse algorithm portfolio (see Section 5.1).

We include these 48 algorithms in the portfolio for all ex-
periments and for all our platform/workflow combinations, and
the same portfolio is used throughout the whole execution. We
note that the portfolio could be reduced for some of these com-
binations. For instance, for platform P1 there is no need for
different cluster selection schemes (criterion C2) since there is
a single cluster. But the key idea of portfolio scheduling is that
algorithms that perform poorly will simply not be used, and so
we always include all 48 algorithms in the portfolio.

5. Results

5.1. Diversity of the Algorithms in the Portfolio

In Section 4, we claim that our experimental scenarios (work-
flow instances and platform configurations) would lead the al-
gorithms in the portfolio to exhibit a range of behaviors. In this
section, we verify this claim quantitatively. Figure 1 shows,
for each experimental scenario (i.e., a workflow and platform
combination) the relative difference, in percentage, between the
makespan achieved by each algorithm and that achieved by the
best algorithm for this scenario. This percentage is typically
termed “degradation from best” or dfb. In other terms, if for
a particular experimental scenario each algorithm i achieves a
makespan mi, then the dfb of algorithm j is defined as:

dfb(j) = 100 ×
m j −min

i
mi

min
i

mi
.

dfb(j) = 0% means that algorithm j achieves the lowest makespan
for that experimental scenario. dfb(j) = 100% means that al-
gorithm j achieves a makespan twice as long as the makespan
achieved by the best algorithm.

In Figure 1, the scenarios are sorted by increasing value of
the maximum dfb value over all algorithms. This maximum dfb
value ranges from 5.11% to 424.80%, and is above 100% for
16 of the 27 experimental scenarios. This means that there is
more than a 2x difference between the makespan achieved by
the best algorithm and that achieved by the worst algorithm for
that experimental scenario for more than 50% of our experi-
mental scenarios. We conclude that our experimental scenarios
are sufficient to highlight the diversity of our 48 scheduling al-
gorithms.

Although the above results indicate diversity, one may won-
der whether some (or perhaps just one?) algorithm is always

9

W
0:

P3

W
0:

P2

W
0:

P1

W
6:

P2

W
6:

P1

W
4:

P1

W
4:

P2

W
6:

P3

W
4:

P3

W
1:

P2

W
3:

P1

W
2:

P1

W
3:

P2

W
1:

P3

W
7:

P1

W
2:

P2

W
7:

P2

W
1:

P1

W
8:

P1

W
8:

P2

W
5:

P1

W
5:

P2

W
3:

P3

W
2:

P3

W
7:

P3

W
8:

P3

W
5:

P3

Experimental scenario (Workflow:Platform)

0.1

1

10

100

1000
%

 d
eg

ra
da

tio
n

fro
m

 b
es

t

Figure 1: Degradation from best (dfb) of each algorithm in the portfolio vs. experimental scenarios sorted by increasing maximum dfb (shown as a blue solid line).
Data points for algorithm A8, which has the lowest average dfb, shown as red dots.

best, in which case, one should just use that algorithm. The
answer to RQ#1 in Section 3.3 would then be that SDPS has
little potential improvement over the traditional one-algorithm
approach. Computing each algorithm’s average dfb over all ex-
perimental scenarios, we find that algorithm A8 achieves the
lowest average dfb at 12.63%. Algorithm A8 prioritizes tasks
with largest bottom-level (C1 = 0), selects the cluster with most
idle compute capacity (C2 = 2), and uses as many cores as
possible on a compute node (C3 = 2). While algorithm A8’s
average dfb is relatively low, it is not always a good choice. It
happens to be the best (or within 1% of the best) choice for only
14 of our 27 scenarios. It has a dfb higher than 10% for 5 of the
remaining 13 scenarios, and as high as 125.16% for the W1:P0
experimental scenario, as seen in Figure 1. We conclude that no
single algorithm is best. Although algorithm A8 is the best on
average it can perform relatively poorly for some experimental
scenarios.

In all that follows, we consider as our competitor a run-
time system that implements and uses algorithm A8 as its only
scheduling algorithm. Since algorithm A8 has the best average
dfb, it corresponds to the best choice a runtime system devel-
oper could make if asked to pick one algorithm to implement in
their system, at least in the scope of our experimental settings. It
is unclear how a developer would identify this algorithm, short
of conducting an extensive experimental study. In fact, they
could very well pick another algorithm, in which case all re-
sults hereafter would be more favorable (and often drastically
so) for SDPS. For simplicity, we call this competitor OneAlg.

5.2. Impact of Simulation Error

With 100% accurate simulations SDPS would necessarily
pick the best algorithm for each experimental scenario. In this

section, to answer RQ#2 in Section 3.3, we quantify the sensi-
tivity of SDPS to simulation inaccuracy.

5.2.1. Simulation Error Injection Method
To the best of our knowledge, there is no model or char-

acterization of the simulation error behavior of simulators of
parallel and distributed computing platforms and applications.
But we note that simulation error is not fully random as it typ-
ically stems from simulation models under- or over-estimating
the performance delivered by hardware resources when exe-
cuting application activities. That is, for each such resource,
the simulation suffers from some constant bias. This bias can
be due to a simulation model being inherently biased or to an
incorrect instantiation of the model’s configuration parameters
(e.g., due to imperfect knowledge about the hardware resource
available).

