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ABSTRACT

This paper presents a modular architecture for enabling autonomous
cross-facility scientific experimentation using Al agents at ORNL'’s
HPC and manufacturing user facilities. The proposed system inte-
grates a natural language interface powered by an LLM, a multi-
agent framework for decision making, programmable facility APIs,
and a provenance-aware infrastructure to support adaptive, explain-
able, and reproducible workflows. We demonstrate how Al agents
can orchestrate and optimize additive manufacturing experiments
through near real-time coordination between experimental and
HPC resources. The architecture is evaluated through a realistic
end-to-end workflow that employs a simulated version of the man-
ufacturing facility, showing that the approach reduces coordination
overhead and accelerates the scientific discovery process.
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1 INTRODUCTION

Recent advances in artificial intelligence (AI), robotics, and net-
working are transforming how science is conducted, enabling a
new era of autonomous, cross-facility experimentation [7]. In this
paradigm, high-performance computing (HPC) systems are increas-
ingly coupled with experimental infrastructure in near real-time.
This integration forms dynamic, agent-driven scientific workflows
that span national laboratories, user facilities, and edge instru-
ments [1, 21]. These workflows support the rapid and intelligent
coordination of synthesis, characterization, simulation, and anal-
ysis across domains, accelerating scientific discovery in materials
science, biology, energy, and manufacturing. Agents orchestrate
experiments and simulations in a way that significantly reduces
the time from hypothesis to validation [11]. Achieving this vision
requires rethinking scientific workflows, shifting from static or-
chestration to adaptive systems driven by Al agents that can reason
and act in complex environments.

This shift introduces significant challenges. Distributed infras-
tructures consist of heterogeneous systems, including experimental
laboratories, edge devices, and HPC clusters, each with different
interfaces, protocols, and access constraints. Traditional workflow
systems are not designed to respond dynamically to near real-time
data or evolving goals, and often rely on manual coordination that
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is slow and error-prone. The integration of Al into the scientific
process also raises concerns about reproducibility, transparency,
and trust. Workflows must be able to incorporate domain knowl-
edge, maintain provenance, and support explainable decision mak-
ing. Moreover, agents operating within these environments must
be capable of robust, fault-tolerant coordination while navigating
asynchronous operations and intermittent availability of resources.

This paper presents an architecture for enabling autonomous

cross-facility experiments using Al agents to support scientific
experimentation at Oak Ridge National Laboratory’s (ORNL) Man-
ufacturing Demonstration Facility (MDF) and Oak Ridge Leader-
ship Computing Facility (OLCF). Our approach builds on several
key initiatives, including the Interconnected Science Ecosystem
(INTERSECT) [19], the Secure Scientific Service Mesh (S3M) fa-
cility API [15], Flowcept’s provenance-aware infrastructure [16],
and recent work on agentic workflows. We propose a modular de-
sign in which agents encapsulate facility capabilities, communicate
through interoperable interfaces, and reason about scientific goals
using schema- and guideline-driven prompts. We evaluate this ar-
chitecture through a realistic end-to-end workflow that employs a
simulated version of resources at the MDF and demonstrates how
agent-based orchestration can reduce coordination overhead, in-
crease adaptability, and accelerate the scientific discovery process.
Specifically, this paper makes the following key contributions:

(1) Describe the challenges of connecting ORNL’s MDF and
HPC facilities, and explain how Al agents can help enable
autonomous experimentation (Section 2).

(2) Propose a reference architecture to enable cross-facility ex-
periments with Al agents (Section 3).

(3) Detail the implementation of the architecture by leveraing
ORNL'’s initiatives and technologies for future autonomous
laboratories, including INTERSECT, the S3M Facility API,
agentic workflows, and the Flowcept multi-workflow prove-
nance system (Section 4).

(4) Validate the architecture through a realistic cross-facility
experiment using the HPC facility and a simulated MDF
environment (Section 5).

