
Performance Analysis of an I/O-Intensive Workflow executing
on Google Cloud and Amazon Web Services

Hassan Nawaz, Gideon Juve, Rafael Ferreira da Silva, Ewa Deelman

University of Southern California, Information Sciences Institute, Marina Del Rey, CA, USA
{hassan,gideon,rafsilva,deelman}@isi.edu

Abstract—Scientific workflows have become the mainstream
to conduct large-scale scientific research. In the meantime,
cloud computing has emerged as an alternative computing
paradigm. In this paper, we conduct an analysis of the
performance of an I/O-intensive real scientific workflow on
cloud environments using makespan (the turnaround time for
a workflow to complete its execution) as the key performance
metric. In particular, we assess the impact of varying the
storage configurations on workflow performance when execut-
ing on Google Cloud and Amazon Web Services. We aim to
understand the performance bottlenecks of the popular cloud-
based execution environments. Experimental results show sig-
nificant differences in application performance for different
configurations. They also reveal that Amazon Web Services
outperforms Google Cloud with equivalent application and
system configurations. We then investigate the root cause of
these results using provenance data and by benchmarking
disk and network I/O on both infrastructures. Lastly, we also
suggest modifications in the standard cloud storage APIs, which
will reduce the makespan for I/O-intensive workflows.

Keywords-Scientific Workflow; Cloud Computing; I/O Per-
formance Modeling

I. INTRODUCTION

Scientific workflows have been extensively used by sci-
entists to perform complex simulations and process large
amounts of data [1]. Traditionally, scientific workflows are
executed on campus clusters and national cyberinfrastruc-
tures systems. However, the emergence of cloud computing
has opened a new avenue for scientists [2]. The bene-
fits of running workflows on these environments include
predictable performance, quality of service, on-demand re-
source provisioning, the ability to store virtual machines
(VMs) in the form of virtual images, and resource monitor-
ing. In addition, workflow developers can have full control
of the execution environment, something that is typically
limited in traditional systems (and may impose difficulties
for the workflow execution). On the other hand, cloud
systems were not designed for the execution of complex
simulations and I/O-intense applications. Furthermore, com-
putational resources may not be free (in case of commercial
clouds). Therefore, there is an incentive for researchers to
explore avenues to reduce the cost of executing workflows,
while increasing their efficiency. Extensive work has been
performed [2]–[4] to understand the efficiency of cloud
environment for scientific workflows. However, most of

these works focus on performance (in terms of processing
speed) and monetary optimizations.

In this paper, we assess the performance of an I/O-
intensive scientific workflow on two widely used commercial
cloud environments: Google Compute Engine [5] and Ama-
zon Web Services [6]. We initially focus on the performance
difference when storage configurations are varied to quantify
the impact of storage bottlenecks. To this end, we use the
Montage workflow [7], a well-known astronomy application,
as a benchmark to quantify application performance. The
Montage workflow is composed of thousands of computing
jobs and manages over 20,000 data transfers. We execute
instances of Montage on different storage deployment con-
figurations in both cloud systems. We then collect perfor-
mance metrics (e.g., makespan—workflow turnaround time)
to compare the efficiency of these systems. This comparison
unveils significant performance differences among configu-
rations revealing the impact of the bottlenecks in the storage
configuration. We also notice a remarkable difference be-
tween the application’s performance on both cloud systems
despite the similarity of the execution environments (in terms
of VM types and software) and configurations used. We then
investigate the performance of these systems and available
data transfer tools by benchmarking network and disk I/O.
Finally, we discuss opportunities to improve current cloud
APIs, which can lead to significant impact on the workflow
performance.

The main contributions of this paper include:

1) An evaluation of the impact of varying storage con-
figurations on the performance of an I/O-intensive
workflow;

2) A quantitative analysis of application performance on
popular cloud systems using provenance data;

3) A comprehensive analysis of benchmarking file trans-
fer times of different sizes using different cloud tools;

4) A discussion on indicators that would significantly
improve the performance of I/O-intensive workflows
on cloud environments.

This paper is organized as follows. Section II describes the
Montage workflow, and the execution environment for the
experiments. Section III presents the performance analysis
of the I/O-intensive workflow on both cloud environments

under different storage configurations. Section IV presents
an exploration of performance discrepancies, using bench-
marking of data transfer times, for various file sizes us-
ing standard cloud transfer tools. The efficiency of multi-
threaded transfers are evaluated in Section V. Section VI
discusses related work, and Section VII summarizes our
findings and identifies future work.

II. EXPERIMENT CONDITIONS

In this section, we introduce the I/O-intensive work-
flow application and its main characteristics, the workflow
management system, and the different storage deployment
configurations.

A. Scientific Application

Montage [7] is an astronomy application that creates astro-
nomical image mosaics using data collected from telescopes.
The workflow (Figure 1) can be set up with different sizes
depending upon the area of the sky (in square degrees)
covered by the output mosaic. In this paper, we used Mon-
tage to generate an 8-degree square mosaic. The resulting
workflow is composed of 10,429 jobs, which reads 4.2 GB
of input data, and produces 7.9 GB of output data (excluding
temporary data). A workflow instance operates over about
23K intermediate files, where most of them have a few
MBs. Figure 2 shows the distribution of intermediate file
sizes produced during the workflow execution. The write
pattern is sequential and each file is written once only and
never modified later. The read pattern is mostly sequential
with a few jobs accessing files at random locations. We
consider Montage to be I/O-bound because it spends more
than 95% of its time waiting on I/O operations. Note that the
mConcatFit job (Figure 1) has several incoming edges,
and all subsequent jobs depend on it. In the workflow
instance used in this paper, mConcatFit transfers 6,173
small files with average size of 0.3 KB as input (a total of 1.9
MB). Therefore, a poor execution performance of this job
(in particular for data movement) may significantly impact
the workflow makespan. A detailed characterization of the
Montage workflow can be found in [8], [9].

