
Increasing Waiting Time Satisfaction
in Parallel Job Scheduling

via a Flexible MILP Approach
Stephan Schlagkamp, Matthias Hofmann

Robotics Research Institute
TU Dortmund University

{stephan.schlagkamp, matthias.hofmann}@udo.edu

Lars Eufinger
Institute of Transport Logistics

TU Dortmund University
eufinger@itl.tu-dortmund.de

Rafael Ferreira da Silva
Information Science Institute

University of Southern California
rafsilva@isi.edu

Abstract—Scheduling of jobs in parallel computing is crucial to
efficiently use shared resources, while attaining user satisfaction.
In this paper, we evaluate how mixed-integer linear programming
(MILP) can be applied for the online parallel job scheduling
problem (which is well-known to be an NP-complete problem).
Therefore, we introduce the idea of planning horizons for parallel
job scheduling, and provide a MILP formulation of the targeted
scheduling problem. Due to the linear fashion of possible MILP
objective functions, the proposed scheduling algorithm is flexible
towards different optimization goals. We make use of data
collected in a user-based study and workload traces from two real
production systems, and demonstrate that our approach suffices
to increase users’ waiting time satisfaction. Additionally, we show
that our MILP formulation outperforms the EASY scheduling
technique with conservative backfilling, when neglecting the
online character of job submissions.

Keywords-Linear programming, Parallel job scheduling, user
satisfaction

I. INTRODUCTION

Parallel computing has become mainstream in scientific
computing [1]–[3]. Typically, users submit computational jobs
to a shared computing infrastructure, where a scheduler
(mostly centralized) aggregates all submitted jobs, and takes
decisions to where the jobs should be allocated (matching
their requirements to the available computing resources), and
when they start their computations (job execution). Parallel
task scheduling is known to be an NP-complete problem,
thus heuristics have been developed to tackle this problem.
However, these heuristics still have to address several (con-
current) objectives, for example energy consumption, waiting
times, fault tolerance, among others. In this paper, we propose
a mixed-integer linear programming formulation (MILP) [4]
to address the online parallel job scheduling problem. The
advantage of using a MILP formulation approach is its capa-
bility of addressing a wide variety of objectives concurrently
and solve them optimally. We first introduce a method to
discretize an online parallel job scheduling problem, which
allows us to explore the possibilities of MILPs. Then, we
design our MILP formulation based on the analysis results
obtained in the exploration step. Due to the flexibility of
the linear optimization function, our formulation has the
potential for a broad set of mentioned optimization goals,

such as (1) maximizing utilization, (2) optimization of energy-
consumption, and (3) user satisfaction. In this paper, we
explore the possibilities of the MILP towards user satisfaction.

User satisfaction is the ultimate goal of every computing
system, and therefore several works have focused on this as-
pect. For instance, Shmueli and Feitelson seek to increase user
satisfaction by encouraging subsequent job submission [5].
Their analysis is based on the concept that users work in
batches and sessions [6]. The term batch denotes a set of
jobs, which are timely close submitted by a user, e.g., the
inter-arrival time between job submissions lie within a certain
threshold. The concept of sessions describes the subsequent
submissions of batches. Once a batch, or certain jobs in
the batch finish, the user might submit the next batch of
jobs. Based on this model, they investigate whether a user
is currently working within a session, and if so jobs are
prioritized so that the users will receive the results faster, and
consequently continue working in the current session. Contrary
to this approach, this paper focus on a different aspect to
increase user satisfaction. We use data collected in a user-
based study [7]–[9] on waiting time satisfaction, and formulate
optimization goals to:

1) Maximize the number of jobs that lie in an acceptable
waiting time frame; and

2) Decrease the lateness of jobs according to an acceptable
waiting time deadline.

The main contributions of this work include:
• The use of planning horizons in parallel job scheduling,

which allows to discretely optimize schedules in online
scheduling environments;

• A MILP formulation for the parallel job scheduling
problem on parallel machines. The formulation is flexible
towards linear optimization goals; and

• An evaluation of the performance of the MILP formula-
tion with focus on increased waiting time satisfaction of
users in parallel computing.

This paper is structured as follows. In the next section,
we give an overview of the related work. In Section III,
we introduce the scheduling approach, discretizing the on-
line parallel job scheduling problem by interpreting it as a

consecutive optimization of independent sub-schedules. The
flexible MILP solver is described in Section IV, where we also
provide a complexity classification of the targeted scheduling
problem. Section V contains an evaluation for two different
user-based optimization goals. Section VI concludes this paper
and highlights future works.