2 BACKGROUND

User Facilities. ORNL’s Manufacturing Demonstration Facility
(MDF) is a U.S. Department of Energy (DOE) user facility supported
by the Advanced Materials and Manufacturing Technologies Office.
The MDF is a 110,000 square-foot facility with over 100 additive
manufacturing (AM) systems for metals, composites, and ceram-
ics, plus a variety of characterization capabilities. In-situ monitor-
ing is available for many of these AM systems, including infrared
and visible-wavelength cameras and thermocouples. For the di-
rected energy deposition (DED) printers relevant to this work, data
streams from in-situ monitoring are coordinated through ORNL’s
Stereo Correlated Optical and Pyrometric Sensing (SCOPS) soft-
ware, which is built upon the open-source Robot Operating System
(ROS) framework [8]. To manage and harness the data generated
across the facility, the MDF has a framework to integrate process
specifications, in-situ characterization, ex-situ characterization, and
simulation data into a single digital platform [2].
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The Oak Ridge Leadership Computing Facility (OLCF) is a U.S.
DOE user facility that provides world-class computational resources
for supporting cutting-edge scientific investigations. The Advanced
Computing Ecosystem (ACE) [10] is a testbed environment that
combines heterogeneous compute and data resources to support
scientific workloads outside the constraints of production systems.
The Oak Ridge Research Cloud (ORC) is an internal cloud platform
designed to support flexible, secure, and scalable computing for
research and development. Built on an OpenStack infrastructure,
ORC enables users to deploy containerized workflows, virtual ma-
chines, and CI/CD pipelines for internal projects. In this work, we
explore both ACE and ORC to perform cross-facility experiments.

Challenges in Cross-facility Experiments. Experiments span-
ning DOE instrument facilities and HPC resources face multifaceted
challenges. Workflow integration remains labor-intensive due to
gaps in technology, policy, and automation. Scientific teams often
need to design data pipelines, manage disparate tools, and handle
coordination [4]. Time-sensitive, cross-facility workflows are fur-
ther complicated by network disruptions, maintenance outages, and
dynamic routing, which demand robust automation and reconfigu-
ration capabilities to avoid manual intervention [5]. Security and
access control are also challenging; current batch-style HPC secu-
rity policies are unsuited to interactive or near real-time streaming
workflows, requiring token-based authentication, policy adaptation,
Science DMZs, and SLA-aware scheduling models [6]. At the core
lies the challenge of managing heterogeneous, shared ecosystems.
Ensuring reproducible performance, seamless data movement, and
transparency across diverse systems remains a critical unmet need.

AI Agents for Autonomous Experimentation. Al integration
in scientific research has reached a stage where agents can au-
tonomously conduct experiments and manage complex work-
flows [11]. Traditional scientific research has long relied on manual
processes where researchers design experiments, collect data, ana-
lyze results, and make decisions about the next steps in a largely
sequential and time-consuming manner. Al agents for autonomous
discovery represent a paradigm shift by embedding intelligent
decision-making capabilities directly into the experimental process,
allowing systems to adapt, learn, and optimize research strategies
in real-time [7]. These agents integrate with lab automation, com-
putational resources, and instruments to form closed-loop systems
that can hypothesize, test, and refine scientific understanding with
minimal human intervention. Recent advances in chat-based large
language models (LLMs) further enhance this paradigm by pro-
viding researchers with intuitive, natural language interfaces to
interact with autonomous systems [13]. LLM-powered assistants
can support the entire experimental lifecycle, from planning and
resource coordination to real-time monitoring and result interpre-
tation. Their ability to reason over scientific literature, datasets,
and provenance data makes them valuable collaborators in guiding
decision-making and accelerating iterative experimentation. This
new class of intelligent systems tackles key bottlenecks in discov-
ery, including data growth, complex optimization, and the need for
reproducible, scalable methods.
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3 ARCHITECTURE OVERVIEW

Figure 1 illustrates the architecture, which consists of the following
core components: (1) an LLM chat assistant to allow scientists to
drive their experiments using natural language; (2) a messaging
system to enable communication and data exchange between the
various services deployed on the Edge, Cloud, and HPC; (3) Facil-
ity APIs to enable resource leasing on instrument and computing
facilities; (4) a multi-workflow provenance system to enable cross-
facility provenance data capture and to support insightful analysis
throughout the experimental process; (5) a multi-agent system
for managing a group of domain-expert Al agents responsible for
making decisions at runtime; and (6) an orchestrator service for
coordinating the experiment execution workflow.
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Figure 1: System architecture for autonomous cross-facility
experimentation that integrates LLM-driven user interaction,
multi-agent decision-making, facility APIs, and provenance
capture across instrument, cloud, and HPC environments.