B. Execution Environment

Workflow runs use the Pegasus workflow management
system [10]. Pegasus automates the task of mapping, clus-
tering, scheduling, and executing computing jobs in a wide
range of execution environments. Typically, scientific work-
flows are composed of multiple layers of jobs where each
layer performs specific computation using data from pre-
vious layers. In cloud deployments, this data is written as
a file to a shared scratch directory by a parent job, and is
consumed by a child job for its computation. These files are
called intermediate data files.

The execution environment consists of a submit host
(located at our lab at the USC Information Sciences Institute,

mProjectPP mDiffFit mConcatFit mBgModel mBackground

mImgtbl mAdd mShrink mJPEG

Figure 1. An illustrative representation of a Montage workflow.

6

6190

2 199

5931

10598

0

3000

6000

9000

0 256 4K 64K 512K 4M
File Size (Bytes)

F

ile
s

Figure 2. Distribution of intermediate file sizes for one instance of the
Montage workflow.

Los Angeles, CA) which plans and submits the workflow
for execution. The jobs are executed inside the cloud on
VMs. The experiments used VMs that are meant for jobs
with both memory and computation requirements. For Ama-
zon, m3.2xlarge VM instance types were used, while
n1-standard-8 instances were used for Google. Both
VM types provide 8 cores per node and 30 GB of memory.
The experiments conducted in this paper were limited to one
VM on each cloud.

In Pegasus, data movement in cloud environments is
performed through standard cloud tools. For Google, we
use the gsutil [11] client, and for Amazon we use
the pegasus-s3 [12] client, which is built on top of
standard Amazon APIs. Amazon also provides its own client
(aws-cli [13]), however it is not the standard tool used
in Pegasus. In Section IV, we evaluate the performance of
each of these tools.

In order to measure the actual overhead involved on data
transfers, we limit the transfer mechanisms to a single-
threaded mode. In Section V, we conduct a multi-threaded
experiment to demonstrate the performance gain of transfer-
ring data in parallel.

C. Storage Configuration Deployments

In order to quantify the performance overhead of the I/O-
intensive workflow on cloud environments, we conducted
workflow runs in three distinct real production scenarios
where the storage configuration varies:

Cloud storage. In this configuration, intermediate files are
stored into object storage (Figure 3a). In particular, we use
the Amazon S3 storage [14], and Google Cloud Storage [15]
for Amazon and Google VMs respectively. This configura-
tion is expected to be the most commonly used in cloud
environments due to its simplicity (e.g., there is no need
for a shared file system) and to the ability to permanently
store intermediate results (e.g., workflow steering). However,
storing all intermediate files in a storage service may be
costly.

VM storage. In this configuration, intermediate files are
stored locally to disks attached to the VM (Figure 3b). For
the experiments, each VM had a 70 GB SSD drive available
for storage. Although this configuration may reduce the
monetary cost, it may not be scalable for very large workflow
executions (e.g., each VM will process thousands of jobs,
and as a result the machine may run out of disk space [16]).
However, this configuration helps quantify the overhead of
other storage configurations.

Submit host. In this configuration, intermediate data is
stored at the submit host (Figure 3c). It is unlikely this
configuration will be used in real production workflows
due to the high latency in transferring data to the submit
host (which is often outside the cloud network). However,
this configuration may be useful in low cost scenarios,
or when local data analyses should be performed in the
intermediate results. In the experiments, we use the standard
linux SCP [17] command to perform transfers between the
submit host and the VMs. Note that other standard protocols
(e.g., SFTP [18]) could also have been used, since the
purpose is only to create a homogenous environment for
both clouds for comparisons.

III. OVERALL PERFORMANCE EVALUATION OF AN
I/O-INTENSIVE WORKFLOW

For this experiment, we conducted three runs of the
Montage workflow for each configuration on both cloud
infrastructures to quantify the overhead of data transfers.
Figure 4 shows the average makespan for the runs on
both Amazon and Google. Not surprisingly, the VM storage
configuration outperforms all other configurations due to
the absence of transferring intermediate files. When the

(a) Using cloud storage for intermediate storage.

(b) Using VM Storage for intermediate files.

(c) Using submit host for intermediate files.

Figure 3. Different cloud storage configuration deployments evaluated in
this work.

0

5000

10000

15000

20000

Cloud Storage VM Storage Submit Host

M
ak

es
pa

n
(s

)

Amazon
Google

Figure 4. Average makespan values for 3 runs of the Montage Workflow
for different storage configurations on Amazon and Google cloud environ-
ments.

intermediate data is stored within the cloud, i.e., in an
object storage, the network overhead is significantly smaller
when compared to external transfers to the submit host. In
both clouds, the performance gain on storing data locally is
up to about 400% when compared to the Cloud Storage
configuration, and up to about 580% in relation to the
Submit Host configuration. Several aspects may influence the
performance of a workflow execution, including data staging
time overhead, disk I/O overhead for intermediate files,
a difference in computational power, and external loads.
However, since we only vary storage configurations, we
argue that these differences are mostly related to overhead
caused by data movements.