When SDPS performs its round of simulations we introduce
simulation error by injecting random perturbations in the plat-
form’s resource speeds, i.e., each cluster’s internet bandwidth,
storage system bandwidth, and core compute speed. If the ac-
tual value of a speed parameter is x, in the simulation it is set to
valueU(max(0, x× (1− e)), x× (1+ e)), whereU(a, b) denotes
the uniform random distribution on the (a, b) open interval and e
denotes the magnitude of the error range. Since simulations are
conducted with erroneous values of these metrics, they report
erroneous makespans, based on which a scheduling algorithm
is selected. Note that even small simulation errors can cause
drastically different scheduling decisions. As e increases there
is a higher probability for SDPS to select an algorithm that is
not (and is possibly much worse than) the best algorithm for the
upcoming application execution.

10

W3:P
2
W3:P

1
W6:P

2
W6:P

1
W8:P

3
W8:P

2
W8:P

1
W9:P

3
W9:P

2
W9:P

1
W3:P

3
W6:P

3
W4:P

1
W7:P

1
W5:P

2
W1:P

3
W1:P

2
W1:P

1
W4:P

2
W4:P

3
W5:P

1
W5:P

3
W7:P

2
W7:P

3
W2:P

2
W2:P

3
W2:P

1

Experimental scenario (Workflow:Platform)

0

20

40

60

80

100

120

140
%

 d
eg

ra
da

tio
n

fro
m

 b
es

t (
df

b)
One-algorithm approach
Portfolio approach

Figure 2: dfb vs. experimental scenarios, for simulation error magnitude e = 1.0.

5.2.2. Using a Single Round of Simulations
In this section we assume that algorithm selection is based

on a single round of simulations at the onset of the workflow ex-
ecution, and that the selected algorithm is then used throughout
the execution.

We conducted experiments for our 9 workflow instances
and 3 platform configurations for e ∈ {0.1, 0.2, . . . , 1.0}, with
100 trials (i.e., 100 different random number generator seeds)
for each e value. Figure 2 shows dfb results for e = 1.0 for all
9 × 3 = 27 experimental scenarios. The scenarios are sorted
by increasing dfb for OneAlg. Results for OneAlg are shown
as a single line since its performance is not affected by simula-
tion error (as it does not use simulation). Results for SDPS are
shown as a violin plot for each experimental scenario, which
depicts the distribution of 100 data points. The bottom, resp.
top, horizontal bar of the violin plot shows the minimum, resp.
maximum, value, while the middle horizontal bar shows the av-
erage. As seen in Figure 1, OneAlg is the best for many of
these scenarios. However, for some scenarios, seen on the right
of the horizontal axis in Figure 2, its dfb can be large.

The main observation from Figure 2 is that even with high
simulation error SDPS still performs relatively well for many
scenarios. Its average dfb is below 5% for 12 of the 27 ex-
perimental scenarios, and above 20% for only 5 of them. Al-
though there are cases in which SDPS is largely outperformed
by OneAlg, the converse is also true. For some scenarios the
dfb distribution of SDPS has a high maximum value. These
correspond to cases in which simulation error causes SDPS to
pick an algorithm that does not perform well. We note that
these cases occur mostly for scenarios with the 3-cluster plat-
form configuration (P3), which has the largest scheduling deci-
sion space. Conversely, we see that for the 1-cluster platform
configuration (P1), SDPS is more tolerant to simulation error.

Figure 3 shows results for e = 0.3. Expectedly, the results
are vastly improved, with SDPS’s average dfb at most 18.54%.
Overall, SDPS is on par with or vastly preferable to OneAlg.

Figure 4 shows the distribution of the dfb values achieved
by SDPS over all experimental scenarios for all values of e. As
expected, SDPS’s dfb improves as e decreases, with the average
converging to zero. The figure also depicts the dfb of OneAlg,
which is 12.63%. We see that SDPS leads to improvements
over OneAlg with relatively high probability even when simu-
lation error is 100%. At simulation error 50% or lower, SDPS
outperforms OneAlg in more than 90% of the cases.

To better explain the previous results, we compute the rank
of the algorithm picked by SDPS in the portfolio (i.e., algorithm
with rank 0 is the best, algorithm with rank 1 is the second-
best, etc.). Figure 5 shows the cumulative distribution of the
rank of the algorithm selected by SDPS over all experimental
scenarios, for all values of e. That is, a point at coordinate
(x, y) in the plot means that SDPS selected an algorithm with
rank at least x for y% of the experimental scenarios. Even with
high error (e = 1.0), SDPS selects the best algorithm in more
than 50% of the cases, and one of the top 5 algorithms in about
70% of the cases. However, we see that algorithms with high
rank (i.e., the worst algorithms in the portfolio) are still selected
occasionally, which explains the high maxima for some of the
violin plots shown in this section. Expectedly, results improve
as e decreases. For instance, for e = 0.3, SDPS selects the best
algorithm in more than 70% of the cases and a top-5 algorithm
in more than 90% of the cases.

We conclude that even with high simulation error SDPS
rarely picks a “bad” algorithm, and as a result compares fa-
vorably to OneAlg.

5.2.3. Simulation Error Mitigation via Another Round of Sim-
ulations

Simulators developed using SimGrid and WRENCH, such
as the one developed in this work, have been reported to achieve
simulation error well below 20% [39, 58], which, as seen in the
previous section, would have little negative impact on the effi-
cacy of SDPS. Unfortunately, while it is certainly possible to

11

W3:P
2
W3:P

1
W6:P

2
W6:P

1
W8:P

3
W8:P

2
W8:P

1
W9:P

3
W9:P

2
W9:P

1
W3:P

3
W6:P

3
W4:P

1
W7:P

1
W5:P

2
W1:P

3
W1:P

2
W1:P

1
W4:P

2
W4:P

3
W5:P

1
W5:P

3
W7:P

2
W7:P

3
W2:P

2
W2:P

3
W2:P

1

Experimental scenario (Workflow:Platform)

0

20

40

60

80

100

120

140
%

 d
eg

ra
da

tio
n

fro
m

 b
es

t (
df

b)
One-algorithm approach
Portfolio approach

Figure 3: dfb vs. experimental scenarios, for simulation error magnitude e = 0.3.