LLM Chat Assistant. In our architecture, the LLM chat assistant
serves as an entry point for scientists to interact with complex cross-
facility experiments using natural language. Rather than requiring
deep familiarity with the underlying infrastructure or scripting,
users can define goals, refine experimental parameters, and query
results conversationally. The assistant is powered by a domain-
adapted large language model and operates as part of the human-
machine interface (HMI) agent. The assistant translates high-level
scientific intent into structured tasks, enabling seamless coordina-
tion with downstream agents and services. It can access metadata,
past experiment records, and relevant literature to provide context-
aware guidance throughout the experimental lifecycle. Integrated
with the provenance system, it also allows users to issue traceability
queries, explore agentic decisions, and monitor workflow progress
in near real-time. This capability positions the LLM assistant as an
intelligent collaborator that enhances transparency, accessibility,
and agility in agent-driven autonomous experimentation.

XLOOP 2025, November 16, 2025, St. Louis, MO, USA

Messaging System. The messaging system is the core compo-
nent that enables communication among instruments, sensors, and
compute resources, while also allowing users to discover these re-
sources and understand their interfaces. The messaging system is
the backbone to establish an ecosystem of network-connected yet
loosely-coupled systems shown in the lower portion of Figure 1
and allows for other services (i.e., LLM chat, multi-agent, prove-
nance) to interact with this ecosystem. As the user communicates
via the natural language interface, the LLM chat agent constructs
a workflow that is submitted over the messaging system to the
various connected services. During the autonomous experiment,
the messaging system transports both results and inputs as service
messages between components.

Facility API Large scientific computing clusters have tradition-
ally required manual, session-based access via SSH, where users
authenticate, prepare batch scripts, and submit jobs to a scheduler
such as Slurm. These sessions expire, interrupting work and re-
quiring repeated manual logins. The Facility API model addresses
these limitations by exposing secure, remotely accessible endpoints
for interacting with HPC resources [4, 15, 18]. This approach en-
ables interoperability across facilities, promotes code and workflow
reusability, and supports modular, service-oriented architectures. It
strengthens security by enforcing consistent access controls and
auditability, while also enabling automation for data movement, job
management, and monitoring. Facility APIs transform clusters from
isolated systems into a seamlessly integrated scientific workflow
fabric, thereby allowing researchers to have their work automati-
cally stretch across institutional and geographic boundaries.

Multi-workflow Agentic Provenance System. Provenance data
management is essential for understanding experimental data, vali-
dating hypotheses, monitoring, steering, and ensuring reproducibil-
ity [16]. As workflows span federated environments across the
edge-cloud-HPC continuum, we need flexible and adaptable sys-
tems capable of capturing fine-grained provenance, including agen-
tic interactions. Agents now play a central role by generating plans,
making decisions, and reasoning about execution and dataflow, in-
troducing new challenges around accountability and transparency.
Given the non-deterministic nature of these agents, it is critical
to track their actions and downstream workflow effects. Agentic
provenance data serve as the glue that links diverse execution traces,
data products, and decisions across the workflow [17]. An effec-
tive provenance system must represent these relationships to build
a coherent and contextualized provenance graph, enabling deep,
broad insights and supporting trust, reproducibility, and responsible
integration of agents in scientific workflows.