Figure 5 shows the amount of time spent on jobs execution
and files transfer on both clouds and for all storage config-
urations, reconstructed by provenance information collected
by Pegasus. Execution and transfer times are computed
as the sequential cumulative execution time for individual
jobs, and data transfer operations respectively. Note that
these sequential execution times may represent larger values
when compared to the workflow turnaround time, since
the makespan measures the difference between the earliest
start time and the latest finish time. In both Cloud Storage
(Figure 5a) and Submit Host (Figure 5c) configurations, the
execution time is substantially smaller than the workflow
makespan which confirms that data transfer operations be-
come a bottleneck in the workflow execution. In addition,
measurements shown in Figure 5 also quantify performance
differences when using a remote storage (either in an object
storage or on the submit host).

In contrast, jobs execution time prevails in the VM storage
configuration (Figure 5b) as there are no data transfers. The
execution times for the later configuration is larger than for

0

20000

40000

60000

Makespan Execution Time Transfer Time

T
im

e
(s

)

Amazon
Google

(a) Cloud Storage

0

4000

8000

12000

Makespan Execution Time Transfer Time

T
im

e
(s

)

Amazon
Google

(b) VM Storage

0

30000

60000

90000

Makespan Execution Time Transfer Time

T
im

e
(s

)

Amazon
Google

(c) Submit Host

Figure 5. Average makespan, cumulative job execution time, and inter-
mediate data file transfer time per configuration.

the other configurations. This performance loss is mostly
due to the execution of data movement operations to store
intermediate files locally. The intermediate files produced
by the parent jobs are written to the SSD drive attached to

the VM. The child jobs then read these intermediate files
from the filesystem, and do not have to incur any data
transfer overhead. However, the number of I/O operations
is significantly increased. As a result, jobs spend more time
waiting for I/O operations to complete.

In the case of VM Storage, the only data transfers are
data staging jobs (transferring of input/output data from/to
the submit host). Average data staging times for this configu-
ration are 2,680s for Google runs, and 2,262s for workflows
executed on Amazon. This difference in data staging times
indicates a difference of performance in the two systems.

Note that there is a consistent difference between the
workflow makespan values obtained from the execution on
both clouds in all storage configurations (Figures 4 and 5).
The performance measures obtained from workflow runs
on Amazon are up to 44% faster than runs conducted on
Google. This discrepancy is visible in the Cloud Storage
(Figure 5a) and Submit Host (Figure 5c) configurations,
where intermediate transfer times are significantly impacted
on Google runs. For instance, for the Cloud Storage config-
uration the cumulative average transfer time for Google is
56,287s, and for Amazon is 31,186s. This result indicates
that data transfer strongly impacts the workflow makespan.
In such configurations, this difference is mostly due to
(1) poor performance of the storage system (e.g., limited
bandwidth or high load), or (2) performance issues with
the transfer tools. In the next section, we analyze the
performance of the transfer tools and the systems through
benchmarking. The difference in the execution times for the
VM Storage configuration (Figure 5b) is mostly due to the
performance of the SSD disks as aforementioned. In the next
section, we also investigate whether the performance of the
attached storage driver degrades the workflow makespan.

As presented in Section II-A, the mConcatFit job of the
Montage workflow may significantly impact the workflow
makespan if its performance is very low. For instance, the
time required to stage in data for this job on the Cloud
Storage configuration is 1,862s for Amazon, and for Google
is 4,387s, which represents 22% and 29% of the workflow
makespan respectively. We investigate the cause of this
massive difference in the analyses presented in the following
section.

IV. BENCHMARKING STORAGE PERFORMANCE

In this section, we investigate the causes of different cloud
performance by benchmarking network and disk throughput.

A. Network I/O

Experiments conducted in this subsection use the Cloud
Storage configuration, where intermediate files are stored
into an object storage. We downloaded and uploaded files
of various sizes from Amazon and Google VMs to their
respective cloud storage every hour for a week (from May
12. 2015 to May 18, 2015). Figure 6 shows the time series

●
●

●
●●●

●

●

●

●

●●
●●●

●

●

●
●●

●
●●●

●

●●
●

●●●

●●

●
●

●

●

●
●●●

●
●

●●●

●●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●
●●●

●●
●

●●
●●●

●●
1

Hourly Downloads

Lo
g 1

0(
T

im
e

in
 s

ec
on

ds
)

● aws−cli gsutil pegasus−s3

Figure 6. Time series download times of an empty file (0 Bytes) from an
object storage to the VM for Amazon and Google clouds. The values were
measured hourly during the time period of a week (May 12, 2015 to May
18, 2015).

of the download times for an empty file (0 Bytes) from
the cloud object storage to the virtual machine. The goal in
transferring an empty file is to measure the overhead induced
by the system. Since mConcatFit stages in over 6K small
files with average size of 0.3 KB, the performance of these
operations are of utmost importance. The large overhead
for small file transfers appears as the major cause for the
low performance of the mConcatFit job, and hence, the
workflow. For Amazon, we collected measurements from
transfers performed with the pegasus-s3 client, as well as
the aws-cli tool (which is the standard Amazon client). For
Google, we used their standard command line tool: gsutil.
Intriguingly, pegasus-s3 outperforms both standard tools
provided by the cloud environments. Nevertheless, Amazon
and Google standard tools perform similarly. Note that due
to the dynamic nature of the system measurements may
vary due to, for example, network contention or internal
load balancing. However, such variations are not sufficient
to mask the large performance difference between the tools.

Figure 7 shows the average upload (top) and download
(bottom) times of different file sizes for the transfer tools.
For upload operations (Figure 7-top), pegasus-s3 has
better performance for small file sizes (less or equal to
10MB), while the performance difference is mitigated for
larger files (100MB and 1GB). Similar behavior is observed
for download operations (Figure 7-bottom), except that
pegasus-s3 yields better performance up to 100MB files.

