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Abstract

With the increased prevalence of employing workflows for scientific computing and a push towards exascale computing, it has
become paramount that we are able to analyze characteristics of scientific applications to better understand their impact on the
underlying infrastructure and vice-versa. Such analysis can help drive the design, development, and optimization of these next
generation systems and solutions. In this paper, we present the architecture, integrated with existing well-established and newly
developed tools, to collect online performance statistics of workflow executions from various, heterogeneous sources and publish
them in a distributed database (Elasticsearch). Using this architecture, we are able to correlate online workflow performance data,
with data from the underlying infrastructure, and present them in a useful and intuitive way via an online dashboard. We have
validated our approach by executing two classes of real-world workflows, both under normal and anomalous conditions. The first
is an I/O-intensive genome analysis workflow; the second, a CPU- and memory-intensive material science workflow. Based on the
data collected in Elasticsearch, we are able to demonstrate that we can correctly identify anomalies that we injected. The resulting
end-to-end data collection of workflow performance data is an important resource of training data for automated machine learning
analysis.
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1. Introduction

Automating the execution of computational tasks is neces-
sary for improving scientific productivity. Scientific workflows
have facilitated breakthroughs in several domains such as as-
tronomy, physics, climate science, earthquake science, biology,
among many others [1]. Large-scale workflows are typically
comprised of thousands of tasks and process vast amounts of
data (from remote sensors, instruments, etc.) to conduct com-
plex modeling, simulations, and data analytics on distributed,
heterogeneous resources. Scientific workflow management sys-
tems, such as Pegasus [2], are critical automation components
that enable efficient and resilient workflow execution across
heterogeneous infrastructures. As the workflow requirements
keep increasing both in resource demands and complexity, there
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is an urgent need to understand the requirements and character-
istics of these applications to drive the design, development,
and optimization of the next-generation systems and solutions.

In spite of significant efforts on solving critical engineer-
ing challenges in workflow management [2] and the wide use
of workflow systems executing many scientific applications
from diverse domains in production [1], the current state-of-
the-art approaches lack a deep understanding of the require-
ments, characteristics, and relationships of current and emerg-
ing applications and systems. As part of the DOE ASCR Next-
Generation Networks for Science (NGNS) program [3], the
Panorama [4] and RAMSES [5] projects have individually fo-
cused on the development of technologies and mechanisms to
deepen our understanding of the applications and the systems.
Panorama targets the collection, analysis, and sharing of perfor-
mance data about end-to-end scientific workflows. RAMSES,
on the other hand, targets the development of end-to-end ana-
lytical performance models that improve our understanding of
the behavior of science workflows in extreme-scale science en-
vironments. By combining the strengths and solutions of data
gathering at both the application and infrastructure levels jointly
provided by Panorama and RAMSES, we aim to provide a com-
plete end-to-end online system that seamlessly captures work-
flow characteristics and performance data of scientific work-
flows at runtime. The various outcomes of this work can be
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applied in both theory and practice by improving application
performance and driving the development of novel application-
aware schedulers for workflow systems and by detecting and
handling anomalies during workflow executions.

In this paper, we present how a collection of well-established
tools, which have empowered computational science for the
past decade, can be orchestrated to produce a comprehensive
knowledge base of applications, systems characteristics, and re-
quirements. Due to the complexity of scientific applications and
the nature of distributed computing, building such knowledge
not only requires information about the workflow application
execution and its execution host, but also requires a broader un-
derstanding of the system as a whole. This includes capturing
data at the application-level, both characteristics (e.g., work-
flow structure, input data, etc.) and performance (e.g., CPU
and memory usage, I/O operations, etc.); and also at the sys-
tem level within and across computing sites (e.g., bulk data
transfers, networking including routing, IPv6, flow dynamics,
etc.). Gathering, storing, and distributing such information is
not only challenging due to the large volume of data produced
by each system at different levels of the software stack, but
also because of the need to properly identify common, over-
lapped, or complementary information generated by different
tools. The system proposed in this paper not only automates
data gathering, preparation, and storage, but also enables data
querying, retrieval, and analytics. We leverage the scalable and
flexible ELK stack (Elasticsearch, Logstash, and Kibana) [6],
which enables automated and efficient data ingestion, discov-
ery, retrieval, and visualization.

The main contributions of this paper include:
1. An end-to-end framework for online performance data

capturing, preprocessing, and storing of scientific work-
flows;

2. A comprehensive set of real world workflow execution
performance data, which includes fine-grained and coarse-
grained application-level and resource-level data within or
across computing sites;

3. Exemplar use of state-of-the-art frameworks and tools for
enabling seamless integration, data capture, and improved
understanding of current and next-generation applications
and systems;

4. Exploration and query mechanisms for knowledge discov-
ery via the ELK software stack, including a novel cus-
tomized component for near-real time performance data
visualization.

This paper is structured as follows. Section 2 presents an
overview of the related work. Section 3 briefly describes the
set of tools enabling this work. Section 4 presents the architec-
ture of our end-to-end system for online data capture and analy-
sis for scientific workflows, including our approaches to tackle
data acquisition challenges. In Section 5, we present how this
architecture can be deployed. Section 6 presents case studies
with two real world scientific applications and experiments con-
ducted to validate our approach. Section 7 provides information
about our initial attempt to provide an open access data repos-
itory for workflow performance statistics. Finally, Section 8
concludes with a brief summary of results and a discussion of

future research directions.

2. Related Work

The gathering and characterization of accurate resource us-
age is crucial for the development of solutions that enhance sci-
entific productivity (such as tuned infrastructure configurations,
and sophisticated resource allocation and task scheduling algo-
rithms). As scientific applications and systems become more
complex, understanding a system’s behavior and its environ-
ment are key to efficient resource and application management.
Although workload gathering and characterization is not novel,
the fast pace at which such systems evolve requires new tools
and mechanisms to efficiently process the large, heterogeneous
volumes of data that they generate [7].

In the past decade, workload archives have become very pop-
ular [8, 9, 10] and have enabled several advances in distributed
computing including the design, development, and evaluation
of a number of algorithms [8]. Nevertheless, most of the algo-
rithms are impractical due to the unrealistic assumptions, lack
of meaningful comparison, or bindings to a specific platform.
Additionally, such archives are not suitable for investigation
of workflow-based applications as the dependencies between
workflow tasks affect each other in terms of resource needs,
performance, failures, and so on.