Multi-agent System. Multi-agent systems represent a distributed
Al paradigm where autonomous software entities collaborate to
solve complex problems that exceed the capabilities of individual
agents. Each agent possesses specialized knowledge and decision-
making abilities, enabling the system to decompose intricate chal-
lenges into manageable, domain-specific tasks. Multiple agents are
necessary because real-world problems often span multiple dis-
ciplines, require parallel processing, and benefit from distributed
expertise that no single agent could efficiently encompass. In our
AM workflow, this framework is especially valuable due to process
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complexity and interdependence. Specialized agents coordinate de-
sign optimization, material selection, process planning, real-time
quality monitoring, and post-processing operations. During experi-
ment runtime, agents communicate through structured protocols
and shared knowledge repositories, enabling dynamic adaptation
when conditions change. For example, quality monitoring agents
detecting print anomalies immediately trigger process parameter
adjustments while updating downstream scheduling agents. This
distributed intelligence ensures robust workflow management ca-
pable of handling manufacturing variability and complexity. The
system’s modular architecture facilitates extension beyond AM to
subtractive processes, assembly operations, and broader industrial
automation applications.

Orchestrator Service. This service is responsible for enforcing
the experiment settings from the LLM chat assistant. The orches-
trator uses the various Facility APIs to make scheduling decisions,
synchronize resource leasing on the HPC and instrument facilities,
deploy supporting services, and trigger the job execution. Support-
ing services include data streaming, which enables feedback loops
between services across facilities, and storage for preserving prove-
nance and experimental data. The orchestrator also communicates
with user-defined services to enforce their tasks on the HPC and
instrument facilities and to forward data between services placed
in different facilities.

4 ARCHITECTURE IMPLEMENTATION

This section details the implementation of the proposed architecture
using ORNL technologies and initiatives to support autonomous,
cross-facility experimentation (Figure 2).
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Figure 2: Architecture implementation. Our architecture can
be generalized to other use cases. Highlighted in red color are
the components specific to the Additive Manufacturing (AM)
use case. We simulated the 3D printer and SCOPS service.

iHub HMI Agent. The HMI agent applications are accessible via
iHub, a web-based platform that serves as a gateway into INTER-
SECT. iHub offers a range of services, including the Capability
Store, which enables users to search for and share a variety of
resources. These resources include INTERSECT capabilities (e.g.,
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laboratory tools and computational assets) and standalone applica-
tions. Through the Capability Store, users can discover and install
HMI agent applications, such as chat assistants, which are then inte-
grated into their personalized dashboards (Figure 3). The HMI agent
is comprised of multiple components and libraries. The underlying
LLM is hosted by Ollama!, and currently utilizes the llama3.2:latest
model to power the LLM Chat Assistant. The chat interface is de-
veloped using Next.js> and the Mantine® component frameworks.
The application leverages the LangChain framework to interface
with the Ollama API and deliver the initial prompt. Additionally,
LangChain enables tool invocation through adapters that support
Model Context Protocol (MCP)-compliant functions.

Capability Store 0 +

T Additive Manufacturing Assistant

ctur

9
Computation Sciences and Engineering Division, CSSD.

Additive Manufacturing Assistant Information

Project: Adamantine Simulation
Contact: Assis
Contributers: Lenard Roberts

Broker IP https:ficode ornl gov/asa
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Broker Protocol:
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Figure 3: iHub Capability Store showing the AM Assistant
(HMI agent) profile.

INTERSECT. The INTERSECT platform allows for the creation
of an ecosystem of complex, interacting instruments, sensors, and
compute resources by providing tools for science teams to develop
small, well-defined systems that connect on a common platform.
This provides the foundation for a science ecosystem, a network
connected collection of loosely-coupled services that are main-
tained and operated independently. Figure 2 is an example of an
INTERSECT instance with a common platform for communication
through the message broker and interactivity via the iHub web
platform and then the independent services indicated by the blue
INTERSECT logo for the SCOPS service, the adamantine simulation
service, and the S3M service. For the systems used in this work, the
Python INTERSECT Software Development Kit v0.8 was used [3].

S3M Facility API. The Secure Scientific Service Mesh (S3M) [15]
provides the foundational infrastructure for enabling agentic, cross-
facility workflows at ORNL by exposing secure, programmable APIs
to computational and experimental resources. Designed to support
both human and machine clients, S3M abstracts the complexity
of facility integration through a service mesh architecture that
enforces fine-grained access control, project-scoped authentication,
and dynamic resource provisioning. Its support for high-throughput
data streaming and workflow orchestration allows intelligent agents
to trigger compute jobs in response to live experimental results
or predictive insights, enabling near real-time decision-making
and closed-loop automation. The S3M Streaming API provisions
messaging services (e.g., RabbitMQ, Redis) in secure environments

!https://ollama.com
Zhttps://nextjs.org
3https://mantine.dev
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co-located with HPC resources, eliminating latency bottlenecks
and manual configuration overhead. The Workflow API integrates
with Argo Workflows to support multistep execution pipelines with
parallelism, data dependency resolution, and fault tolerance.