0.10.20.30.40.50.60.70.80.91.0
Simulation error magnitude (e)

0
2
4
6
8

10
12
14
16

%
 d

eg
ra

da
tio

n
fro

m
 b

es
t (

df
b)

1.56%
98.44%

2.69%
97.31%

4.63%
95.37%

6.70%
93.30%

8.78%
91.22%

10.98%
89.02%

13.40%
86.60%

15.92%
84.08%

18.61%
81.39%

20.82%
79.18%

Figure 4: dfb vs. simulation error (e). Percentages denote fractions of SDPS values above/below OneAlg’s value.

0 5 10 15 20 25 30 35 40 45
Selected algorithm rank

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f S
ce

na
rio

s e=0.0
e=0.1
e=0.2
e=0.3
e=0.4
e=0.5
e=0.6
e=0.7
e=0.8
e=0.9
e=1.0

Figure 5: Cumulative distribution of the rank of the algorithm selected by SDPS for each simulation error magnitude value (e).

12

develop low-error simulators, doing so is not a given. This is
because one must calibrate the simulator (i.e., pick values for
all its configuration parameters) so as to match particular real-
world applications and platforms. Simulator calibration is typi-
cally a non-trivial, labor-intensive, and manual process [46]. It
is thus reasonable to expect that many simulators could exhibit
relatively high error in practice.

One approach to reduce simulation error is to perform sim-
ulation error mitigation when using SDPS. The runtime system
can keep a record of the simulated execution for the algorithm
that ends up being selected after a round of simulations, and
then compare this execution to what actually happened in the
real execution. The goal is to identify sources of simulation er-
ror, and correct for them in the instantiation of the simulator be-
fore the next round of online simulations. For instance, compar-
ing the real and the simulated execution could reveal that some
network bandwidth has been underestimated by some factor.
A new round of simulations could be conducted after applying
a correction factor to that bandwidth, so as to pick a possibly
different scheduling algorithm for the rest of the application ex-
ecution.

To answer RQ#3 in Section 3.3 we repeat the experiments
in the previous section but assuming that simulation mitigation
is performed. That is, after a task completion occurs and 10%
of the application’s total work has already been executed, then a
second round of simulations is conducted with error e′ < e. As-
suming that the actual value of a platform’s performance metric
is x, in the first round of simulations the simulations use value
x′ = U(max(0, x × (1 − e)), x × (1 + e)). In the second round of
simulations, a value x′′ = x + (x′ − x) × (e′/e) is used, which is
closer to x by a factor e′/e < 1. In this manner, we can evaluate
how SDPS fares for ranges of initial and mitigated errors.

Figure 6 is similar to Figures 2 and 3, but shows results for
e = 1.0 and e′ = 0.3. Error mitigation leads to improvements.
Specifically, over the 27 experimental scenarios, the maximum
dfb was improved for 19 scenarios and the average dfb was im-
proved for 22 scenarios. In terms of average dfb across all sce-
narios, SDPS achieves a dfb of 10.18% with e = 1.0 and no
mitigation, and a dfb of 4.48% with e = 1.0 and mitigation
down to e′ = 0.3, while with an initial error e = 0.3 SDPS
achieves an average dfb value of 1.73%.

One observation when comparing Figure 6 to Figure 2, which
holds for all other e and e′ values, is that error mitigation is ef-
fective only for some workflows. To illustrate this behavior, let
us consider the execution of workflows W6 and W8 on platform
P3 (results are similar, but not as pronounced for P1 and P2 be-
cause the scheduling decision space is smaller). Figure 7 shows
average dfb results when SDPS is used to execute workflow W6.
The horizontal axis shows e′ values (i.e., mitigated error) and
each curve is for a different e value (i.e., initial error). Each
curve shows a decreasing trend until e′ = 0.3, at which point
the curve flattens out. Furthermore, the curve for a particular e
value is for the most part below the curves for higher e values.
For this workflow, error mitigation is useful, but, expectedly, a
lower initial error value e is preferable. Trends are similar for
the W1, W3, W4, W5, W7, and W9 workflow instances, but with
different slopes and final plateaux.

Figure 8 shows results for the W8 workflow (results for W2
are similar). For this workflow error mitigation provides lit-
tle improvement. This is due to the structure of this workflow,
which consists of a first level of compute-heavy tasks that ac-
count for the majority of the total work. That is, once initial
scheduling decisions have been made for these tasks, schedul-
ing decisions for subsequent tasks have almost no effect. Recall
that we perform error mitigation only after a task completion
occurs. The rationale is that, in real-world systems, logging in-
formation is typically not available before a task completes, and
there is thus no available real-world execution data to perform
simulation error reduction. For this workflow, by the time the
first task completion occurs, more than 95% of the total work
has already been scheduled. The effectiveness of SDPS is thus
entirely driven by the initial simulation error.

We conclude that simulation error mitigation is useful pro-
vided it can be performed before the bulk of the total work has
begun executing.

5.3. Impact of Simulator Sophistication
To answer RQ#4 in Section 3.3 we quantify the extent to

which SDPS is sensitive to the sophistication of the simulator.
In particular, we want to determine whether a simulator that
employs simplistic, or even naive, simulation models can still
be useful for SDPS. To answer this question we repeat experi-
ments described in previous sections but we disable features of
our simulator so as to reduce its level of sophistication. First,
we disable the simulation of network and I/O contention since
many simulators neglect the simulation of contention effects on
network and I/O devices. They do so because simulating con-
tention accurately is challenging [40]. Furthermore, simulators
that do not simulate contention are often used in the context of
scheduling, since ignoring contention greatly simplifies the de-
sign and evaluation of scheduling algorithms [59]. Second, we
disable the simulation of realistic multi-core parallel speedup.
Our simulator uses an Amdahl’s law parallel speedup model for
estimating the execution of a workflow task on multiple cores.
This model requires benchmark information about the work-
flow tasks, which is not always readily available. Instead, a
less sophisticated option is to assume that every task has 100%
parallel efficiency.