Some efforts have been made to collect, profile, and pub-
lish traces and performance statistics for real scientific work-
flows [11, 12, 13, 14, 15, 16, 17, 18, 19]. These traces pro-
vide fine-grained information about workflow and job charac-
teristics and performance metrics including CPU and memory
usage, I/O operations, job dependencies, among others. Al-
though detailed workflow information could be extracted from
these traces, there is limited information about the infrastruc-
ture as well as limited information about end-to-end perfor-
mance data (e.g., TCP flows for data transfers, I/O profiling,
etc.). In [11], we have profiled time-series data for the SNS
workflow, in which anomalous behaviors could be identified.
However, that work was limited to information gathered by the
pegasus-kickstart toolkit. A common element absent from all
past works is the lack of a system that automates data gathering
and enables near real-time monitoring and investigation. The
work described in this paper alleviates the absence of such an
element by leveraging state-of-the-art tools and systems to pro-
vide a single entry point for data analysis of end-to-end, com-
prehensive, distributed workflow executions.

3. Software Ecosystem

Building a system for the end-to-end performance data cap-
ture of scientific workflow executions requires combining a col-
lection of complex and heterogeneous tools. In this section, we
briefly introduce the existing (and proven) software tools we
have leveraged for each component of our proposed system ar-
chitecture (presented in Section 4).
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3.1. System Frameworks

Pegasus WMS. Pegasus [2] is a popular workflow management
system that enables users to design workflows at a high-level of
abstraction that are independent of the resources available to ex-
ecute them and are also independent of the location of data and
executables. Pegasus transforms these abstract workflows into
executable workflows that can be deployed onto distributed and
high-performance computing resources such as DOE Leader-
ship Computing Facilities (e.g., NERSC [20] and OLCF [21]),
shared computing resources (e.g., XSEDE [22] and OSG [23]),
local clusters, and clouds. During the compilation process, Pe-
gasus performs data discovery, locating input data files and ex-
ecutables. Data transfer tasks are automatically added to the
executable workflow and perform two key functions: (1) stage
in input files to staging areas associated with the computing
resources, and (2) transfer the generated outputs back to a user-
specified location. Additionally, data cleanup (removes data
that is no longer required) and data registration tasks (catalog
the output files) are also automatically added to the workflow.
To manage user’s data, Pegasus interfaces with a wide variety
of backend storage systems that use different data access and
transfer protocols.

During workflow execution, provenance information from
workflow and job logs is automatically parsed and stored in
a relational datastore by a monitoring daemon called pegasus-
monitord [24]. Using a suite of associated command line tools
and a web-based dashboard, users are able to monitor and de-
bug their computations and determine a number of performance
metrics about their workflows, including:
• Workflow walltime – the wall time from the start until the

end of the workflow execution, which is reported by HT-
Condor DAGMan (the workflow executor used in Pega-
sus);
• Workflow cumulative job wall time – aggregated run times

for all the individual jobs in the workflow (aids resource
requirements estimation);
• Breakdown of jobs by count and runtime – for each job

type, the total number of jobs (succeeded and failed), as
well as the total, minimum, maximum, and average run-
times; and
• Breakdown of tasks and jobs over time on hosts – the num-

ber of jobs and total runtime of jobs running over different
hosts.

The monitoring daemon can also be configured to send nor-
malized events to an Advanced Message Queuing Protocol
(AMQP) endpoint [25]. This is particularly useful when con-
ducting analysis across workflows and correlating monitoring
information from various monitoring sources.

Globus. The Globus transfer service [26] is a cloud-
hosted software-as-a-service implementation that orchestrates
file transfers between pairs of storage systems [27, 28]. A trans-
fer request specifies, among other things, a source and desti-
nation; the file(s) and/or directory(ies) to be transferred; and
(optionally) whether to perform integrity checking (enabled by
default) and/or encrypt the data (disabled by default). Globus
provides automatic fault recovery and automatic tuning of op-

timization parameters to achieve high performance. It can also
transfer data using either the GridFTP or HTTP protocols. Dur-
ing the transfer, Globus provides performance monitoring met-
rics such as the average throughput at 60 seconds interval. Upon
completion, a detailed transfer log is made available for the
users, which includes:
• The request and completion time of the transfer;
• The source and destination endpoint information such as

the number of physical Data Nodes (DTNs) and the type
of transfer software stack (Globus Connect Personal or
Globus Connect Server [29]);
• Transfer performance data such as the average transfer

throughput, the total number of faults and checksum fail-
ures;
• Transfer parameters such as concurrency, parallelism,

pipeline depth [30, 29], data integrity checking and en-
cryption setting; and
• Transferred dataset information like total number of files,

directories and bytes.
ELK Stack. The ELK stack consists of the Elasticsearch,
Logstash, and Kibana [6] open-source tools. Elasticsearch pro-
vides a RESTful search and analytics endpoint. Logstash is a
data processing pipeline that ingests data from multiple sources
simultaneously, transforms it, and then sends it to a “stash” like
Elasticsearch. Kibana lets users query and visualize data with
charts and graphs in Elasticsearch. Combined, these tools pro-
vide a complete platform for data storage, retrieval, sorting, and
analysis.

3.2. Monitoring Tools

Darshan. I/O performance behavior is gathered with Dar-
shan [31], an HPC, lightweight, application-level I/O profiling
tool that captures statistics about the behavior of HPC I/O op-
erations. Darshan captures data for each file opened by the ap-
plication, including I/O operation counts, common I/O access
sizes, cumulative timers, and so on. I/O behavior is captured
for POSIX IO, MPI-IO, HDF5, and Parallel netCDF data inter-
face layers [32, 33, 34]. Darshan also captures a set of job-level
characteristics such as the number of application processes, the
job’s start and end times, and the job unique identification pro-
vided by the scheduler. Lastly, Darshan can instrument I/O
functions in both statically and dynamically linked executables.
Tstat. The TCP STatistic and Analysis Tool (Tstat) [35] is
an open source, passive trace collection tool used to capture
a packet-level log of a comprehensive set of parameters such as
TCP’s RTT, congestion window size, ACK/SYN/FIN counts,
and retransmitted, reordered or lost packets. It also covers a
wide spectrum of network activities such as TCP, UDP, and
RTP/RTCP traffic. Tstat distinguishes between “complete” and
“not complete” flows and also between clients (hosts that ac-
tively open a connection) and servers (hosts that passively listen
for connection requests).
pegasus-kickstart. Compute jobs in Pegasus are wrapped us-
ing a lightweight C executable called pegasus-kickstart [36] that
captures runtime job provenance data. The toolkit provides use-
ful information about the execution of the wrapped task such
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as (1) information about the execution node (architecture, OS,
number of cores, available memory); (2) the environment setup
of the machine while the task was running; (3) the task’s char-
acteristics and performance data (arguments, start time, dura-
tion, exit code, etc.); and (4) the task’s output logs (stdout and
stderr).