II. RELATED WORK

Workload archives are widely used for research on dis-
tributed systems, to validate assumptions, to model compu-
tational activity, and to evaluate methods in simulation or
in experimental conditions. Several works have used such
archives (e.g., the Parallel Workloads Archive [10]) to develop
and evaluate strategies to optimize multiple objectives in
parallel computing including the categorization and prediction
of workload behaviors [11]. However, most of these studies
focus on the performance analysis of individual (or groups of)
jobs. On the other hand, user behavior is seen as a key factor to
understand job submission processes [12]–[14], evaluate newly
designed scheduling strategies or policies [15], or increase user
satisfaction [5].

A successful and efficient experiment execution mainly
depends on how tasks are scheduled and executed. A common
scheduling strategy is the EASY with conservative backfilling
strategy [16]. EASY follows a first-come-first-serve (FCFS)
approach, however it also allows jobs to execute earlier—in
case they do not delay the execution of previously queued
jobs. Due to the capability of EASY to handle online job
scheduling and MILP is not suitable in a direct, static evalua-
tion, we introduce discretized scheduling scenarios. Different
backfilling strategies used in schedulers are evaluated in a
survey conducted by Srinivasan et al. [17]. Schedulers used
in practical applications provide a variety of parameter-based
adjustments, e.g., the MAUI scheduler [18]. Grothklags and
Streit [19] also use a MILP formulation to solve the parallel
job scheduling problem, however their formulation is based
on starting times of jobs, while we focus on job ordering.
While the approach by Grothklags and Streit needs variables
and linear constraints in the number of time-slots, the sizes
of the variable set and the constraint set of our approach are
independent of time. Furthermore, they use time-scaling to
tackle the problem of large variable and constraint sets and
calculate schedules on a scale of one minute rather than of
one second. In contrast, our approach is immune towards this
problem, since the order of jobs is not depending on actual
time slots.

A few works have focused on the analysis of the user
behavior in parallel computing. Feitelson [20] investigated
correlations between system performance (in terms of response
times) and the subsequent job submission behavior. Results of
this work have driven, for example, the modeling of the user
behavior [21], and the quality and modeling of runtime esti-
mates [22]–[25]. However, these works derive their knowledge
and assumptions of users, their behavior, and their needs from
workload traces, while we use results from a survey [7], [8]
to define objective functions concerning user satisfaction.

III. PLANNING HORIZON

We introduce planning horizons to improve job scheduling
and tackle the online aspect of job submission. A planning
horizon is a time slot of constant, or dynamic length, in which
a set of jobs is scheduled. Figure 1 shows the process of
job scheduling using planning horizons. We use the MILP
approach described in Section IV for scheduling the jobs in
the queue Qi, i ≥ 0. The resulting schedule Si, i ≥ 0 is
modified online (utilizing EASY backfilling) if and only if
an incoming job fits into the existing schedule. Otherwise, the
job is deferred to the next planning horizon, and therefore
added to the queue Qi+1, i ≥ 0 that collects the jobs during
execution of Si.

Planning horizons are beneficial for the proposed method
of applying MILP-techniques to parallel job scheduling. Due
to the fact that solving MILPs is generally a runtime-intensive
process, we do not reschedule queued jobs at every event of job
arrivals, job completion (or preemption), or job starts, but only
on certain, pre-defined moments in time. This is advantageous
in parallel computing systems with a large number of jobs.
The use of planning horizons reduces the complexity of
dealing with the online arrival of jobs, and keep the system
controllable by dividing the online scheduling problem into
smaller subproblems. The length of a planning horizon might
be adapted to specific application requirements.

Furthermore, if we re-arrange queued jobs and do not
compute them in an order significantly influenced by the
arrival time (in the basic case, in a first-come-first-serve
order), we have to be aware of starvation, i.e., a job never
starts processing because other jobs have higher priority. This
situation cannot occur when considering planning horizons—
every job is processed within its horizon, and jobs cannot run
at any other moment outside its horizon.

IV. MILP FOR PARALLEL JOB SCHEDULING ON
PARALLEL MACHINES

In this section, we first classify the theoretical complexity
of the addressed scheduling problems. Then, we introduce an
MILP-formulation as a flexible optimization framework for
linear objectives.