Together these 2 simplifications let us explore 4 possible
simulators to use for scheduling decisions, each at a different
level of sophistication, which we denote as CA, CA, CA, CA,
where C denotes contention, A denotes Amdahl’s law, and a bar
on the letter means that that feature is disabled in the simulator.
So, for instance, CA denotes our simulator with no contention
simulation but with Amdahl-based parallel speedup simulation.
All the results in previous section were for the CA simulator.

Figure 9 shows the cumulative dfb distribution across all ex-
perimental scenarios for two simulation error magnitudes, e = 0
and e = 0.3. A point at coordinate (x, y) means that for y% of
the experimental scenarios a dfb value better than x is achieved.
That is, the faster a curve approaches the y = 100% line, the
better. Simulation error magnitude e = 0.3 was selected as a
reasonable level of error in a calibrated simulator, but results
are similar for all other e values (full results available in [47]).

13

W3:P
2
W3:P

1
W6:P

2
W6:P

1
W8:P

3
W8:P

2
W8:P

1
W9:P

3
W9:P

2
W9:P

1
W3:P

3
W6:P

3
W4:P

1
W7:P

1
W5:P

2
W1:P

3
W1:P

2
W1:P

1
W4:P

2
W4:P

3
W5:P

1
W5:P

3
W7:P

2
W7:P

3
W2:P

2
W2:P

3
W2:P

1

Experimental scenario (Workflow:Platform)

0

20

40

60

80

100

120

140
%

 d
eg

ra
da

tio
n

fro
m

 b
es

t (
df

b)
One-algorithm approach
Portfolio approach

Figure 6: SDPS’s dfb vs. experimental scenarios, for simulation error magnitude e = 1.0 and mitigated error magnitude e′ = 0.3.

0.00.10.20.30.40.50.60.70.80.91.0
Mitigated simulation error (e′)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

%
 d

eg
ra

da
tio

n
fro

m
 b

es
t (

df
b)

e = 1.0
e = 0.9
e = 0.8
e = 0.7
e = 0.6

e = 0.5
e = 0.4
e = 0.3
e = 0.2
e = 0.1

Figure 7: SDPS’s average dfb vs. mitigated error (e′) for each initial error magnitude (e), for workflow instance W6.

Expectedly, using the CA simulator leads to the best results
overall. Using the CA simulator leads to results only slightly
worse, which indicates that simulating contention, for our ex-
perimental settings, is not critical for SDPS to be effective. This
is because our workflow instances do not correspond to highly
data-intensive scenarios. Using simulators CA or CA leads to
noticeably worse results. Interestingly, using CA often out-
performs using CA despite it being less sophisticated. This
is because the ranking of candidate scheduling algorithms for
a particular scenario strongly depends on the communication-
to-computation ratio of the execution. CA, unlike CA, under-
estimates both communication times (because it ignores con-
tention) and computation times (because it assumes perfectly
parallelizable workflow tasks). It thus ends up with a more ac-
curate ranking of the candidate scheduling algorithms than the
more sophisticated CA.

Table 3: Percentage of dfb values below 10% for each workflow when using
each of the four simulation sophistication level, for simulation error magnitude
e = 0.3.

Workflow CA CA CA CA

W1 100.00 100.00 100.00 100.00
W2 100.00 100.00 0.00 0.00
W3 100.00 100.00 66.67 100.00
W4 100.00 66.67 66.67 100.00
W5 100.00 66.67 33.33 100.00
W6 100.00 100.00 66.67 100.00
W7 100.00 100.00 100.00 66.67
W8 100.00 100.00 66.67 100.00
W9 100.00 100.00 66.67 100.00

14

0.00.10.20.30.40.50.60.70.80.91.0
Mitigated simulation error (e′)

0

10

20

30

40
%

 d
eg

ra
da

tio
n

fro
m

 b
es

t (
df

b)

e = 1.0
e = 0.9
e = 0.8
e = 0.7
e = 0.6

e = 0.5
e = 0.4
e = 0.3
e = 0.2
e = 0.1

Figure 8: SDPS’s average dfb vs. mitigated error magnitude (e′) for each initial error (e), for workflow instance W8.

The results in Figure 9 are aggregated over all workflows,
but different workflows show different trends. Table 3 shows,
for each workflow and for each simulator sophistication level,
the percentage of experimental scenarios for which a dfb value
under 10% is achieved, for a simulation error magnitude e =
0.3. The main observation is that for some workflows, like W1,
simulator sophistication has no impact, but for others, like W2,
using more sophisticated simulators yields dramatic improve-
ment. In the case of W2, simulating parallel speedups accurately
is critical. For some workflows, using a less sophisticated sim-
ulator can yield marginally better results than using the most
sophisticated simulator (CA). This is because particular simu-
lation errors can occasionally cause a less correct simulator to
produce a more accurate ranking of the candidate scheduling
algorithms. But overall, using the most sophisticated simulator
yields low dfb values across all workflows.

Expectedly, a higher level of simulator sophistication is bet-
ter. However, lower levels of simulator sophistication can still
yield good results for SDPS. In the scope of our experimen-
tal settings, for instance, not simulating network and I/O con-
tention typically leads to only marginal makespan degradation.
Unfortunately, the needed level of sophistication depends on the
specifics of the platform and application scenarios. In our re-
sults, a less sophisticated simulator can lead to almost no degra-
dation for some workflows and to large degradation for others.
If these specifics are known in advance, it may be possible to
determine the needed level of sophistication a priori.