4. Online Monitoring System

In previous works [37, 38, 39], we have demonstrated the po-
tential of workflow performance data capture and analysis to es-
timate workflow resource requirements and to detect anomalies
present in a single workflow execution trace generated by the
workflow management system. In this work, we aim to collect
and correlate information from heterogeneous monitoring com-
ponents that are resident in various execution sites. These mon-
itoring sources include underlying data transfer infrastructure
for workflows (i.e., Globus Online and Tstat) and I/O perfor-
mance monitoring tools (i.e., Darshan). Each of these sources
has its own proprietary format that introduces challenges re-
lated to how information can be integrated. By approaching
the problem from a system architecture perspective (Figure 1),
we use the RabbitMQ message broker [40] as the central end-
point where monitoring information is gathered from the vari-
ous sources. Underneath the message broker, we have deployed
a standard ELK stack. We use Logstash’s RabbitMQ input plu-
gin to fetch data from the AMQP endpoint and push it into an
Elasticsearch instance. Additionally, we have built a custom
workflow dashboard as a Kibana plugin. This dashboard allows
users to select a particular workflow and visualize the related
performance data in near real-time: both aggregated at a work-
flow level and a per job level.

In this section, we present an overview of the data collec-
tion framework. We describe the online monitoring capabilities
provided by pegasus-kickstart [36], which are fundamental for
workflow performance data gathering. We then describe the
data collection challenges encountered and the subsequent so-
lutions implemented to gather data from the monitoring compo-
nents, followed by a description of the data capture flow during
the execution of a workflow job. Finally, we present the Kibana
plugin for data discovery and visualization.

4.1. Pegasus-Kickstart Online Monitoring

Near real-time monitoring enables the rapid detection of poor
performance issues and workflow or infrastructure anomalies.
By harvesting such information in a timely fashion, one could
identify, mitigate, or prevent undesired behaviors at runtime. To
this end, we have extended pegasus-kickstart to include fine-
grained monitoring capabilities that can pull resource usage
statistics of workflow running tasks within a predefined time
interval. The maximum pulling frequency is limited to one
second to prevent system flooding. This information is then
published to an AMQP endpoint in JavaScript Object Nota-
tion (JSON) format so it can be ingested to a permanent stor-
age (e.g., InfluxDB) or to an analysis framework (e.g., Elastic-

search). Table 1 summarizes performance metrics and work-
flow characteristics provided by pegasus-kickstart1.

Field Description

event type of event (kickstart.inv.online)
ts timestamp of the measurement
hostname the hostname of the compute node
site the execution site
wf uuid the workflow UUID
wf label the workflow label
dag job id the job ID referring to Pegasus’s dag
xformation the job label from Pegasus’s dag
task id task ID
pid the process ID
exe the invoked executable
rank the process rank
utime time spent on executing user code
stime time spent on executing system code
iowait time spent on waiting for IO
vm virtual memory used by the process
rss resident-set size memory used by the process
procs number of processes
threads number of threads
bread number of bytes read
bwrite number of bytes written
rchar number of chars read
wchar number of chars written
syscr number of read system calls
syscw number of write system calls
bsend number of bytes sent
brecv number of bytes received

Table 1: Summary of online workflow performance metrics and characteristics
provided by pegasus-kickstart.

4.2. Data Collection

To support the online nature of our data capture system, we
have designed and extended Pegasus to include online publish-
ing capabilities. Specifically, we have modified the monitor-
ing daemon (pegasus-monitord) and the transfer tool (pegasus-
transfer). In addition to Pegasus-specific tools, we have also
developed mechanisms to gather, preprocess, and publish job-
level and infrastructure-level performance data from system
profiling tools, such as Darshan and from transfer services such
as Globus Online. Below is a summary of the challenges intrin-
sic to each tool and a description of our approach to overcome
them.

pegasus-monitord. The Pegasus monitoring daemon follows a
workflow execution and records provenance information from
the workflow and its completed jobs. Typically, coarse-grained
runtime provenance information is populated to a relational
datastore (the Stampede Workflow Database [24]) upon job
completion. To enable near real-time, fine-grained monitoring
while still gathering and storing provenance data in a traditional

1Currently, this implementation is available online in a separate GitHub
branch: https://github.com/pegasus-isi/pegasus/tree/panorama
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Figure 1: Architecture overview of the end-to-end online performance data capture and analysis process. How Panorama is using the Pegasus workflow management
system to collect and publish workflow logs, execution traces and transfer logs.

relational database, we have developed a multiplexing capabil-
ity that allows pegasus-monitord to publish events to an AMQP
endpoint in addition to the relational database. We have also ex-
tended pegasus-monitord to parse additional monitoring events
from job stdout records to facilitate population of events from
Darshan.

pegasus-transfer. The Pegasus transfer tool performs data
movement operations by invoking the appropriate underlying
data transfer tool based on the protocol scheme specified for
the source and destination URLs. It supports a variety of pro-
tocols such as SCP, GridFTP, HTTP, S3, stashcp, file copy,
etc. [41, 42, 43]. Upon completion, transfer logs are summa-
rized into file records (job’s standard output files) which include
the number of transfer operations performed, the amount of data
transferred, and the transfer rate. Due to the imminent need for
a better and more rapid detection of data transfer issues, we
have extended pegasus-tranfer to perform transfer operations
via the Globus Online transfer service. Not only does it provide
fast, secure, and reliable data movement operations for work-
flow data transfers, but Globus Online also provides a querying
mechanism to retrieve the transfer status near real-time. Af-
ter a transfer finishes, either with a successful or a failed sta-
tus, pegasus-transfer queries the Globus transfer service and
publishes detailed information about the transfer to the AMQP
endpoint. Fine-grained transfer logs include:
• Transfer request, start, and completion times;
• Transfer steps (for long running transfers);
• Accurate transfer throughput;
• Level of concurrency and parallelism used in transfer;
• Number of subtasks failed and retried; and
• Human readable error messages describing the failure.