Flowcept Agentic Provenance System. Flowcept is a lightweight,
scalable provenance system for capturing and contextualizing fine-
grained workflow and agentic data across distributed environ-
ments [16]. It uses a broker-based architecture, where components
and agents emit provenance messages to a central broker. A cen-
tralized Provenance Keeper curates the data and applies a W3C
PROV-compliant agentic schema [17], linking data products, execu-
tion traces, and agent decisions into a coherent, queryable graph. Its
modular design supports integration across the edge—cloud-HPC
continuum and enables near real-time or retrospective data analy-
sis. Beyond provenance capture, Flowcept plays a central role in
unifying the architecture. Provenance data acts as the glue across
distributed components, ensuring all workflow tasks use a consis-
tent schema and enabling inter-component communication through
brokered provenance streams. This establishes a lightweight, trace-
able protocol that supports accountability, transparency, and repro-
ducibility in loosely coupled agentic workflows.

CrewAl Multi-agent System. We present a CrewAl*-enabled
multi-agent system for intelligent decision-making in AM. This
architecture integrates autonomous agents, human expertise, and
simulation environments to orchestrate optimal control across com-
plex 3D printing workflows. By leveraging CrewAI's Crews and
Flows, we achieve both agentic autonomy and fine-grained execu-
tion control within a robust, production-grade environment. At the
heart of the framework is a CrewAl “Crew" composed of specialized
agents that collaborate through role-based delegation. The Analysis
and Control (A&C) Agent acts as the coordinator, integrating in-
puts from simulations, sensors, and human instructions via the HMI
Agent. This natural language interface ensures intuitive interaction
and enables near real-time updates from human-in-the-loop opera-
tors. The A&C Crew consists of (Figure 4): a (1) Control Option
Agent that generates parameterized control options; a (2) Control
Decision Agent to select optimal strategies informed by experi-
mental context; a (3) Literature Discovery Agent, which retrieves
relevant scientific literature; a (4) Citation Intent Agent to assess
the supportiveness of references; and a (5) Verification & Vali-
dation Agent to ensure safety and parameter compliance. These
agents communicate via A2A protocol while MCP bridges external
systems and data flows. CrewAl Flows define the procedural logic,
ensuring conditional branching, safety checks, and controlled task
execution. This enables dynamic adaptation to real-world events
while preserving autonomy and system integrity.

HPC Orchestrator. The HPC orchestrator leverages INTERSECT,
the S3M Facility AP, and the Flowcept provenance system, commu-
nicating with the LLM chat assistant and user-defined services via
INTERSECT messages. To allow this, it exposes capabilities (e.g.,
INTERSECT capability implementations) to trigger tasks like the
simulation execution on HPC clusters, to forward data returned

“4https://github.com/crewAllnc/crewAl
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Figure 4: Multi-agent system for analysis and control in the
additive manufacturing (AM) workflow, showing the interac-
tions between specialized agents and the HMI.

from simulations to user-defined services running near the instru-
ments, among other tasks. The experiment settings defined by users
on the LLM chat assistant reach the orchestrator as INTERSECT
messages (e.g., the HPC cluster to be used, the number of comput-
ing nodes, the simulation settings, among others). The orchestrator
uses the S3M API to lease the HPC nodes and then submit the sim-
ulation job. In addition, the S3M API is used to provision the data
streaming service to allow data flow between the HPC simulation
and the scientific instrument. Provenance data from the message
exchanges between the HPC simulation, the user-defined services,
and Al agents are captured by the orchestrator via Flowcept.

5 CROSS-FACILITY EXPERIMENT

In this section, we evaluate the architecture in a realistic end-to-
end workflow for model predictive control [14] of an AM print that
employs a simulated version of resources at the MDF, ORC, and
ACE. The setup is shown in Figure 2.