5.4. Simulation Overhead

To answer RQ#5 in Section 3.3, we quantify simulation
overhead and discuss possible approaches to mitigate it. Re-
call that in this work we consider that simulations are executed
on the host on which the WMS itself executes. For SDPS to be
practical, simulation time must be low relative to the makespan
since a round of simulation needs to be executed at the onset
of the execution. Furthermore, additional rounds of simulation

may be useful throughout the execution. In this work we have
done so for the purpose of simulation error mitigation. But,
as discussed in Section 3.2, other rounds of simulations would
be useful if the workflow and/or the platform experience dy-
namic changes. In practice, simulations can be executed con-
currently with the application so that the simulation overhead
is fully hidden [23]. However, a high simulation overhead can
still be harmful as it would delay the time at which the algo-
rithm selection decision is reached.

Table 4 shows results obtained when simulating the full ex-
ecution of each of our workflow instances on platform con-
figuration P3 using algorithm A8 (the best algorithm on av-
erage). We find that all peak memory footprints are low (at
most 102.06MB) and that, for most workflow instances, the ra-
tio of simulated makespan to simulation time is large. This is
because for discrete-event (as opposed to discrete-time) sim-
ulation, computational complexity depends on the number of
events to simulate and not on the length of time being simu-
lated. The lowest ratio is for the W4 workflow, for which the
ratio is “only” 36.43x. Overall, we find that in general the time
to simulate the execution is small, and often negligible, when
compared to the real execution.

The results in Table 4 are for the simulation of one algo-
rithm, but SDPS runs one simulation per algorithm in the port-
folio. These simulations are independent and can be executed
concurrently on multiple cores, which is feasible due to low
memory footprint. For instance, running 48 concurrent simula-
tions for workflow W3, which causes the largest memory foot-
print, requires less than 5GB of RAM. Running these 48 simu-
lations concurrently on a machine with a 2.40GHz Intel Xeon
Gold 6240R 48-core processors takes 10.03 seconds, while run-
ning only the slowest of these simulations (simulations take dif-
ferent amounts of time depending on the scheduling algorithm)
takes 8.27 seconds. We conclude that although many simula-
tions need to be executed, they can be executed concurrently on
multiple cores with high parallel efficiency.

15

0 10 20 30 40 50 60 70 80 90 100
% degradation from best (dfb)

20

30

40

50

60

70

80

90

100

Fr
ac

tio
n

of
 e

xp
er

im
en

ta
l s

ce
na

rio
s (

%
)

CA
CA
CA
CA

(a) Cumulative dfb distribution for simulation error magnitude e = 0.0

0 10 20 30 40 50 60 70 80 90 100
% degradation from best (dfb)

20

30

40

50

60

70

80

90

100

Fr
ac

tio
n

of
 e

xp
er

im
en

ta
l s

ce
na

rio
s (

%
)

CA
CA
CA
CA

(b) Cumulative dfb distribution for simulation error magnitude e = 0.3

Figure 9: Cumulative dfb distribution for all experimental scenarios for two simulation error magnitude values.

Table 4: Simulated makespan, simulation time, ratio thereof, and peak memory footprint when simulating the execution of each workflow on platform P3 with
algorithm A8. Results obtained on a 2.80GHz core (Intel Xeon Gold 6242 CPU), averaged over 10 samples.

Workflow Simulated Makespan Simulation Time Ratio Peak Memory Footprint
(sec) (sec) (MB)

W1 10573.78 0.57 18457.90 29.82
W2 117.16 0.55 213.39 32.83
W3 455.60 3.67 124.11 102.06
W4 106.53 2.92 36.43 86.80
W5 265.60 1.66 159.79 47.40
W6 113.49 0.26 44.96 25.92
W7 10347.80 0.83 12,396.92 51.45
W8 602.17 0.03 17,295.35 19.93
W9 90.99 0.26 343.77 26.18

One option to reduce simulation time is to not fully simu-
late the execution to completion. We investigated this option
in previous work [16] but found that its effectiveness is highly
workflow-dependent. For some workflows simulating only a
small fraction of the upcoming execution has almost no neg-
ative impact on SDPS, but for others the negative impact is
large. This is because different workflows have different task-
and data-dependency structures, and in some cases the impacts
of initial scheduling decisions are not felt until the later phases
of the execution.

If the algorithm portfolio is too large, one possibility is to
prune the set of candidate algorithms. For instance, in [15] it
is proposed that algorithms be placed in different categories de-

pending on their past simulated performance, and that a bounded
amount of simulation time be allocated to each category. This
approach could be used in our context, with the caveat that the
performance of an algorithms in earlier phases of the execution
may be misleading [16]. Another approach, which we leave for
future work, is to train a ML-based surrogate model, such as a
neural network, that learns the simulator’s behavior and can be
used as a fast approximation of the simulator.

6. Conclusion

In this work, we have assessed the potential merit of using
simulation-driven portfolio scheduling (SDPS) in runtime sys-

16

tems that automate the execution of scientific workflow applica-
tions on parallel and distributed computing platforms. Our re-
sults show that SDPS outperforms the one-algorithm approach,
even when this approach happens to use the algorithm that per-
forms best on average across all experimental scenarios consid-
ered in this work. Crucially, SDPS still performs well in the
presence of relatively large simulation error, i.e., much larger
than what state-of-the-art simulators have been reported to ex-
hibit. Furthermore, simulation error mitigation at runtime can
be effective. We also found that, for some execution scenar-
ios, even unsophisticated simulators can be used by SDPS and
achieve good results. Finally, simulation overhead is sufficiently
low for SDPS to be used in practice.