A. Defining the complexity of the scheduling approach

We use the 3-field notation, which was introduced by Gra-
ham et al. [26]. Our analysis is based on the theoretical concept
of parallel machines Pm and minimizing the makespan Cmax
(the turnaround time to complete the experiment execution,
Eq. 1), which is known to be NP-hard [27]. In parallel job
scheduling, additional constraints on the size of jobs mj have
to be met, as well as that jobs arrive online (Eqs. 2 and 3).
However, these constraints do not weaken NP-hardness. The
steps described in Section III for considering independent
schedules then is, that we solve independent problems for
some t ∈ T (Eqs. 4 and 5). Therefore, the complexity of the
addressed problem is NP-hard, since all objectives considered
in this paper are stronger than Cmax. Furthermore, we introduce

Si Si+1 Si+2

Qi Qi+1 Qi+2 Qi+3schedule schedule schedule

backfill backfill backfill

· · ·

· · ·

· · ·

|ti ti+1| |ti+1 ti+2| |ti+2 ti+3|

Fig. 1: Planning horizons divide the online job submissions into queues, which are used to backfill a current schedule until
all jobs of the current schedule are processed. Meanwhile, new schedule is calculated from the queued jobs. Qi, i ≥ 0 is the
queue of jobs, which are scheduled in schedule Si at time ti. Execution lasts from time ti to ti+1, i ≥ 0. Jobs arriving between
ti to ti+1 are either allocated by the EASY backfilling strategy or, if they cannot be processed before ti+1, queued in Qi+1.

due-dates dj , which we consider to reflect user satisfaction—if
a due date is met, then it is satisfactory.

Pm | | Cmax (NP-hard) (1)ysizej , online (2)

Pm | sizej , online | Cmax (3)y”offline”: t ⊂ T (4)

Pm | sizej | Cmax (5)

Since the problem is NP-hard and we target optimal solu-
tions, we choose a MILP (mixed-integer linear programming)
for solving the targeted parallel job scheduling problem. We
then assume that there is no additional abstraction layer, such
as a meta-scheduler. Consequently, we neglect any kind of
queuing and scheduling policies, which results in no user
restrictions, and no sub-queues. We also assume that, once a
job has been submitted, there is no further interaction between
the users and the system. Although the approach allows in
principle job removal from the queue, or the preemption of
jobs at runtime, this is not considered in the evaluation (see
Section V). Additionally, the proposed scheduling system does
not give any guarantees. Hence, there are no service level
agreements, or any guarantee that the job will complete within
a deadline.

B. Mixed-integer linear programming formulation

The MILP requires a set of input variables described as
follows:

pj : (requested) processing time of job j, (6)
mj : size of job j, (7)
w′j : previous waiting time of job j, (8)

ai : availability of resource i. (9)

Additionally, we define a set of jobs as J , and a set of
resources as M .

The MILP requires two sets of binary decision variables,
and one integer decision variable for the optimization process.
The value ranges ensure that only a single job is executed per
resource at the same time (i.e., there is no concurrency), and

that there is a strict order between jobs allocated to a particular
resource:

xij ∈ {0, 1} : indicator if job j is
processed on resource i (10)

yjj′ ∈ {0, 1} : indicator if job j is
processed before job j′ (11)

tj ≥ 0 : start time of job j (12)

Q ≥ max{M}+
∑
i∈J

pj + 1 : arbitrarily large value (13)

The following set of constraints (Eqs. 14–19) represent
the MILP formulation of the Pm | sizej , dj | min

∑
j f(.)

scheduling problem. The MILP is flexible since it is applicable
to any linear optimization function f(.) on the given variables:

min
∑
j∈J

f(.) (14)

s.t.

M∑
i=1

xij = mj ∀j (15)

xij + xij′ − 1 ≤ yjj′ + yj′j∀i, j, j′ j > j′ (16)
yjj′ + yj′j ≤ 1 ∀j, j′ j 6= j′ (17)

tj′ + (1− yjj′) ·Q ≥ tj + pj ∀j, j′ j 6= j′ (18)
tj + (1− xij) ·Q ≥ ai ∀j, i (19)

Equation 15 denotes the size constraint of the jobs. This means
that a job j must be executed on exactly sizej resources in
parallel. If two jobs run on the same resource, they must
be executed consecutively (Eq. 16), and exclusively either j

′

before j or vice versa (Eq. 17). Non-overlapping (Eq. 18)
adds a time constraint by guaranteeing that only a single job is
executed per resource at an instant of time. Finally, the starting
time of job j must respect the availability of the resource
(Eq. 19).