In order to identify the reasons why gsutil and
aws-cli yield poor performances, we ran the transfer tools
in the debug mode and evaluated all request operations per-
formed by each tool. From this analysis, we noticed that all
tools generate a HEAD and/or a GET request. We then used
tcpdump [19] and wireshark [20] to trace TCP packets
(Figure 8). The Amazon client (aws-cli) uses two TCP

10

20

30

0B 10KB 100KB 1MB 10MB 100MB 1GB
File Size

T
im

e
(s

)

aws−cli
gsutil
pegasus−s3

10

20

0B 10KB 100KB 1MB 10MB 100MB 1GB
File Size

T
im

e
(s

)

aws−cli
gsutil
pegasus−s3

Figure 7. Average upload (top) and download (bottom) times of a file size
transferred every hour for a week between a VM and a Cloud Storage.

connections to perform a copy command, as opposed to only
one connection used by pegasus-s3. This leads to the
overhead of a TCP connection establishment and termination
once the HEAD request returns. Additionally, aws-cli uses
https over all operations, which generates an additional
overhead of Transport Level Security (TLS) [21] for each
of the connections. pegasus-s3, on the other hand, uses
the same TCP connection connection to perform both HEAD
and GET requests. It also allows to skip TLS by allowing
operations over http instead of https, i.e., it bypasses
the TCP handshake [22].

In Figure 7, for most file sizes pegasus-s3 performs
significantly better than gsutil. We conducted the same
analysis as for aws-cli, and noticed that gsutil also
establishes two TCP connections during the course of a re-
quest. However, unlike aws-cli it uses two GET requests:
one to fetch the location of the data, and another to copy the
data itself. This additional overhead has a significant impact
on data movement operations over small files. Note that as
gsutil performs two GET requests using different TCP
connections, it is expected that file transfers of an empty

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●0

3000

6000

9000

Time (s)

B
yt

es
 p

er
 ti

ck
 (

0.
01

s)

● pegasus−s3 aws−cli (TCP 1) aws−cli (TCP 2)

Figure 8. Bytes per 0.01s transferred per TCP connection. It shows that
aws-cli creates two sequential TCP connections, while pegasus-s3
reuses the same connection. The ∼1200 peaks represent the GET call to
the object storage (Amazon S3), and the ∼4000 peaks represent the TLS
overhead.

file would take longer than with pegasus-s3. Analysis
results shown in Figures 6 and 7 clearly demonstrate that
this is the case. Since in the Montage workflow most of the
jobs consume/produce small files (up to 10MB, Figure 2),
we do not investigate the reasons of the poor performance
of the gsutil tool when transferring a 1GB file. However,
typical issues may include network latency and increased
load, among others.

The performance differences showed by these tools ex-
plains the differences observed on transfer times, and thereby
makespan, for the workflow executions performed with the
Cloud Storage and Submit Host configurations shown in
Figure 5.

B. SSD I/O

The analysis conducted for the VM Storage configuration
(Figure 5b) showed a significant performance difference
between the jobs execution times. As suggested, this discrep-
ancy may be caused by the performance of the disk drive
attached to the virtual machine. In this subsection, we eval-
uate the I/O throughput of the SSD disk used for each cloud
environment through benchmarking. For Amazon, we used
the Amazon General Purpose SSD disk, and for Google we
used the Google Persistent SSD disk. For the benchmarking
experiment, we used the linux dd [23] command-line tool to
benchmark the read/write throughput. We executed dd with
a block size of 4MB and one thousand blocks. We performed
one hundred sequential iterations of the command on both
cloud resources and measured the I/O throughput (Figure 9).

Amazon SSD provides a much higher throughput (128
MB/s) during the first 60 iterations, however the through-
put drastically drops to under 9 MB/s for the remaining
iterations. This reduction in the throughput is triggered by

●●

25
50

75
10

0

10 20 30 40 50 60 70 80 90 10
0

Iteration

T
hr

ou
gh

pu
t (

M
B

/s
)

● Google Amazon

Figure 9. I/O throughput comparison between SSD disks from Amazon
and Google clouds.

Amazon’s burst tolerance policy. Amazon provides a consis-
tent baseline throughput of 3 IOPS (Input/Output Operations
Per Second) per GB and handles bursts up to 3000 IOPS
per volume. These bursts are based on I/O credits for a
volume. Initially, all volumes begin with sufficient credits
to allow bursts of 3000 IOPS for a time period of 1,800s.
This explains why the SSD I/O throughput for Amazon
falls back to the baseline after the 60th iteration. Volumes
earn I/O credits every second at a baseline performance
rate of 3 IOPS per GB of volume size, and credits can be
accumulated up to 1800 seconds of burst. For example, the
70 GB SSD attached to the VM requires 25,714 seconds
to accumulate credits to completely refill the bucket of
30min burst. Since the VM Storage configuration writes all
intermediate data to the SSD disk and the Montage workflow
operates over thousands of small files, I/O credits were
eventually consumed and the I/O throughput significantly
dropped. This result explains why execution times for the
VM Storage configuration are much longer. Amazon also
provides a Provisioned IOPS SSD Volume, in which a
user can define a Volume with a specific IOPS rate for
applications that have high I/O requirements. The drawback
of this solution is that the workflow execution cost may
significantly increase.

Google, on the other hand, provides 30 IOPS per GB
without any burst tolerance. In our experiments, the 70GB
hard drive has a 33.6 MB/s sustained throughput. Although
Amazon’s burst policy may substantially reduce I/O through-
put, it still provides a much higher overall I/O throughput for
the workflow execution (this statement holds if the workflow
I/O patterns are bursty enough). For this reason, Amazon
yields better performance than Google for the VM Storage
configuration, where intermediate files are stored on the
attached SSD.