5.1 Experimental Setup: MDF, Cloud, and HPC

As this work is in progress toward a fully connected real-world
experiment, the SCOPS service and 3D printer are represented by
simulated components. At MDF, a simulated SCOPS service handles
interactions with the simulated 3D printer. ORC hosts a virtual ma-
chine running the HMI agent, CrewAl multi-agent system, Flowcept
provenance system, Adamantine service, and the HPC orchestrator,
with the INTERSECT message broker deployed on a separate Kuber-
netes cluster®. For the HPC component, we use the Quokka system
from the ACE testbed, comprising 16 general-purpose Intel Xeon
compute nodes connected via NDR200 InfiniBand. On Quokka, the
Adaptive Control Driver Apptainer container executes Adaman-
tine [20] simulations, while the S3M Redis streaming service is
provisioned in the OLCF data stream cluster.

5.2 Experiment Workflow

We next describe the runtime message exchanges in the end-to-end
cross-facility experiments, as illustrated by the simplified sequence
diagram in Figure 5.

Shttps://kubernetes.io/
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Flowcept messages; S: represents S3M API calls.

Scientist and HMI Agent Interactions. Through the iHub mar-
ketplace, the scientist selects the AM Assistant profile, as illus-
trated in Figure 3. The HMI agent has a knowledge base of pre-
optimization steps for metal component parts. The interaction be-

tween the scientist and the HMI Agent is illustrated as follows:

-
HMI Agent: Greeting and Material Selection
Hello Dr. Smith I am your additive manufacturing workflow assistant.
According to my knowledge base, I am aware that pre-optimization
steps have run for five relevant prints. Here are the available prints:

ID Material Name

Dwell Rook (17-4PH Stainless Steel)
Dwell Rook (410 Stainless Steel)

Dwell Rook (316L Stainless Steel)
Curved Wall (316L Stainless Steel)
Sub-scale Runner (316L Stainless Steel)

G W N

You can ask for more details about these prints or we can begin to print
any of these autonomously. Please select a material to simulate.

~N

J

)

( Scientist: 2
-

HMI Agent: Print Selection Confirmation and Simulation

You have selected Dwell Rook (410 Stainless Steel). Sure, the pre-
optimization step is related to a print job consists of 5 layers. Would
you like to start the print? If so, how many control options do you
want to simulate for each layer? Please enter a number:

(Scientist: 4
S

HMI Agent: Print Simulation Confirmation and Start

J

OK, I can start the control driver for this autonomous print on the
Quokka system from OLCF.

Do you have any guidance before we start? For instance, are there
constraints we should keep in mind before choosing options for each
layer?

Please confirm if you would like to proceed with the print simulation.
J

-
Scientist: Yes. If scores are fairly close, choose the one that has lowest
dwells.

J
( N
HMI Agent: Summary of Print Settings

Here is a summary of your print settings:

ID: 2

Material Name: Dwell Rook (410 Stainless Steel)
Number of Control Options: 4

Number of Layers: 5

Please confirm that this is correct. If you are ready to start the print,
please respond with “start".

J

)

Simulation and Printer Loop. Once the scientist confirms the

( Scientist: This is correct. Start.

start of the experiments, the HMI Agent sends an INTERSECT
message to the SCOPS service containing the experiment setup,
including the number of layers to print (five), the component to
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be printed (Dwell Rook 316L Stainless Steel), and the number of
control options to simulate for each layer (four). The SCOPS service
then relays a message to the SCOPS client to start the 3D printer and
also sends a message to the Adamantine service. The Adamantine
service forwards an INTERSECT message to the HPC Orchestrator
service with the experiment setup and a submission job script spec-
ifying parameters such as job duration, required compute nodes,
and execution commands. The Orchestrator service uses the S3M
API to provision the Redis streaming service, submit the simulation
job to the Quokka system, and check job status before forwarding
the experiment setup.