In our results we have compared SDPS to the best possible
choice a runtime system developer could make for implement-
ing the one-algorithm approach in the context of our study, i.e.,
pick algorithm A8. The main motivation for this work is that
it is not clear how the developer could identify this algorithm
in practice (short of conducting a full experimental case study
as done in this work). Were the developer to pick the median
algorithm, algorithm A22, which has a relatively low average
dfb at 29.38% (A8 is at 12.63% and the worst algorithm is at
124.21%), all results presented in Section 5 would be improved.
For instance, with high simulation error e = 1.0 and no er-
ror mitigation, SDPS would outperform the one-algorithm ap-
proach on average for 25 of the 27 experimental scenarios (as
opposed to only 9 of them as seen in Figure 2).

We conclude that, portfolio scheduling, because it obviates
the challenge of picking a particular scheduling algorithm to
implement in a WMS, thus has the potential to resolve the dis-
connect between scheduling research and scheduling practice in
the context of scientific workflows. A clear future work direc-
tion is the development of simulation forensics techniques for
detecting and mitigating simulation error at runtime. Another
future direction is using SDPS for optimizing other application
execution metrics (e.g., energy consumption, monetary cost)
and for addressing notoriously difficult multi-objective schedul-
ing problems that consider multiple such metrics (e.g., satisfy-
ing multiple QoS requirements, minimizing makespan given an
energy consumption budget).

Acknowledgments

This work is funded by NSF awards #2106059 and #2103489.
This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725. We thank
the NSF Chameleon Cloud for providing time grants to access
their resources. The technical support and advanced computing
resources from University of Hawaii Information Technology
Services Cyberinfrastructure, funded in part by NSF awards
#2201428 and #2232862 are gratefully acknowledged.

References

[1] M. Atkinson, S. Gesing, J. Montagnat, I. Taylor, Scientific workflows:
Past, present and future, Future Generation Computer Systems 75 (2017)
216–227.

[2] R. Ferreira da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou,
E. Deelman, A Characterization of Workflow Management Systems for
Extreme-Scale Applications, Future Generation Computer Systems 75
(2017) 228–238.

[3] R. Ferreira da Silva, H. Casanova, K. Chard, I. Altintas, R. M. Badia,
B. Balis, T. a. Coleman, F. Coppens, F. Di Natale, B. Enders, T. Fahringer,
R. Filgueira, G. Fursin, D. Garijo, C. Goble, D. Howell, S. Jha, D. S.
Katz, D. Laney, U. Leser, M. Malawski, K. Mehta, L. Pottier, J. Ozik,
J. L. Peterson, L. Ramakrishnan, S. Soiland-Reyes, D. Thain, M. Wolf,
A Community Roadmap for Scientific Workflows Research and Develop-
ment, in: 2021 IEEE Workshop on Workflows in Support of Large-Scale
Science (WORKS), 2021, pp. 81–90.

[4] List of Workflow Systems, https://s.apache.org/

existing-workflow-systems (2024).
[5] J. Liu, E. Pacitti, P. Valduriez, M. Mattoso, A Survey of Data-Intensive

Scientific Workflow Management, J. Grid Comput. 13 (4) (2015) 457–
493.

[6] L. Versluis, A. Iosup, A survey of domains in workflow scheduling in
computing infrastructures: Community and keyword analysis, emerging
trends, and taxonomies, Future Generation Computer Systems 123 (2021)
156–177.

[7] J. Liu, S. Lu, D. Che, A Survey of Modern Scientific Workflow Schedul-
ing Algorithms and Systems in the Era of Big Data, in: 2020 IEEE Inter-
national Conference on Services Computing (SCC), 2020, pp. 132–141.

[8] R. Nallakumar, K. Sruthi Priya, A Survey on Deadline Constrained Work-
flow Scheduling Algorithms in Cloud Environment, International Journal
of Computer Science Trends and Technology 2 (5) (2014) 44–50.

[9] L. K. Arya, A. Verma, Workflow scheduling algorithms in cloud environ-
ment - A survey, in: Proc. of Conf. on Recent Advances in Engineering
and Computational Sciences, 2014.

[10] L. Singh, S. Singh, A Survey of Workflow Scheduling Algorithms and
Research Issues, International Journal of Computer Applications 74 (15)
(2013) 21–28.

[11] M. A. Rodriguez, R. Buyya, A taxonomy and survey on scheduling al-
gorithms for scientific workflows in iaas cloud computing environments,
Concurrency and Computation: Practice and Experience 29 (8) (2017)
e4041.

[12] A. Gupta, R. Garg, Workflow scheduling in heterogeneous computing
systems: A survey, in: 2017 International Conference on Computing and
Communication Technologies for Smart Nation (IC3TSN), IEEE, 2017,
pp. 319–326.

[13] M. Adhikari, T. Amgoth, S. N. Srirama, A survey on scheduling strategies
for workflows in cloud environment and emerging trends, ACM Comput-
ing Surveys (CSUR) 52 (4) (2019) 1–36.

[14] O. Sinnen, Task Scheduling for Parallel Systems (Wiley Series on Parallel
and Distributed Computing), Wiley-Interscience, USA, 2007.

[15] K. Deng, J. Song, K. Ren, A. Iosup, Exploring portfolio scheduling for
long-term execution of scientific workloads in IaaS clouds, in: Proc. Inter-
national Conference on High Performance Computing, Networking, Stor-
age and Analysis, 2013, pp. 1–12.

[16] H. Casanova, Y. Wong, L. Pottier, R. Ferreira da Silva, On the Feasi-
bility of Simulation-driven Portfolio Scheduling for Cyberinfrastructure
Runtime Systems, in: Proc. of the 25th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), 2022.