Darshan. We use the Darshan profiling tool to gain insights
into the I/O performance of Message Passing Interface (MPI)
applications. Darshan is usually enabled by default on large
HPC systems and its logs are available in a proprietary binary
format at a standard location for each job when it completes.
We have developed a new tool called pegasus-darshan that:
(1) determines the corresponding log file for a particular job
based on the local resource manager’s job ID; and (2) parses the
binary file and generates a JSON record containing the relevant
Darshan statistics. This tool is invoked at the end of each MPI
remote job execution, and the extracted Darshan information
gets encoded in the job’s stdout. The JSON record contain-
ing information from Darshan (Listing 1) is parsed by pegasus-
monitord and is published to the AMQP endpoint. Currently,
we only extract a subset of the available Darshan statistics
(summarized in Table 2).

Tstat. Execution sites often do not provide direct access to Tstat
logs. Instead, execution sites make a subset of preprocessed
records available to their users. For instance, at the National
Energy Research Scientific Computing Center (NERSC), Tstat
processed logs are published to an ELK cluster, which users can
access via a Kibana dashboard. One thing to note is that not all
Tstat records are made available in the ELK cluster (NERSC fil-
ters records where transfer throughput is below 100 MB/s, i.e.
transfers from/to slow speed networks are omitted). Due to the
delay (up to several hours) in preprocessing the large amount of
transfer logs, online monitoring becomes challenging. Finally,
Tstat captures very low-level network statistics that do not con-
tain metadata associating TCP flows to a particular data trans-
fer. Such disjointed information from TCP flow fine-grained
statistics and data transfers hinders the ability to identify issues
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Field Description

event event type: stampede.task.monitoring
monitoring event monitoring event type: darshan.perf
darshan log version log file version number
exe name of the executable
uid user id that job ran as
jobid job id from the scheduler
start time start time of the job
end time end time of the job
nprocs number of MPI processes
run time run time of the job in seconds
STDIO.* STDIO module data
POSIX.* POSIX module data

Table 2: Summary of Darshan metrics captured during workflow execution.
Since Darshan logs are only produced at job completion, near real-time moni-
toring is attained at per job completion granularity.

concerning a specific transfer operation. The problem becomes
more complex in large-scale production environments, where
hundreds of transfers may occur simultaneously.

Data collection with Tstat is currently performed manually
at the execution site, but efforts are already in place to enable
the automation of the retrieval process. Globus uses GridFTP
for file transfers and spawns concurrent GridFTP processes
to transfer multiple files simultaneously. Furthermore, each
GridFTP process uses multiple TCP connections [41, 44], and
connections are reused for all files within a process. In order
to correlate individual file transfers with TCP flows, we have
to leverage Globus features to match specific transfer tasks to
Tstat statistics. To achieve this, we are currently extending the
Globus Transfer service to expose low level network informa-
tion (e.g., GridFTP server IPs, and TCP flows ports) regarding
data transfers including individual file transfers.

4.3. A Versatile Approach for Integrating New Tools
As monitoring tools are constantly evolving, we argue it is

crucial to provide a way to seamlessly integrate new tools into
the overall monitoring and analysis system. To this end, we
have extended pegasus-monitord with the ability to parse addi-
tional monitoring events from job stdout records. This feature
allows us to create job wrapper scripts that can invoke arbitrary
monitoring tools and append statistics produced by these tools
to the stdout upon task completion. These statistics have to be
in JSON format and must be wrapped within an output segment
specified by keyword tags that indicate the start and end of a
record. While pegasus-monitord is processing stdout records,
it is able to identify this special segment and trigger a monitor-
ing event after parsing the JSON document. By following this
approach, the monitoring data will be added to Elasticsearch
under the index hosting the workflow events by default. How-
ever, by using Logstash, these events can be filtered, prepro-
cessed, and finally ingested into a new custom index. In our ar-
chitecture, this approach is being used to add the data produced
by Darshan on the remote execution site to Elasticsearch as de-
scribed in Section 4.2. A generic monitoring payload consists
of a monitoring event, a payload, and a timestamp. An example
of a generic monitoring payload can be found in Listing 1.

@@@PEGASUS_MONITORING_PAYLOAD - START @@@

{

"monitoring_event": "darshan.perf",

"payload": [

{

"POSIX_module_data": {...},

"STDIO_module_data": {...},

"compression_method": "ZLIB",

"darshan_log_version": "3.10",

"end_time": 1531941742,

"end_time_asci": "Wed Jul 18 19:22:22 2018",

"exe": "namd2 equilibrate.conf",

"jobid": "1547",

"metadata": {

"h": "romio_no_indep_rw=true;cb_nodes=4",

"lib_ver": "3.1.6"

},

"nprocs": 8,

"run_time": 65.0,

"start_time": 1531941678,

"start_time_asci": "Wed Jul 18 19:21:18 2018",

"uid": "1003"

}

],

"ts": 1531941740

}

@@@PEGASUS_MONITORING_PAYLOAD - START @@@

Listing 1: Generic monitoring payload example.

4.4. Data Capture Flow
To convey application and infrastructure performance data

from various heterogeneous data sources to the workflow’s end
user in a comprehensive and coherent fashion, we have de-
signed and implemented the flow illustrated in Figure 1. The
flow entry point is a Pegasus workflow, and performance infor-
mation collected during the workflow execution is made acces-
sible through a custom Kibana dashboard or the Pegasus dash-
board REST API.

On a submit host, Pegasus takes in a high-level description
of the user workflow and generates an executable workflow
that is managed by HTCondor DAGMan. DAGMan releases
jobs when they are ready for execution to the local HTCon-
dor scheduler that in turn submits the jobs to remote resources
for execution. On a remote resource, the jobs are launched by
pegasus-kickstart, which monitors job execution and sends on-
line monitoring events to the RabbitMQ message broker. When
a compute job is an MPI job, the job wrapper automatically
invokes pegasus-darshan to parse I/O characteristics from Dar-
shan logs upon completion of the job and encodes them as part
of the job’s standard output (stdout). The job stdout is then
included in the pegasus-kickstart output, which is transferred
back automatically to the workflow submit host. On the sub-
mit host, the job information and the DAGMan logs are parsed
by pegasus-monitord, which publishes this information to the
RabbitMQ message broker and populates the Pegasus Stam-
pede workflow database. Workflow data transfer jobs are ex-
ecuted using pegasus-transfer. While managing the transfers,
pegasus-transfer initiates transfer requests to the Globus trans-
fer service and frequently (at a predefined time interval) per-
forms pull requests inquiring about the status of the transfers.
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Figure 2: Screenshots of the Kibana plugin for near real-time monitoring of
workflow performance metrics. Top: workflow progression and detailed job
characteristics. Bottom: time series data of job performance.