V. EVALUATION

In this section, we evaluate the practicability of the proposed
MILP formulation. We first define two user-based optimization
goals related to waiting times, i.e., the tardiness and the

number of late jobs, as well as the makespan, and compare
them to results obtained with the EASY scheduling with
conservative backfilling. EASY follows a FCFS approach with
backfilling—jobs located farther in the queue may run before
their predecessors if they do not delay the execution of any
previous job. We derive scenarios from production platform
workload traces, which are used as input for the MILP. In
this evaluation, we ignore feedback effects such as think
time and the online character of this scheduling problem,
since they add significantly complexity and uncertainty to the
user submission behavior. Since our approach uses planing
horizon, this assumption does not weaken our evaluation. The
schedulers face static scenarios, which are independent of
online submission behavior.

Both schedulers, EASY and MILP, are based on runtime
predictions. Whenever a runtime estimate is poor and a job
completes significantly in advance to its estimated comple-
tion time, backfilling strategies are triggered to fill this gap.
Therefore, this approach mitigates flaws in runtime estimates
provided by users (which is typical in production systems).

A. Satisfaction

In this paper, we target the optimization of user-based
waiting times satisfaction. Therefore, we use data gathered in
a user-based survey conducted by means of the Questionnaire
on User Habits in Compute Clusters (QUHCC). We collected
data to determine to which extent users are whiling to accept
waiting and response times for different job lengths [7], [9].
The questionnaire is composed of six questions on acceptable
waiting times for different job sizes ranging from interactive
and short jobs, which are defined as runs up to ten minutes; up
to large jobs, which may run for several days. The surveyed
data was collected from responses of 23 users of different
clusters at TU Dortmund University, Germany. We assume
that the results drawn from the collected data is to some extent
representative for users of parallel computing infrastructures
located at institutional facilities (e.g., campus clusters).

There can be several further aspects influencing user satis-
faction, such as whether the system sizes suit users’ needs, if
they find that resources are fairly shared among researchers,
among others. Nevertheless, waiting times are a measurable
and negotiable component of parallel job processing, and
therefore is the scope of this paper.

Figure 2 shows the median, .25-quantile, and .75-quantile
values of acceptable response times for the provided answers.
The x-axis represents job lengths of six job length categories
of QUHCC in minutes. Acceptable response times are shown
on the y-axis (also in minutes), where response time of a job
j is defined as follows:

rj = wj + pj , (20)

where wj is the waiting time, pj the processing time. The
increase on response time acceptance is of linear fashion
(shown in a regression analysis). For all three datasets (median,
.25-quantile, and .75-quantile), we perform a linear regression

Fig. 2: Median, quantiles (.25 and .75), and linear regression
of the acceptable response times for different job lengths (in
terms of runtime). The increase on response time acceptance
is linear.

TABLE I: Linear regression function parameters. (AccWT is
the acceptable waiting time).

Data Set c1 c2 (in min) RMS (in min)

Median AccRT 1.70 29.51 286.00
.75-Quantile AccRT 2.28 215.75 746.11
.25-Quantile AccRT 1.14 -166.19 778.56

analysis minimizing least squares. The resulting functions are
also plotted in Figure 2. The linear regression functions r(pj)
are of the form:

r(pj) := c1 · pj + c2. (21)

The values of c1 and c2 are listed in Table I, as well as the
root mean square (RMS).

Based on the linear functions, we define an acceptable
slowdown S(pj) ≥ 1, which describes a factor of how much
greater the response time of a job j can be compared to its
processing time pj :

S(pj) := max

{
(c1 · pj + c2)− pj

pj
, 1

}
. (22)

Note that for the median and .25-quantile regression, c2 is
negative. When rating acceptability of waiting times according
to the regression functions, one has to be aware of this relation,
and therefore consider the maximum between the slowdown
implied by the linear regression and one.

Optimization goals. In the following, we use two related
optimization goals from the scheduling theory, i.e.,

∑
j∈J Tj

(tardiness) and
∑

j∈J Uj (unified lateness) [27], and apply

them to the targeted problem of increasing user satisfaction.
Tardiness is the time span from a due date of a job until it
is processed, while unified lateness describes whether a job
can complete before its due date. Both objectives lead our
simulation setup (Eqs. 1–5) to an NP-hard problem, since
tardiness and unified lateness are more complex than Cmax in
parallel scheduling [27]. Both objective functions reasonably
seek to exploit the findings on acceptable waiting times as
possible minimization objectives for parallel job schedules.
Thus, we derive the following two linear objective functions:

Uj(pj) :=min
(
1,max

(
0, rj − S(pj) · pj

))
(23)

Tj(pj) :=max
(
0, rj − S(pj) · pj

)
(24)

Since functions respect the waiting time of jobs, the idea is
to distribute waiting times among all users.