[17] É. Gaussier, J. Lelong, V. Reis, D. Trystram, Online Tuning of EASY-
Backfilling using Queue Reordering Policies, IEEE Transactions on Par-
allel and Distributed Systems 29 (10) (2018) 2304–2316.

[18] A. Boulmier, I. Banicescu, F. M. Ciorba, N. Abdennadher, An Auto-
nomic Approach for the Selection of Robust Dynamic Loop Scheduling
Techniques, in: 2017 16th International Symposium on Parallel and Dis-
tributed Computing (ISPDC), 2017, pp. 9–17.

[19] A. Mohammed, J. H. M. Korndörfer, A. Eleliemy, F. M. Ciorba, Auto-
mated Scheduling Algorithm Selection and Chunk Parameter Calcula-
tion in OpenMP, IEEE Transactions on Parallel and Distributed Systems
33 (12) (2022) 4383–4394.

[20] D. Carastan-Santos, R. Y. de Camargo, Obtaining Dynamic Scheduling
Policies with Simulation and Machine Learning, in: Proc. of the Interna-

17

https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems

tional Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’17, Association for Computing Machinery, New
York, NY, USA, 2017.

[21] D. Talby, D. Feitelson, Improving and stabilizing parallel computer per-
formance using adaptive backfilling, in: Proc. 19th IEEE International
Parallel and Distributed Processing Symposium, 2005.

[22] N. Sukhija, B. Malone, S. Srivastava, I. Banicescu, F. M. Ciorba,
Portfolio-Based Selection of Robust Dynamic Loop Scheduling Algo-
rithms Using Machine Learning, in: Proc. IEEE International Parallel
Distributed Processing Symposium Workshops, 2014, pp. 1638–1647.

[23] A. Mohammed, F. M. Ciorba, SimAS: A simulation-assisted approach for
the scheduling algorithm selection under perturbations, Concurrency and
Computation: Practice and Experience 32 (2019).

[24] A. Streit, The self-tuning dynP job-scheduler, in: Proc. 16th International
Parallel and Distributed Processing Symposium, 2002.

[25] K. Deng, R. Verboon, K. Ren, A. Iosup, A Periodic Portfolio Scheduler
for Scientific Computing in the Data Center, in: Job Scheduling Strategies
for Parallel Processing, Springer Berlin Heidelberg, Berlin, Heidelberg,
2014, pp. 156–176.

[26] D. Feitelson, M. Naaman, Self-tuning systems, IEEE Software 16 (2)
(1999) 52–60.

[27] A. Nazarenki, O. Sukhoroslov, Using Simulation to Improve Workflow
Scheduling in Heterogeneous Computing Systems, in: Proc. of Russian
Supercomputing Days, 2017, pp. 480–490.

[28] E. Pérez, A simulation-driven online scheduling algorithm for the mainte-
nance and operation of wind farm systems, SIMULATION 98 (1) (2021)
47–61.

[29] M. Tikir, M. Laurenzano, L. Carrington, A. Snavely, PSINS: An Open
Source Event Tracer and Execution Simulator for MPI Applications, in:
Proc. of the 15th Intl. Euro-Par Conf. on Parallel Processing, no. 5704 in
LNCS, Springer, 2009, pp. 135–148.

[30] T. Hoefler, T. Schneider, A. Lumsdaine, LogGOPSim - Simulating Large-
Scale Applications in the LogGOPS Model, in: Proc. of the ACM Work-
shop on Large-Scale System and Application Performance, 2010, pp.
597–604.

[31] R. Buyya, M. Murshed, GridSim: A Toolkit for the Modeling and Simula-
tion of Distributed Resource Management and Scheduling for Grid Com-
puting, Concurrency and Computation: Practice and Experience 14 (13-
15) (2002) 1175–1220.

[32] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya,
CloudSim: A Toolkit for Modeling and Simulation of Cloud Comput-
ing Environments and Evaluation of Resource Provisioning Algorithms,
Software: Practice and Experience 41 (1) (2011) 23–50.

[33] A. Núñez, J. Vázquez-Poletti, A. Caminero, J. Carretero, I. M. Llorente,
Design of a New Cloud Computing Simulation Platform, in: Proc. of the
11th Intl. Conf. on Computational Science and its Applications, 2011, pp.
582–593.

[34] G. Kecskemeti, DISSECT-CF: A simulator to foster energy-aware
scheduling in infrastructure clouds, Simulation Modelling Practice and
Theory 58 (2) (2015) 188–218.

[35] A. W. Malik, K. Bilal, K. Aziz, D. Kliazovich, N. Ghani, S. U. Khan,
R. Buyya, Cloudnetsim++: A toolkit for data center simulations in
omnet++, in: Proc. of the 2014 11th Annual High Capacity Optical
Networks and Emerging/Enabling Technologies (Photonics for Energy),
2014, pp. 104–108.

[36] T. Qayyum, A. W. Malik, M. A. Khan Khattak, O. Khalid, S. U. Khan,
FogNetSim++: A Toolkit for Modeling and Simulation of Distributed
Fog Environment, IEEE Access 6 (2018) 63570–63583.

[37] H. Casanova, A. Giersch, A. Legrand, M. Qinson, F. Suter, Versatile,
Scalable, and Accurate Simulation of Distributed Applications and Plat-
forms, Journal of Parallel and Distributed Computing 75 (10) (2014)
2899–2917.

[38] C. D. Carothers, D. Bauer, S. Pearce, ROSS: A High-Performance,
Low Memory, Modular Time Warp System, in: Proc. of the 14th
ACM/IEEE/SCS Workshop of Parallel on Distributed Simulation, 2000,
pp. 53–60.