Upon completion, Globus transfer logs are retrieved and pub-
lished by pegasus-transfer to the RabbitMQ message broker.
All the online monitoring data published to RabbitMQ are au-
tomatically fed into Elasticsearch using the Logstash connector,
and afterwards are accessible in the custom Kibana dashboard
plugin. Additionally, workflow and job level data recorded in
the relational workflow database (Pegasus Stampede [24]) is
made available via the Pegasus dashboard REST API.

4.5. Data Discovery and Visualization

The goal of this work is to provide a resource for the col-
lection, discovery, analysis, and sharing of end-to-end perfor-
mance data of scientific workflow executions. In our proposed
system, data archiving and browsing are managed as follows.
Structured data is stored in a traditional relational database (Pe-
gasus Stampede) that permanently records workflow events and
statistics. This data can then be accessed via a REST API to
query the workflow status and the job-specific or workflow-
specific performance metrics during execution. Online perfor-
mance data, as well as workflow events, are also stored in an
unstructured format in Elasticsearch. By generating inverted
indexes for every field in the data (inverted indexes can be used
simultaneously in queries), data discovery is empowered by full
text search, which allows for the unveiling of hidden knowl-
edge (e.g., differentiate identical error codes using the ascii er-
ror messages). For our experiments, the Elasticsearch deploy-
ment is centralized in a single server. As data ingestion and

pegasus.monitord.encoding = json

pegasus.catalog.workflow.amqp.url = \

amqp://[username:password]@hostname[:port]/exchange_name

pegasus.catalog.workflow.amqp.events = stampede.*

Listing 2: Enabling Pegasus Stampede events via the Pegasus’ properties file.

querying traffic become larger, we plan to enable the distributed
deployment (shards) of Elasticsearch.

To enable near real-time monitoring and easy, interactive vi-
sualization of workflow characteristics and performance met-
rics, we have developed an open-source Kibana plugin [45]
(Figure 2). This dashboard combines and summarizes data
gathered from the various sources described in this paper and
displays concise information (in the form of tables and plots)
about the workflow execution at runtime. The goal of this dash-
board is to allow users to effortlessly pinpoint performance is-
sues without needing to dig into the hundreds of MBs of ex-
ecution logs generated during execution. As events occur and
their data are pushed into Elasticsearch, the user can follow the
progression of the workflow in near real-time. Statistical or Ma-
chine Learning (ML) analyses on the data can be performed by
simply running one or a few of the multitude of Kibana plugins
freely available online, all within the same platform. Our plugin
is a live product and is constantly evolving with new capabili-
ties. The current collection of available plots includes time-
series analysis of workflow-level and job-level statistics such as
CPU utilization, I/O read and write operations, I/O wait, I/O
throughput and runtime, among others (Figure 2).

5. Deploying the Online Monitoring Architecture

In this section, we describe how the proposed architecture
can be deployed. Our architecture allows users to partially or
fully enable monitoring features by simply providing specific
Pegasus profiles or properties as described below. The source
code is publicly available on GitHub [46].

Enabling Stampede Events. In order to direct pegasus-
monitord to publish all of its events to the AMQP end-
point in JSON format, three properties must be specified
in the workflow’s properties file (e.g., pegasus.properties):
(1) pegasus.monitord.encoding enables the JSON output
format; (2) pegasus.catalog.workflow.amqp.url contains
the connection information to the AMQP endpoint; and
(3) pegasus.catalog.workflow.amqp.events filters which
events should be published. Listing 2 shows an example of
these properties in practice.

Enabling Transfer Events. To enable the mechanisms to pub-
lish transfer statistics from the Globus Transfer Service to an
AMQP endpoint in JSON format, two Pegasus profiles must
be specified in the workflow’s sites catalog (e.g., sites.xml),
under the site where pegasus-transfer will be invoked (e.g.,
local), as shown in Listing 3. The environment variable
PEGASUS TRANSFER PUBLISH operates as an on/off switch to the
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transfer monitoring, and the PEGASUS AMQP URL variable pro-
vides the AMQP endpoint definition to pegasus-transfer.

<site handle="local">

...

<profile namespace="env" key="PEGASUS_TRANSFER_PUBLISH">

1

</profile>

<profile namespace="env" key="PEGASUS_AMQP_URL">

amqp://[username:password]@hostname[:port]/exchange_name

</profile>

</site>

Listing 3: Enabling Pegasus Transfer events via the Pegasus’ sites catalog.

Enabling Kickstart Online Traces. To publish traces of re-
source usage statistics, two Pegasus profiles must be speci-
fied in the workflow’s sites catalog (e.g., sites.xml) under the
compute site (Listing 4): (1) pegasus.gridstart.arguments

instructs pegasus-kickstart to collect resource usage statis-
tics every N seconds; while (2) KICKSTART MON URL points
to AMQP’s rest api for publishing data, which looks simi-
lar to “api/exchanges/exchange name/publish”. This way,
pegasus-kickstart will push such information to an AMQP end-
point in JSON format.

<site handle="compute">

...

<profile namespace="pegasus" key="gridstart.arguments">

-m interval_seconds

</profile>

<profile namespace="env" key="KICKSTART_MON_URL">

rabbitmq://[USERNAME:PASSWORD]@hostname[:port]/...

</profile>

</site>

Listing 4: Enabling Kickstart online traces via the Pegasus’ sites catalog.

Enabling Darshan Statistics. As mentioned in Section 4, we
use a wrapper script to retrieve Darshan logs. This script iden-
tifies the location of the generated Darshan logs and invokes
pegasus-darshan after the completion of the MPI job. The
“pegasus-darshan” tool parses the Darshan logs and outputs
a monitoring payload (Listing 1). The propagation of these
events depends on whether the Stampede events have been en-
abled. An example of the wrapper script, which was used to
retrieve Darhan logs from Cori at NERSC, is shown in List-
ing 5.