0

5000

10000

15000

Single−thread Multi−threaded

M
ak

es
pa

n
(s

)

Amazon
Google

Figure 10. Average workflow makespan for 3 runs of the Montage
workflow using singe- and multi-threaded mode for data transfer.

V. MULTI-THREADED DATA TRANSFER

The set of experiments conducted in the previous sections
focused on the analysis of the impact of overheads on
workflow executions. In these experiments, all data transfers
where performed in a single-thread mode, which facili-
tates the detection and evaluation of performance issues.
However, in real production executions, data transfers are
often performed in a multi-threaded mode. Therefore, we
performed workflow runs in a Cloud Storage configuration
scenario where file transfers were realized with multiple
threads. We chose this configuration since it has been the
most popular among Pegasus’ users.

First, we performed several executions of workflows using
the Montage workflow. For each execution of the work-
flow, we gradually increased the number of threads used
to execute the transfer operations. Overall, a reduction in
the makespan was observed by increasing threads until the
number of threads was greater than 5. Thus, we set 5 as
the default number of threads per data transfer operation
and conducted 3 runs of the Montage workflow on both
cloud platforms. Figure 10 shows the average workflow
makespan for the Montage workflow for both transfer
modes. Not surprisingly, the multi-threaded mode yields
smaller makespan values. In the multi-threaded mode, the
makespan for Amazon is about 21% lower, while for Google
the improvement is of about 32%.

Workflow runs on Google had more significant reduction
in the makespan when compared to the single-threaded
mode. This decrease is due to the use of multiple transfers
at a time, which masks the overhead incurred in a single
operation. To illustrate the impact of using a multi-threaded
transfer mode on the workflow execution performance, we
measure the performance gain of data transfer operations.
The cumulative data transfer time (multi-threaded) for Ama-
zon is 25,167s, and for Google is 42,573s, which represents

a decrease of about 19% and 24% (Figure 5), respectively.
We also observe a decrease on the average runtime of the
mConcatFit job (Figure 1) from 1,862s to 790s on Ama-
zon, and from 4,387s to 937s on Google, which represent
12% and 9% of the workflow makespan respectively.

A. Discussion on Potential Improvements and Research
Directions for Running I/O-intensive Workflows on Cloud
Computing Environments

The analyses performed in this paper showed that standard
cloud environments may present performance issues for
running I/O-intensive workflows. In particular, for work-
flows that operate over a large number of (small) files,
the performance may be poor, as noticed for the Montage
workflow. The current model provided by cloud storage
APIs includes a GET request per object. Although multi-
threading data transfers in Pegasus substantially reduce the
overhead due to network communications, the performance
loss is still high when several small files are involved. For
instance, the total time required to transfer the input data
for the mConcatFit job (a total of 1.9MB) from the
object storage to the VM is 790s for Amazon, and 937s for
Google. It is easy to notice that the overhead incurred by
these data transfers significantly slows down the application.
Since the Montage instance used in this paper is small (to
avoid spending several cycles of computing resources), this
overhead can exponentially grow with very-large runs of the
Montage workflow (in the order of millions of jobs [24]).

A possible solution to mitigate this overhead is to use a
bulk mechanism to concatenate and manage files within a
single transfer request. As a result, the overhead added by
transfer operation for each file can be masked. The resulting
overhead for transfers would be negligible compared to
the time to transfer the data. This approach is similar to
the multipart strategy to get/put files from cloud storage
services, where files are broken into chunks and transferred
in parallel [25]. However, this approach should be used
sparingly, since it could slow down the workflow execution
as it may include (artificial) barriers for job execution (i.e.,
subsequent jobs will have to wait the entire transfer to start
executing).

Our analyses also showed that the performance difference
among data transfer clients is mostly due to the number
of connections established to perform a transfer operation.
Our findings show that if secured connections is not a
requirement, not using them could significantly increase the
performance. For example, pegasus-s3 (which does not
perform secured data transfers) yields better performance
than aws-cli (which enforces secured connections). Low
data transfer performance may also be related to the perfor-
mance of the local disk used as a storage mechanism. In our
experiments, we identified that Montage runs have a bursty
access pattern, which explains why even though Amazon

provides lower baseline I/O per GB, it still performs better
than Google.

VI. RELATED WORK

In the past decade, several researches have been conducted
to understand the applicability of the cloud environment for
the execution of scientific workflows [26]–[28]. For instance,
in [2] the authors describe the experiences with deploying
a scientific workflow on various cloud environments. An
evaluation of the feasibility of cloud systems to meet the
performance requirements of scientific applications at a
reasonable price is conducted in [29]. In [3], [30], authors
explored various data sharing options for scientific work-
flows on EC2, and also analyzed the issues in deployment,
performance, and costs of running these workflows in a
cloud environment [31]–[33]. A plethora of studies have
been dedicated to cost- and deadline-aware scheduling and
resource provisioning in cloud systems. The goal of these
studies is to minimize the cost of executing workflows in
clouds while meeting the user deadlines [4], [34]–[36]. In
this paper, however, we aim to understand the bottlenecks
involved in the execution of I/O-intensive workflows in
clouds. We compare two widely used commercial clouds
under different storage configurations.

In I/O performance analysis, studies have focused on
measuring and analyzing the effect of provisioned network
bandwidth on overall workflow execution time and I/O
performance [37], [38]. In [39], authors analyze the I/O
performance of HPC applications in cloud environments by
varying disk storage per VM. However, their benchmarking
does not involve an object storage (in their case Amazon
S3). There have been studies on I/O performance isolation in
cloud environment [40], [41], but they are limited to a fixed
file size. In this paper, we conduct benchmarks on different
file sizes, using different storage configurations and cloud
specific storage clients.