During execution, the Control Driver simulation connects to the
S3M Redis service to consume and publish data. It ingests in-situ
characterization data from the 3D printer and outputs simulation
results, such as parameters for the next layer to be printed. For each
simulation layer, it sends four control options with associated scores
to the Analysis and Control Agent, which selects the best option
and returns it to the Control Driver for continued simulation. The
chosen option and its explanation are also sent to the Orchestrator.
The selected simulation output is then sent via the S3M streaming
service and INTERSECT messages to the HMI Agent (allowing
the scientist to monitor the process layer by layer), and the SCOPS
service to configure the 3D printer for the next layer. The 3D printer
generates new in-situ characterization data, this data is forwarded
by the SCOPS and Adamantine services to the orchestrator, and
finally to the control driver to start a new simulation. This loop
repeats until all five layers are printed, after which the HMI GUI
notifies the scientist that the print job is complete.

The Flowcept Agent. This component captures agent decisions,
actions, and interactions as structured provenance messages. Since
all architectural components embed provenance capture, these
messages are continuously streamed through the broker, enabling
agents and components to communicate via a shared, provenance-
aware messaging protocol. This protocol ensures that agentic inter-
actions remain traceable, accountable, and transparent across the
workflow. Agentic provenance is integrated with data from non-
agentic tasks in a unified provenance graph, enabling scientists to
issue domain-specific queries. Next, we present query examples
related to the printing process, expressed in natural language.

(Scientist: What are the activities in this workflow? j

Flowcept Agent: The activities in this workflow are:

ID activity

0  publish_experiment_setup
call_generate_options_set
1lm_interaction
generate_options_set
simulate_layer
call_choose_option
choose_option

N R W N =

(Scientist: Which activities are associated with agents? j
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( N\
Flowcept Agent: The activities associated with agents are:

ID activity
2 llm_interaction
3 generate_options_set
6  choose_option

J

~
Scientist: for the choose_option activity, what are the inputs and out-

puts?

J
4 N\
Flowcept Agent: The are the inputs and outputs:
layer planned_controls control_options scores option
2 [’power’: 321, *dwell 0’: ['power’: 110.0, "dwell 0’:  [58, 57, 63, 69] 3
30, ’dwell_1": 25, 'power’: 40, dwell_1’: 110, ’power’:
101, *dwell_0’: 35, 245.0, dwell_0’: 115,
*dwell_1’: 115) *dwell_1’: 110]
3 [power’: 321, 'dwell 0:  [power’: 240.0, ‘dwell 0:  [77, 50, 20, 29] 2
30, "dwell_1’: 25, 'power’: 110, *dwell_1’: 115,
101, *dwell_0’: 35, ’power’: 150.0, ‘dwell_0’:
*dwell _1’: 115] 95, "dwell _1’: 100]
4 [power’:321,'dwell 0:  [power: 325, ‘dwell_0:  [29,24, 36, 84] 3
30, "dwell_1’: 25, 'power’: 115, *dwell_1": 100,
101, dwell_0’: 35, ’power’: 135, *dwell 0’
*dwell_1": 115] 110, *dwell_1’: 110]
5 [power’:321, 'dwell 0:  [power": 190.0, 'dwell_0":  [52, 40, 5, 31] 2
30, 'dwell_1: 25, power’: 80, ‘dwell_1": 85, "power’:
101, dwell_0’: 35, 180.0, *dwell_0’: 90,
*dwell_1’: 115] “dwell_1": 90]
6  [power’:321,’dwell 0:  [power: 230, 'dwell_0:  [97,73, 44, 84] 0
30, *dwell_1": 25, power: 25, 'dwell_1': 100, 'power’:
101, dwell_0’: 35, 240, *dwell_0’: 30,
*dwell_1’: 115] *dwell_1": 90]
J

-
Scientist: For the choose_option activity, when the input was layer

2, what were planned controls, control options, scores, option, and
explanation?
J
4 N\
Flowcept Agent: For layer 2, the planned controls, control options,
scores, option, and explanation are:

layer planned_controls control_options scores option

2 [power:321,’dwell 0:  ['power’: 110.0, 'dwell 0  [58, 57, 63, 69] 3
30, ‘dwell_1%: 25, 'power’: 40, ‘dwell_1': 110, "power’:
101, dwell_0': 35, 245.0, *dwell_0’: 115,
dwell_1': 115] “dwell _1': 110]

Explanation: The lowest score of 58 indicates the best quality outcome,
suggesting optimal setting.