Setting Up The Monitoring Backend. Configuring the mon-
itoring backend (RabbitMQ, Elasitcsearch, Logstash, and
Kibana) can turn out to be a cumbersome and challenging
process, especially if one is not familiar with these tools and
only wants to collect and analyze workflow execution statis-
tics. By leveraging container technologies (Docker [47] and
Docker Compose [48]), we have developed a container orches-
tration mechanism that spins up all the required services pre-
configured to capture all events produced by the workflow ex-
ecution. Additionally, this automation spins up a version of
Kibana that has the Panorama plugin installed. All container
services use persistent volumes, which consequently main-

#!/bin/bash -l

srun $PEGASUS_HOME/bin/pegasus-monitor namd2 "$@"

#post job parse darshan output

DAY=$(date '+%d')
DAY=${DAY##0}

MONTH=$(date '+%m')
MONTH=${MONTH##0}

YEAR=$(date '+%Y')

darshan_base=${DARSHAN_LOGDIR}/${YEAR}/${MONTH}/${DAY}

darshan_file=\

${darshan_base}/${SLURM_JOB_USER}_*${SLURM_JOB_ID}_*.darshan

for f in $darshan_file; do

$PEGASUS_HOME/bin/pegasus-darshan -f "$f"

done

Listing 5: Example of a wrapper script for gathering Darshan statistics from
Cori at NERSC.

tain the state of the daemons and the collected data between
restarts. Finally, all services can be triggered using a single
command (docker-compose up -d), which is reliable and easy
to use [49].

6. Case Studies

In this section, we present case studies with two real world
scientific workflow applications: a CPU-intensive material sci-
ence application and a data-intensive genomics application.
The goal of these case studies is to demonstrate the ability of
our system to accurately capture performance metrics that are
critical for improving the efficiency and resilience of current
and upcoming systems and scientific workflow applications.
We experiment within a controlled environment, where anoma-
lies are injected at runtime, so that we can measure whether our
system adequately captures such behaviors.

6.1. Scientific Applications

Spallation Neutron Source. We use a material, science-
related workflow developed at the Spallation Neutron Source
(SNS) [50], a DOE research facility at Oak Ridge National Lab-
oratory. The SNS workflow executes an ensemble of molecular
dynamics (MD) and neutron scattering intensity calculations to
optimize a model parameter value, for example, to investigate
temperature and hydrogen charge parameters for models of wa-
ter molecules. The workflow takes as input a set of tempera-
ture values and four additional parameters: (1) type of mate-
rial, (2) the number of required CPU cores, (3) the number of
timesteps in the simulation, and (4) the frequency at which the
output data is written. Figure 3 shows a branch of the work-
flow that analyzes a single temperature value. First, each set of
parameters is fed into a series of parallel molecular dynamics
simulations using NAMD [51]. The first simulation computes
an equilibrium, which is used by the second simulation to com-
pute the production dynamics. The output from the MD simula-
tions has the global translation and rotation removed using AM-
BER’s [52] cpptraj utility, which is passed into Sassena [53]
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Figure 3: A diagram of a branch of the SNS workflow.

to compute coherent and incoherent neutron scattering intensi-
ties from the trajectories. The final outputs of the workflow are
transferred to the user’s desktop and loaded into Mantid [54] for
analysis and visualization. In our experiments, we configured
the SNS workflow to spawn 8 MPI processes for the Equili-
brate stage, 16 MPI processes for the Production stage, and 16
MPI processes for both Coherent and Incoherent neutron scat-
tering intensities calculations. Unpacking the Sassena DB and
executing cpptraj were done using a single core only.

1000Genome. The 1000 genomes project provides a reference
for human variation, having reconstructed the genomes of 2,504
individuals across 26 different populations [55]. The test case
used in this work identifies mutational overlaps using data from
the 1000 genomes project in order to provide a null distribution
for rigorous statistical evaluation of potential disease-related
mutations [56]. This test case (Figure 4) is composed of five
different tasks: (1) individuals – fetches and parses the Phase 3
data from the 1000 genomes project per chromosome; (2) pop-
ulations – fetches and parses five super populations (African,
Mixed American, East Asian, European, and South Asian) and
a set of all individuals; (3) sifting – computes the SIFT scores of
all of the SNPs (single nucleotide polymorphisms) variants, as
computed by the Variant Effect Predictor; (4) pair overlap mu-
tations – measures the overlap in mutations (SNPs) among pairs
of individuals; and (5) frequency overlap mutations – calculates
the frequency of overlapping mutations across subsamples of
certain individuals. In order to fit an instance of the workflow
execution into our testbed (see description below), we are pro-
cessing 2 chromosomes for which we have pruned the original
datasets to about 10% (about 1GB each) of the original data
(about 11GB per individual dataset). For this experiment, each

...c1 c2 c3 c4 c22 ...s1 s2 s3 s4 s22...p1 p2 pn

... fc 2505fc 1 fs 3fp 1 fp 2 fp n...

...m1 m2 m3 m154 ...fr1 fr2 fr3 fr154

i 3 pop 2 sh 3

om 1

Data Preparation
Populations Sifting

Individuals
1000 Genome Populations Sifting

Pair
Overlap

Mutations

Individuals

Analysis

ofm 1

Input Data

Output Data fom 2 fog 2

Frequency
Overlap

Mutations

Figure 4: Overview of the 1000Genome sequencing analysis workflow.

workflow is composed of 22 individuals jobs, 2 sifting jobs, 14
frequency overlap mutations jobs, and 14 pair overlap muta-
tions jobs.

6.2. Experimental Setup

Figure 5 presents the experimental system on the ExoGENI
cloud testbed [57]. It is orchestrated over a federation of in-
dependent cloud sites located across the US and connected via
national research circuit providers such as Internet2 [58] and
ESNet [59], through their programmable exchange points. Ex-
oGENI provides users with isolated virtual compute, storage,
and network resources named “slices” of infrastructure. Exo-
GENI uses its native ORCA (Open Resource Control Architec-
ture) [60] control framework software to offer a unified hosting
platform for deeply programmable, multi-domain cloud appli-
cations. By using a controlled execution environment such as
ExoGENI, we ensure that system interference are minimized as
synthetically generated interference affect specific performance
metrics targeted for evaluation.