Studies have been done to assess the performance of
Amazon for high-performance computing and scientific ap-
plications. These studies have shown that the cloud en-
vironment requires significant improvement to match the
needs of the scientific community [42], [43]. Consequently,
we focus on understanding the overheads involved on I/O
operations to identify measures of improvements where
these overhead could be minimized. Unlike previous work
on benchmarking Google Compute Engine [44], we compare
a fixed set of resources between Amazon and Google using
cloud specific clients. Our purpose is to identify performance
issues from a scientific application’s perspective that could
lead to performance improvements.

VII. CONCLUSION

In this paper, we evaluated the performance of an I/O-
intensive workflow on two widely used commercial clouds
(Amazon and Google). We compared workflow execution

makespans in different cloud storage deployments to explore
and quantify the impact of storage bottlenecks. Experimental
results show that the overall performance loss in using
Cloud Storage for intermediate files is about 400% when
compared to storing data locally. We also observed that the
overall workflow makespan on Google runs is higher than on
Amazon for all configurations. We then conducted network
and disk I/O benchmarking to identify the causes of these
performance differences. We identified the overhead incurred
on individual file transfer to be the culprit.

In configurations where the workflow data is stored ex-
ternally to the VM, the transfer client provided by the
workflow management system outperforms standard cloud
tools. Further investigation showed that this performance
gain is due to the overhead generated by additional TCP
connections established by the cloud standard clients. When
the workflow data is stored locally to a disk attached to the
virtual machine (i.e., no external data transfer is performed),
the I/O performance of the disk (in our case an SSD driver)
has significant impact on the workflow makespan. Amazon
appears as a preferable platform for bursty applications,
since its policy allows I/O bursts up to half an hour. We also
performed an evaluation of multi-threaded data transfers. As
expected, the workflow execution performance significantly
increases since the overheads are masked by the parallel
transfers. However, for large workflows composed of jobs
that operate over very small files, the overhead will still
be a burden. Therefore, we suggested the exploration of a
bulk transfer mechanism that would mask the overhead of
individual transfers.

The cloud computing environment is constantly evolving,
e.g., software and hardware are often updated/replaced,
and new techniques are continuously emerging. Therefore,
we acknowledge that performance measures vary and the
conclusions derived from this paper may change accordingly.
However, our methodology is still applicable. Figure 11
shows the variance in transferring an empty file every
hour for over a month in Cloud Storage configuration. The
evolving difference of transfer times for small files for
gsutil is an indicator of change in the system overhead.
However, since as a client, we have very limited knowledge
about the underlying system, it is hard to pinpoint the cause.
Nevertheless, the purpose of this paper is to identify bottle-
necks and quantify the impact of these bottlenecks on I/O-
intensive scientific applications. Therefore, the methodology
and issues identified in this study provide new insights to
evaluate the performance and requirements of I/O-intensive
workflows in cloud environments. Future work include the
continuous monitoring and analysis of cloud platforms to
evaluate the impact of performance changes on the execution
of scientific workflows, and the evaluation of other I/O-
intensive applications from different science domains. We
will also pay particular attention to improvements related to
cloud data transfer tools.