B. Experimental Scenarios

Beside the objective functions, we also need realistic data to
evaluate the performance and quality of the MILP scheduling
approach in production environments. We use data from real
workload traces, covering different system sizes and different
temporal spaces (recorded in 1996 and 2014). Table II shows
the main characteristics of the two traces used in this paper
(KTH and MIRA), which include their names, a short handle,
the system sizes (in terms of number of nodes), the number of
individual users, the number of recorded jobs, and the duration
covered in the trace. The KTH trace was obtained from the
Parallel Workloads Archive (PWA) [10]. We arbitrarily chose
the KTH trace from PWA, since it has been used in several
studies in the past decades1.

To evaluate the planning horizon approach (Section III), we
derive scenarios from the workload traces. A scenario contains
a queue status Q and a resource status M of trace l at an
instant of time t (Eq. 25). At instant t, queue Q contains
a set of jobs J , which have been submitted and have not
started processing (Eq. 26). The resource status M describes
the number of resources mj that are allocated for a job j
at t, and for how long the job will consume the resource cj
(Eq. 27).

scenariol,t := {Q,M}, (25)
Q := {j | sj ≥ t ∧ wj ≤ sj − t}, (26)
M := {(mj , cj) | sj ≤ t ∧ cj ≥ t ∧ j ∈ J} (27)

C. Experimental Results and Discussion

First, we focus on minimizing the number of late jobs
according to the unified lateness objective function defined
in Eq. 23. We create 20 scenarios at arbitrary points in time
t from the MIRA trace, and then we set the time limit to 10
minutes for the execution of the MILP. In order to decrease the
complexity of the solution, and lead to more comprehensible
results, the evaluation neglects any queueing, scheduling, or

1http://www.cs.huji.ac.il/labs/parallel/workload/l kth sp2/index.html

Fig. 3: Distributions of job queue sizes for the KTH and MIRA
workload traces.

other policies, which were present during trace recording. The
distribution of queue sizes in both KTH and MIRA are shown
in Figure 3.

For the sake of simplicity, we do not consider jobs that will
trespass their due date independently of any schedule, i.e.,
tj + w′j > (S(pj) − 1) · pj . Thus, we filter these jobs in a
preprocessing step (data preparation). We choose the median
acceptance function and the .75-quantile function from Table I.
We choose the median as an average value, which is robust
against outliers. In situations of high queue saturation, this
value cannot be satisfied. Therefore, we also choose the .75-
quantile to represent less satisfaction but still concerning the
answers provided in the survey. Additionally, we compare the
results of both the EASY with conservative backfilling and
our proposed MILP approach.

Figure 4 shows the scheduling results for the MIRA trace,
as well as runtimes and the gap between best integer and re-
laxation solution of the MILP. Figure 4a shows the differences
in the number of late jobs between the solution obtained from
EASY and MILP when applying either the median or the .75-
quantile function, respectively. Note that the obtained values
are always positive (including zero), since the MILP always
finds a solution, which is better (or at least not worse) than the
EASY solution. This observation holds even when the runtime
limit of ten minutes is reached (Figure 4b). Overall, the .75-
quantile function allows the MILP to find more jobs, which
can complete before their due date, whereas EASY cannot
find suitable solutions due to its underlying FCFS strategy.
Figure 4c shows that 80% of the scenarios can be processed
optimally within the 10-min threshold time limit.

Figure 5 shows the results of optimizing the tardiness
objective function defined in Eq. 24. Since we do not target
the optimization of the unified lateness focusing only on the
number of jobs that could be processed before their due
date, but the sum of individual latenesses, we also report the
Cmax-values of each schedule (Figure 5b). In this scenario, the
runtime was limited to one hour since in practical application,

TABLE II: Characteristics of the real workload traces used in this paper.

Tracename Handle Year System Size (#nodes) #Users #Jobs Duration

KTH-SP2-1996-2.1-cln KTH 1996 100 214 28,476 340 days
MIRA-2014 MIRA 2014 49,152 487 78,782 409 days

(a) (b)

(c)

Fig. 4: Results of scheduling scenarios taken from the MIRA trace with preprocessing: (a) difference between results for
EASY and MILP for

∑
Uj for median and .75-quantile satisfaction function, (b) runtimes, and (c) gap between best integer

and relaxation solution.

we want to obtain a schedule within a realistic time frame.
For both optimization functions, we observe that MILP out-
performs EASY in most cases (Figure 5a). For three scenarios
(queue sizes 16 (2x) and 30) the solution obtained by EASY
is smaller than the solution obtained by MILP. For the median
satisfaction function, the mean improvement is µ = 20.6%
(σ = 20.3%), and for the .75-quantile function the mean
improvement is µ = 32.2% (σ = 29.0%).