[39] H. Casanova, R. Ferreira da Silva, R. Tanaka, S. Pandey, G. Jeth-
wani, W. Koch, S. Albrecht, J. Oeth, F. Suter, Developing Accurate and
Scalable Simulators of Production Workflow Management Systems with
WRENCH, Future Generation Computer Systems 112 (2020) 162–175.

[40] P. Velho, L. Mello Schnorr, H. Casanova, A. Legrand, On the Validity of

Flow-level TCP Network Models for Grid and Cloud Simulations, ACM
Transactions on Modeling and Computer Simulation 23 (4) (2013).

[41] SimGrid Use by Others , Available at https://simgrid.org/usages.
html (2024).

[42] I. Colonnelli, B. Cantalupo, I. Merelli, M. Aldinucci, StreamFlow: Cross-
Breeding Cloud With HPC, IEEE Transactions on Emerging Topics
in Computing 9 (4) (2021) 1723–1737. doi:10.1109/TETC.2020.

3019202.
[43] M. Rocklin, Dask: Parallel computation with blocked algorithms and task

scheduling, in: Proceedings of the 14th Python in science conference, no.
130-136, 2015.

[44] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacin-
ski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, K. Chard, Parsl: Perva-
sive Parallel Programming in Python, in: 28th ACM International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC),
2019, babuji19parsl.pdf. doi:10.1145/3307681.3325400.
URL https://doi.org/10.1145/3307681.3325400

[45] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, K. Wenger, Pega-
sus: a Workflow Management System for Science Automation, Future
Generation Computer Systems 46 (2015) 17–35.

[46] J. McDonald, M. Horzela, F. Suter, H. Casanova, Automated Calibra-
tion of Parallel and Distributed Computing Simulators: A Case Study, in:
Proc. of the 25th IEEE International Workshop on Parallel and Distributed
Scientific and Engineering Computing (PDSEC), 2024, to appear.
URL https://arxiv.org/abs/2403.13918

[47] Reproducible Research for FGCS manuscript, https://github.

com/wrench-project/fgcs2024_manuscript_reproducible_

research (2024).
[48] The WRENCH Project, http://wrench-project.org/ (2024).
[49] The SimGrid Project, http://simgrid.org/ (2024).
[50] The Grid’5000 Testbed, https://www.grid5000.fr (2022).
[51] WfCommons: Community Framework for Enabling Scientific Workflow

Research and Development, https://wfcommons.org (2024).
[52] T. Coleman, H. Casanova, L. Pottier, M. Kaushik, E. Deelman, R. Fer-

reira da Silva, Wfcommons: A framework for enabling scientific work-
flow research and development, Future Generation Computer Systems
128 (2022) 16–27.

[53] G. M. Amdahl, Validity of the single processor approach to achieving
large scale computing capabilities, in: Proceedings of the April 18-20,
1967, spring joint computer conference, 1967, pp. 483–485.

[54] Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors, ACM Comput. Surv. 31 (4) (1999)
406–471.

[55] J. Y.-T. Leung, Handbook of Scheduling : Algorithms, Models, and Per-
formance Analysis, Chapman & Hall/CRC, 2004.

[56] R. Graham, E. Lawler, J. Lenstra, A. Kan, Optimization and Approxima-
tion in Deterministic Sequencing and Scheduling: a Survey, in: P. Ham-
mer, E. Johnson, B. Korte (Eds.), Discrete Optimization II, Vol. 5 of An-
nals of Discrete Mathematics, Elsevier, 1979, pp. 287–326.

[57] R. Hall, A. L. Rosenberg, A. Venkataramani, A Comparison of Dag-
Scheduling Strategies for Internet-Based Computing, in: 2007 IEEE In-
ternational Parallel and Distributed Processing Symposium, 2007, pp. 1–
9.

[58] M. Horzela, H. Casanova, M. Giffels, A. Gottman, G. Quast, S. Rissi Tis-
beni, A. Streit, F. Suter, Modelling Distributed Heterogeneous Computing
Infrastructures for HEP Applications, in: 26th International Conference
on Computing in High Energy & Nuclear Physics (CHEP), 2023.

[59] L. Eyraud-Dubois, A. Legrand, The Influence of Platform Models on
Scheduling Techniques, in: Y. Robert, F. Vivien (Eds.), Introduction to
Scheduling, CRC Press, 2009, Ch. 11, pp. 281–309.

18

https://simgrid.org/usages.html
https://simgrid.org/usages.html
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://arxiv.org/abs/2403.13918
https://arxiv.org/abs/2403.13918
https://arxiv.org/abs/2403.13918
https://github.com/wrench-project/fgcs2024_manuscript_reproducible_research
https://github.com/wrench-project/fgcs2024_manuscript_reproducible_research
https://github.com/wrench-project/fgcs2024_manuscript_reproducible_research
http://wrench-project.org/
http://simgrid.org/
https://www.grid5000.fr
https://wfcommons.org

	Introduction
	Related Work
	Portfolio Scheduling
	Online Performance Monitoring
	Offline Simulations
	Online Simulations

	Simulation of parallel and distributed systems

	Proposed Approach
	Implementation Considerations
	Scheduling algorithms
	Information to instantiate a simulation
	Simulator implementation

	When to apply SDPS
	Research Questions

	Case Study
	Experimental Methodology
	Platform Configurations
	Workflow Instances
	Algorithms

	Results
	Diversity of the Algorithms in the Portfolio
	Impact of Simulation Error
	Simulation Error Injection Method
	Using a Single Round of Simulations
	Simulation Error Mitigation via Another Round of Simulations

	Impact of Simulator Sophistication
	Simulation Overhead

	Conclusion