●
●●

●

●●●
●●●
●
●●
●
●●
●

●

●●
●
●
●

●●
●●
●
●●
●
●
●●
●
●

●

●●
●
●

●

●●●
●
●●

●

●

●

●
●

●

●

●

●
●
●

●●
●

●
●
●
●
●
●
●
●
●

●

●●
●
●●●●●
●
●

●

●

●
●

●
●
●
●●
●

●
●●

●

●●●
●
●●●

●
●●
●
●●

●

●

●●
●
●

●

●

●
●
●

●●

●

●●
●●

●

●

●

●
●
●●

●
●●

●
●

●
●●
●●●●
●
●●●

●

●

●
●
●

●

●●●●
●
●●

●●
●

●
●

●

●●
●●●

●

●
●
●

●
●

●

●●
●
●
●
●●
●
●●●
●

●
●●
●●●●
●●●●
●●●
●
●●
●●
●●●●
●

●

●●●●●●●
●
●
●●●
●

●
●

●
●

●

●
●●
●●
●●●●
●
●●●●●●●●●

●●
●
●

●

●●
●
●●
●
●●
●●●

●

●●
●●●
●●
●
●●●●

●

●●●

●

●●●●
●●
●●
●
●
●

●

●

●●

●
●

●

●
●●●

●
●
●●
●●
●
●
●
●●●●

●●●●●●●
●●

●

●
●
●●

●

●●
●
●
●
●

●
●●●●
●●

●●●
●●●●

●
●●●

●

●
●
●●●●

●

●
●●
●

●●

●
●●
●●●●
●●

●
●

●●

●
●●●●
●
●
●
●●

●

●●●
●●●

●
●

●

●
●●
●
●●
●

●
●

●

●●
●●●
●●
●

●

●●
●

●

●
●●

●

●
●
●

●

●
●●
●

●

●
●●●
●●
●
●
●●

●
●
●
●●
●●
●●
●

●

●●●●
●
●
●
●●

●

●

●
●

●

●●●
●
●●●●●

●
●●

●

●
●
●

●

●

●

●●
●
●●●●●
●

●
●●●●
●
●
●●●●
●
●
●

●
●

●

●
●●●
●●

●

●●●

●
●
●

●

●

●

●●●

●

●●
●●

●

●

●

●
●
●●

●

●

●

●
●●

●

●

●●

●●
●
●●
●
●

●

●
●●●

●

●

●

●●
●
●●

●●
●

●

●
●●

●

●●●

●
●

●●●●

●
●

●
●●

●

●

●

●
●●

●
●
●●●●●

●

●
●

●
●
●●
●

●

●
●●●●●●

●

●●
●
●
●

●●

●
●

●●
●●

●

●●
●●
●

●

●●●●
●●

●

●
●●●
●●
●●
●●
●●●
●
●●●●●
●
●
●

●
●
●

●
●
●
●

●

●

●
●●
●
●
●
●●

●●

●
●
●

●

●

●

●
●

●

●

●

●

●●
●

●●

●
●

●
●●●●●●
●
●●●
●●●

●

●

●

●
●
●●●
●

●

●●
●
●●
●

●

●

●

●
●
●
●●●
●●●●●
●
●

●●

●

●●
●
●
●
●●●

●
●●
●
●●

●
●
●
●
●

●

●

●
●

●
●

●
●●●●

●

●
●●
●

●

●

●
●
●●

●

●
●●●●●

●
●
●

●

●●●
●●●
●●

●●
●

●●●
●●●●
●1

10

Hourly Downloads

Lo
g 1

0(
T

im
e

in
 s

ec
on

ds
)

● aws−cli gsutil pegasus−s3

Figure 11. Time series download times of an empty file (0 Bytes) from an
object storage to the VM for Amazon and Google clouds. The values were
measured hourly during the time period of over a month (Oct 28, 2015 to
Dec 02, 2015).

ACKNOWLEDGEMENTS

This work was funded by DOE under contract
#DESC0012636, “Panorama - Predictive Modeling and Di-
agnostic Monitoring of Extreme Science Workflows”. We
thank Karan Vahi and Mats Rynge for their valuable help.

REFERENCES

[1] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson,
and J. McNabb, “A case study on the use of workflow
technologies for scientific analysis: Gravitational wave data
analysis,” in Workflows for e-Science, 2007, pp. 39–59.

[2] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, and B. Ber-
riman, “Experiences using cloud computing for a scientific
workflow application,” in Proceedings of the 2nd interna-
tional workshop on Scientific cloud computing. ACM, 2011,
pp. 15–24.

[3] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman,
B. P. Berman, and P. Maechling, “Data sharing options
for scientific workflows on amazon EC2,” in Proceedings
of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society, 2010, pp. 1–9.

[4] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-
constrained workflow scheduling algorithms for infrastructure
as a service clouds,” Future Generation Computer Systems,
vol. 29, no. 1, pp. 158–169, 2013.

[5] “Google compute engine,” https://cloud.google.com/compute.
[6] “Amazon elastic compute cloud (ec2),” http://aws.amazon.

com/ec2.
[7] D. S. Katz, J. C. Jacob, E. Deelman, C. Kesselman, G. Singh,

M.-h. Su, G. B. Berriman, J. Good, A. C. Laity, T. Prince
et al., “A comparison of two methods for building astronom-
ical image mosaics on a grid,” in Parallel Processing, 2005.
ICPP 2005 Workshops. International Conference Workshops
on. IEEE, 2005, pp. 85–94.

[8] R. Ferreira da Silva, G. Juve, E. Deelman, T. Glatard, F. De-
sprez, D. Thain, B. Tovar, and M. Livny, “Toward fine-grained
online task characteristics estimation in scientific workflows,”

https://cloud.google.com/compute
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2

in 8th Workshop on Workflows in Support of Large-Scale
Science, ser. WORKS ’13, 2013, pp. 58–67.

[9] R. Ferreira da Silva, G. Juve, M. Rynge, E. Deelman, and
M. Livny, “Online task resource consumption prediction for
scientific workflows,” Parallel Processing Letters, vol. 25,
no. 3, 2015.

[10] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan,
P. J. Maechling, R. Mayani, W. Chen, R. Ferreira da Silva,
M. Livny et al., “Pegasus, a workflow management system for
science automation,” Future Generation Computer Systems,
vol. 46, pp. 17–35, 2015.

[11] “gsutil,” https://github.com/GoogleCloudPlatform/gsutil.
[12] “Pegasus-s3,” https://pegasus.isi.edu/wms/docs/latest/

cli-pegasus-s3.php.
[13] “Aws command line interface,” https://aws.amazon.com/cli.
[14] “Amazon simple storage service (S3),” http://aws.amazon.

com/s3.
[15] “Google cloud storage,” https://cloud.google.com/storage.
[16] S. Srinivasan, G. Juve, R. Ferreira da Silva, K. Vahi, and

E. Deelman, “A cleanup algorithm for implementing storage
constraints in scientific workflow executions,” in 9th Work-
shop on Workflows in Support of Large-Scale Science, ser.
WORKS’14, 2014, pp. 41–49.

[17] “Scp,” http://linux.die.net/man/1/scp.
[18] “SFTP,” http://linux.die.net/man/1/sftp.
[19] “Tcpdump,” http://www.tcpdump.org.
[20] “Wireshark,” https://www.wireshark.org.
[21] T. Dierks, “The transport layer security (tls) protocol version

1.2,” 2008.
[22] J. Postel, “Rfc–793 transmission datagram protocol,” Infor-

mation Sciences Institute, USC, CA, 1981.
[23] “dd,” http://linux.die.net/man/1/dd.
[24] M. Rynge, G. Juve, J. Kinney, J. Good, B. Berriman,

A. Merrihew, and E. Deelman, “Producing an infrared mul-
tiwavelength galactic plane atlas using montage, pegasus and
amazon web services,” in 23rd Annual Astronomical Data
Analysis Software and Systems, ADASS, Conference, 2013.