Our setup consisted of one data node, one master node, and
four compute (worker) nodes. Each node had 4 vCPUs clocked
at 2.2 Ghz, 10GBytes of RAM, and 75GBytes of storage. Both
the compute and the master nodes were collocated on the same
rack, while the data node was spawned on a rack in another
region. The master and the compute nodes communicated via
the rack switch, while the data node could be reached via ES-
net’s network. To facilitate the execution of the workflows,
we configured our slice with HTCondor and Slurm, and we
configured Pegasus on the master/submit node (where HTCon-
dor managers and schedulers, as well as Slurm master, reside).
Globus Endpoints were created on both the master and the data
nodes. Additionally, the master node and the compute nodes
had access to a shared file system (NFS), which was physically
located on master’s hard disk.

Figure 5: Experimental setup on the ExoGENI testbed.
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Figure 6: Transfer throughput of 1000Genome workflow with packet loss.

6.3. Network Throughput

In this set of experiments, we aim to demonstrate the ability
of our framework to capture network anomalies due to low per-
formance in a network. More specifically, we arbitrarily inject
synthetic packet loss and packet reordering anomalies during
the execution of workflow transfer jobs so that we can assess
whether the information captured by our framework at runtime
is sufficient to show discrepancies due to network anomalies.

For this experiment, we performed runs of the 1000Genome
workflow where the input data is staged in from the data node to
the master node (the execution site) with Globus transfer. Job
scheduling, execution, and data transport between the master
and compute nodes are performed through HTCondor. Upon
job completion, output data is staged out to the data node us-
ing Globus transfer service. For each scenario described below,
we performed six runs of the 1000Genome workflow to insure
statistical significance (error below 5%).

We used the Linux native Traffic Control (TC) [61] toolset
to configure the Linux kernel packet scheduler so that we could
introduce synthetic network and I/O anomalies, including de-
lay, packet loss, and jitter, among others. Figure 6 shows the
effect of packet loss when using TC to introduce a random-
ized percentage of packet losses at rates of 1%, 3%, and 5%.
This interference is generated during the execution of a Pega-
sus stage-in transfer job (stage in 0 1) for the 1000Genome
workflow, which transfers 790 MB of input data via ESNet
(from the data to the master node). When there is no interfer-
ence in the network connection, the mean transfer throughput
is about 170 Mbps. In the event of randomized packet loss dis-
turbances, network throughput significantly degrades by up to
∼6x – measured throughput is about 32, 18, and 9 Mbps for 1%,
3%, and 5% packet loss, respectively.

Although TCP attempts to mitigate out-of-order delivery of
data packets, this is still a common issue in today’s computa-
tional systems [62]. Not only does this impose significant com-
putational overheads on hosts, but it also impacts the through-
put of TCP. Therefore, having the ability to accurately identify
and assess such impact on workflow job executions is crucial
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Figure 7: Transfer throughput of 1000Genome workflow with packet reorder-
ing.

to support the decision process of performing actions to pre-
vent or mitigate such effect. To this end, we inject synthetic
packet reordering by arbitrarily delaying some of the packets
for 10 ms before dispatching them. For example, 30% reorder-
ing means 30% of packets are delayed for 10 ms, while the re-
maining packets are dispatched immediately with a correlation
of 50%.

Figure 7 depicts distribution measurements of the network
throughput for 10%, 30%, 50%, 70%, 90%, and 100% packet
reordering. Transfer throughput has a noticeable slowdown
when the packet reordering rate increases from 0% to 30%
(∼0.2x degradation). Intriguingly, the network throughput
raises for reordering at a 50% rate – as more packets are de-
layed, the more ordered they become. Similar behavior can
also be observed in the throughput for reordering rates of 70%
and 90%, which are symmetrical to the throughput of 30% and
10%, respectively.

Both of the network anomalies above have significant impact
on the transfer throughput. However, it is difficult to identify the
issue that degrades network throughput from the Globus trans-
fer logs alone. Therefore, Tstat becomes a centerpiece of our
data capture architecture as it provides fine-grained low-level
network statistics of TCP flows. By combining both Globus
transfer and Tstat logs, we can derive a more complete picture
of the data transfers, which is fundamental for end-to-end mon-
itoring of workflow executions.

6.4. I/O Throughput

A typical bottleneck when running large-scale, data-intensive
workflows is the heavy use of disk I/O. As parallel file sys-
tem performance is not keeping up with compute and mem-
ory performance, it is imperative to properly identify situations
where low I/O performance may severely impact the workflow
makespan. To attenuate this issue, both in situ and in tran-
sit solutions have been used to accelerate the workflow perfor-
mance [63, 64].
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Figure 8: Cumulative I/O over time. Top: 1000Genome workflow without
interference. Bottom: I/O stressing of the workers.

To evaluate the ability of our framework to capture fine-
grained I/O information, we used Stress [65], a simple work-
load generator that can impose configurable amount of CPU,
memory, I/O, and disk stress on the system. Figure 8 shows
the cumulative reads and writes for the 1000Genome workflow
over time, with and without disk stress (top: regular workflow
execution with no interference; bottom: workflow execution
with disk stress). To introduce the interference, we spawned
one stress process on each worker (compute) node that per-
formed about 50 MB of I/O writing to the node’s disk con-
tinuously. Since workflow tasks have dependencies, i.e., one
child job does not start its execution until all its parents have
completed, the workflow is slowed down by a factor of ∼1.5 –
i.e., disk stress degrades the node’s disk throughput, thus jobs
require more time to complete I/O operations.

The above performance metric is obtained with pegasus-
kickstart, which provides time series data of I/O read and write
operations at runtime. Although this metric aids in pinpointing
bottlenecks in the workflow, it lacks fine-grained information
regarding jobs’ I/O profiles. As previously mentioned, Darshan
provides I/O characterizations for HPC applications including
properties such as patterns of access within files. By combin-
ing Darshan and Pegasus logs, one can accurately identify the
bottlenecks or low performance issues due to I/O operations at
different levels (e.g., single or parallel operations).