J

6 RELATED WORK

Recent research has increasingly focused on leveraging Al agents
to assist scientists in experiments that integrate both experimental
and computational facilities. One example is VISION [9], a modu-
lar architecture that assembles LLMs into task-specific cognitive
blocks, enabling scientists to interact with instruments using nat-
ural language. Designed for synchrotron beamlines, VISION fa-
cilitates voice-controlled experimentation and adaptive workflow
augmentation, allowing experiments to be dynamically adjusted in
response to real-time feedback. Another representative system is
Academy [11], a middleware platform that enables the deployment
of autonomous agents across federated scientific infrastructure,



XLOOP 2025, November 16, 2025, St. Louis, MO, USA

including experimental laboratories and HPC facilities. Academy
overcomes limitations in existing agent frameworks by provid-
ing abstractions for agent state, behavior, asynchronous commu-
nication, and dynamic coordination. Its flexibility is demonstrated
through case studies in materials discovery, decentralized learning,
and large-scale information extraction, showcasing the breadth of
domains that can benefit from agent-based coordination.

Other work explores context-aware integration of LLMs with
facility-specific tools and data resources to improve the reliability
and usability of Al-driven experimentation. CALMS [12] exempli-
fies this approach by combining LLMs with semantic search and
tool execution capabilities to assist with experimental design, instru-
ment operation, and automated execution through direct API and
hardware interfaces. Applied to x-ray, nanoscience, and computing
facilities, CALMS demonstrates how retrieval-augmented methods
can reduce hallucinations, provide accurate context, and improve
decision-making in complex scientific workflows. Together, these
systems illustrate the growing importance of agentic Al in scientific
experimentation and point toward opportunities for convergence
with federated, cross-facility workflows such as those targeted by
our architecture, where interoperability, provenance tracking, and
adaptive orchestration are central to accelerating discovery.

7 CONCLUSION AND FUTURE WORK

We presented a novel architecture for connecting experimental
scientific facilities with HPC for autonomous scientific workflows
managed by a collection of Al agents. This architecture consists
of six core components: a LLM chat assistant, a messaging sys-
tem, facility APIs, a provenance system, a crew of Al agents, and
an orchestrator service. This architecture is designed to permit
dynamic near-real-time decision making, based on both human
and artificial intelligence. We also presented a preliminary refer-
ence implementation of this architecture using iHub, INTERSECT,
S3M, Flowcept, and CrewAl This reference implementation was
deployed in the context of a cross-facility experiment between
ORNL’s Manufacturing Demonstration Facility (MDF) and ORNL’s
Oak Ridge Leadership Computing Facility (OLCF) for a metal ad-
ditive manufacturing process steered using an agent-augmented
version of model predictive control. This demonstration employs a
simulated version of the sensors and printer at the MDF, but oth-
erwise deploys the core components of the architecture in a joint
Edge-Cloud-HPC workflow. By tying this demonstration to a real
use case, we highlight the applicability of the proposed architecture
to the complexities of scientific workflows.

The work presented here provides a concrete framework for
building Al-agent-managed workflows that bridge multiple scien-
tific facilities. The natural extension of this work is a demonstration
of the full end-to-end workflow connected to the sensors and printer
at the MDF. Beyond that demonstration, deployment for other types
of autonomous experiments is crucial to validate the generalizabil-
ity of the architecture and our implementation. Such deployments
should also include cross-institutional to evaluate the ability for this
architecture to function with even weaker ties between workflow
components.

D. Rosendo, et al.

This approach presented here directly addresses the growing
complexity of modern scientific challenges that require coordina-
tion across disciplines, facilities, and institutions without sacrificing
security or performance. The capacity for Al agents to dynamically
orchestrate scientific experiments, adapt to real-time data, and
infuse human decision-making with tool-based rigor offers the po-
tential to dramatically accelerate scientific progress. As this vision
is realized through future deployments and expanded use cases, the
true impact of this architecture lies in its ability to broaden access
to cutting-edge tools and unlock scientific insights that would have
been out of reach without an integrated approach.
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