[25] “Uploading objects using multipart upload api,”
http://docs.aws.amazon.com/AmazonS3/latest/dev/
uploadobjusingmpu.html.

[26] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P.
Berman, and P. Maechling, “Scientific workflow applications
on amazon ec2,” in E-Science Workshops, 2009 5th IEEE
International Conference on. IEEE, 2009, pp. 59–66.

[27] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance
cloud computing: A view of scientific applications,” in Perva-
sive Systems, Algorithms, and Networks (ISPAN), 2009 10th
International Symposium on. IEEE, 2009, pp. 4–16.

[28] Y. Zhao, X. Fei, I. Raicu, and S. Lu, “Opportunities and
challenges in running scientific workflows on the cloud,” in
Cyber-Enabled Distributed Computing and Knowledge Dis-
covery (CyberC), 2011 International Conference on. IEEE,
2011, pp. 455–462.

[29] G. Juve, E. Deelman, G. B. Berriman, B. P. Berman, and
P. Maechling, “An evaluation of the cost and performance
of scientific workflows on amazon ec2,” Journal of Grid
Computing, vol. 10, no. 1, pp. 5–21, 2012.

[30] R. Agarwal, G. Juve, and E. Deelman, “Peer-to-peer data
sharing for scientific workflows on amazon ec2,” in High
Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:. IEEE, 2012, pp. 82–89.

[31] G. Juve, M. Rynge, E. Deelman, J.-S. Vockler, and G. B.
Berriman, “Comparing futuregrid, amazon ec2, and open

science grid for scientific workflows,” Computing in Science
& Engineering, vol. 15, no. 4, pp. 20–29, 2013.

[32] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey,
B. Berriman, and J. Good, “On the use of cloud computing for
scientific workflows,” in eScience, 2008. eScience’08. IEEE
Fourth International Conference on. IEEE, 2008, pp. 640–
645.

[33] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good,
“The cost of doing science on the cloud: the montage exam-
ple,” in Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. IEEE Press, 2008, p. 50.

[34] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-
and deadline-constrained provisioning for scientific workflow
ensembles in iaas clouds,” in Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012,
p. 22.

[35] M. Malawski, K. Figiela, M. Bubak, E. Deelman, and
J. Nabrzyski, “Cost optimization of execution of multi-level
deadline-constrained scientific workflows on clouds,” in Par-
allel Processing and Applied Mathematics. Springer, 2014,
pp. 251–260.

[36] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski,
“Algorithms for cost-and deadline-constrained provisioning
for scientific workflow ensembles in iaas clouds,” Future
Generation Computer Systems, vol. 48, pp. 1–18, 2015.

[37] J. Wang and I. Altintas, “Early cloud experiences with the ke-
pler scientific workflow system,” Procedia Computer Science,
vol. 9, pp. 1630–1634, 2012.

[38] A. Mandal, P. Ruth, I. Baldin, Y. Xin, C. Castillo, M. Rynge,
and E. Deelman, “Evaluating i/o aware network management
for scientific workflows on networked clouds,” in Proceedings
of the Third International Workshop on Network-Aware Data
Management. ACM, 2013, p. 2.

[39] D. Ghoshal, R. S. Canon, and L. Ramakrishnan, “I/o per-
formance of virtualized cloud environments,” in Proceedings
of the second international workshop on Data intensive
computing in the clouds. ACM, 2011, pp. 71–80.

[40] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Un-
derstanding performance interference of i/o workload in vir-
tualized cloud environments,” in Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on. IEEE, 2010,
pp. 51–58.

[41] J. Shafer, “I/o virtualization bottlenecks in cloud computing
today,” in Proceedings of the 2nd conference on I/O virtual-
ization. USENIX Association, 2010, pp. 5–5.

[42] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon,
S. Cholia, J. Shalf, H. J. Wasserman, and N. J. Wright,
“Performance analysis of high performance computing ap-
plications on the amazon web services cloud,” in Cloud
Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on. IEEE, 2010, pp. 159–
168.

[43] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “A performance analysis of ec2 cloud com-
puting services for scientific computing,” in Cloud computing.
Springer, 2010, pp. 115–131.

[44] Z. Li, L. OBrien, R. Ranjan, and M. Zhang, “Early observa-
tions on performance of google compute engine for scientific
computing,” in Cloud Computing Technology and Science
(CloudCom), 2013 IEEE 5th International Conference on,
vol. 1. IEEE, 2013, pp. 1–8.

https://github.com/GoogleCloudPlatform/gsutil
https://pegasus.isi.edu/wms/docs/latest/cli-pegasus-s3.php
https://pegasus.isi.edu/wms/docs/latest/cli-pegasus-s3.php
https://aws.amazon.com/cli
http://aws.amazon.com/s3
http://aws.amazon.com/s3
https://cloud.google.com/storage
http://linux.die.net/man/1/scp
http://linux.die.net/man/1/sftp
http://www.tcpdump.org
https://www.wireshark.org
http://linux.die.net/man/1/dd
http://docs.aws.amazon.com/AmazonS3/latest/dev/uploadobjusingmpu.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/uploadobjusingmpu.html

	Introduction
	Experiment Conditions
	Scientific Application
	Execution Environment
	Storage Configuration Deployments

	Overall Performance Evaluation of an I/O-intensive Workflow
	Benchmarking Storage Performance
	Network I/O
	SSD I/O

	Multi-Threaded Data Transfer
	Discussion on Potential Improvements and Research Directions for Running I/O-intensive Workflows on Cloud Computing Environments

	Related Work
	Conclusion
	References