For this experiment, we used the SNS workflow, which has
four parallel (MPI) jobs in its pipeline and is instrumented with
Darshan2. Similarly to the 1000Genome workflow execution,
we stage in the workflow input data from the data node to the
master node via Globus transfer, which is then stored in a par-
allel file system (NFS) accessible to the worker nodes. Com-
puting jobs (NAMD and Sassena) are submitted to HTCondor
(used as a broker), which dispatches them to Slurm, so that
MPI jobs can benefit from all available resources. Note that

2For additional information refer to Darshan’s documentation
https://www.mcs.anl.gov/research/projects/darshan/documentation/
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Figure 9: Average STDIO and POSIX performance for NAMD and Sassena
Jobs obtained from Darshan’s logs.

in the parallel execution, multiple processes may write to a sin-
gle file simultaneously. In the evaluated scenario, all processes
write to a single file in the parallel file system, thus multiple
I/O write/read requests may happen at the same time. There-
fore, on the master node we spawned two stress processes that
write ∼50 MB each, and there was no disk stress on the worker
nodes. Figure 9 shows the parallel file system performance,
captured by Darshan, during the execution of the SNS’ NAMD
and Sassena jobs. The performance of STDIO operations is not
affected by the interference. On the other hand, POSIX per-
formance is severely impacted – I/O throughput degradation is
slowed down up to a factor of 3 when compared to a regular
execution with no interference.

6.5. CPU Contention

External load is a common factor that often negatively im-
pacts the workflow makespan. In shared environments such as
grids, external processes (including processes spawned by dif-
ferent users sharing the same resource) may substantially im-
pact CPU performance. We have performed CPU stress tests
on one CPU per worker node during the execution of the SNS
workflow. Figures 10a and 10b show the CPU utilization per
rank of the NAMD MPI job without and with interference, re-
spectively. Under no interference, CPU utilization for each MPI
rank is nearly 100%, while in the scenario with interference
CPU utilization resonates between 70% and 90%. This is due
to the stress processes not having been pinned to a specific core
of each node with affinity, while each MPI process had affin-
ity set during submission. Notice that due to CPU utilization
degradation, the NAMD job resulted in a slowdown by a fac-
tor of 5 – most probably because NAMD largely depends on
the performance of work synchronization between tasks of the
MPI jobs.
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Figure 10: CPU utilization per rank for the NAMD MPI job. Without interference the CPU utilization is steady, close to 100%. However with interference CPU
utilization fluctuates between 70% and 90%. To introduce interference, one stress process per worker consumed approx. 25% of the node’s CPU time.

7. Open Access Data

Service Address
Elasticsearch https://data.panorama.isi.edu
Kibana https://kibana.panorama.isi.edu

Table 3: Open access data services.

To enable collaborative and reproducible research, and in an
attempt to provide a comprehensive set of end-to-end work-
flow characteristics and performance behaviors, we have taken
steps towards the development of an open access repository for
end-to-end workflow statistics. Currently, the repository hosts
workflow data collected in the scope of this work, but we aim
to enrich it with additional workflow runs from a variety of sci-
entific domains in the near future. The current deployment ex-
poses an Elasticsearch and a Kibana instance that can be ac-
cessed via the URLs shown in Table 3. These services are
publicly accessible, but read-only. Kibana accesses the JSON
documents stored in the Elasticsearch instance, and by using a
web-browser and the Panorama 360 plugin, one can explore the
available data in a user-friendly way. On the other hand, Elastic-
search is accessible only programmatically via the REST API.
Table 4 shows the available indexes used to organize the JSON
documents. Due to the restrictions we have applied to enforce
read-only access, API requests targeting indexes that are not

Index Description

panorama transfer Logs retrieved from the Globus transfer service

panorama kickstart
Resource utilization traces collected by pegasus
kickstart online

panorama stampede
Workflow execution events and generic
monitoring events, such as Darshan’s performance
events

Table 4: Open access Elasticsearch indexes.

#!/usr/bin/env python

from elasticsearch import Elasticsearch

workflow_id = "3f1101db-b220-4155-84e3-ea85624ee82f"

es = Elasticsearch("https://data.panorama.isi.edu")

query = "xwf__id: \"" + workflow_id + "\""

res = es.search(index="panorama_stampede",q=query,size=100)

print res['hits']['total']

query = "wf_uuid: \"" + workflow_id + "\""

res = es.search(index="panorama_transfer",q=query,size=100)

print res['hits']['total']

query = "wf_uuid: \"" + workflow_id + "\""

res = es.search(index="panorama_kickstart",q=query,size=100)

print res['hits']['total']

Listing 6: Querying open access data.

defined in Table 4 will be rejected with an access denied error
message. A common approach to retrieve and process data lo-
cally from the Elasticsearch endpoint is by using Python scripts.
An example of a simple script is shown in Listing 6.

8. Conclusions and Future Work

In this work, we have presented a framework to orches-
trate a number of well-established and newly developed state-
of-the-art tools in order to capture and correlate fine-grained
and coarse-grained information about scientific workflow exe-
cutions from various, heterogeneous sources, in an online man-
ner. Such sources include network (Globus, Tstat), filesystem
(Darshan, kickstart), and compute resources (kickstart). To this
end, we have extended various components (pegasus-monitord,
pegasus-transfer) of Pegasus WMS to enable online perfor-
mance monitoring. Moreover, we have developed new tools
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(pegasus-darshan) to facilitate performance data collection on
remote nodes. Additionally, we presented a custom Kibana plu-
gin, tailored to the needs of tracking a workflow execution and
identifying potential issues at runtime. We evaluated our ap-
proach by executing normal and anomalous runs of two dif-
ferent classes of workflows in a controlled environment. Our
experiments demonstrate that this architecture is able to ac-
curately collect relevant performance metrics that can then be
used to identify and analyze performance issues. The data col-
lected is a useful resource of training data for automated ma-
chine learning analysis.

In the future, we plan to create a way to methodically col-
lect Tstat data from the execution sites (that correspond to a
workflow’s data transfers) and to continue improving the cus-
tom Kibana plugin by adding new functionality and visualiz-
ing more aspects of a workflow’s execution. Additionally, we
plan to extend the types of resources that we collect data about.
Currently, our framework does not retrieve statistics from ac-
celerators, such as GPUs and FPGAs. Since, heterogeneous
hardware is becoming more and more common in computing
centers, we plan to explore efficient ways to include metrics
produced by these hardware components into our architecture.
Finally, we plan to provide a mechanism than can track all the
data’s original sources in order to enable offline analysis and
data ingestion into other frameworks. We aim to introduce a
new database that will be automatically populated by Pegasus
while harvesting logs for performance statistics. This database
will be storing metadata of the collected performance statistics,
describing their original source location and the workflow that
are associated with, so users can retrieve workflow performance
data even when the live data collection fails or Elasticsearch
gets corrupted. This work is still in early stages.
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