Although we reach the runtime limits for queue sizes of
seven and nine already (Figure 5c), and subsequently also
experience a gap > 0% (Figure 5d), for every scenario
considered, MILP leads to better results than EASY. The
MILP is able to find better schedules because it does not
need to schedule jobs in FCFS order but can re-arrange jobs.
Furthermore, the makespan Cmax is smaller for all schedules
up to queue sizes of about 16 jobs, although this is not the
primary goal of the considered optimization functions. Since
we experience a gap of more than about 20%, longer runtimes,
or a deeper understanding and improvement of the considered
scheduling approach will aid to improve the results.

Hence, we argue that we can distribute waiting times better
among all jobs currently subject to schedule by introducing

planning horizons and applying the MILP approach proposed
in this paper under the assumptions discussed.

All experiments were conducted on five cores of an Intel
Xeon CPU E5-2660 v3 @2,60Ghz with a limit of 64GB of
RAM, running Windows Server 2012 and CPLEX Enterprise
Server Version 12.6.1. The time limit was set to 10 and 120
minutes, respectively.

VI. CONCLUSION

In this paper, we have presented a way to explore MILP
techniques for parallel job scheduling in parallel computing to
increase user satisfaction by meeting job deadlines. Therefore,
we have defined planning horizons and scenarios. The main
results include:

1) The definition of planning horizons in the online parallel
job scheduling problem, e.g., to exploit methods from
discrete optimization;

2) An approach to optimize user satisfaction in parallel job
scheduling; and

3) A MILP formulation capable of optimizing job queues
of up to 350 jobs optimizing a

∑
Uj constraint (with

preprocessing), and up to 30 jobs for a
∑
Tj constraint.

(a) (b)

(c) (d)

Fig. 5: Results of scheduling scenarios taken from the KTH trace: (a) Differences between results from EASY and MILP
regarding the sum of latenesses

∑
Lj , (b) differences between results from EASY and MILP regarding the makespan

∑
Cmax,

(c) runtimes, (d) gap between best integer and relaxation solution.

While we have demonstrated the practicability of a MILP-
based scheduling technique for parallel job scheduling in the
form of planning horizons, future work should address the
problem of exploiting our findings. It is still necessary to apply
the MILP to the consecutive scheduling of scenarios described
in this work. Furthermore, future work should also consider the
feedback effect between the users and the parallel computing
environments. These studies might also include the influence
of user-related inaccuracy in runtime estimation and further
sources of uncertainty.

ACKNOWLEDGEMENT

We thank Bill Allcock from the Argonne National Labora-
tory (ANL) for making the traces of the Mira supercomputer
available, and for the detailed information and insightful
discussions.

REFERENCES

[1] M. AbdelBaky, R. Tavakoli, M. F. Wheeler, M. Parashar, H. Kim, K. E.
Jordan, V. Sachdeva, J. Sexton, H. Jamjoom, Z.-Y. Shae et al., “Enabling
high-performance computing as a service,” Computer, no. 10, pp. 72–80,
2012.

[2] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Communications of the ACM, vol. 58, no. 7, pp. 56–68, 2015.

[3] A. Geist and D. A. Reed, “A survey of high-performance computing
scaling challenges,” International Journal of High Performance Com-
puting Applications, p. 1094342015597083, 2015.

[4] A. Schrijver, Theory of linear and integer programming. John Wiley
& Sons, 1998.

[5] E. Shmueli and D. G. Feitelson, “On simulation and design of parallel-
systems schedulers: are we doing the right thing?” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 20, no. 7, pp. 983–996,
2009.

[6] N. Zakay and D. G. Feitelson, “On identifying user session boundaries
in parallel workload logs,” in Job Scheduling Strategies for Parallel
Processing. Springer, 2012, pp. 216–234.

[7] J. Renker, S. Schlagkamp, and G. Rinkenauer, “Questionnaire for user
habits of compute clusters (QUHCC),” in HCI International 2015-
Posters’ Extended Abstracts. Springer, 2015, pp. 697–702.

[8] S. Schlagkamp, R. Ferreira da Silva, J. Renker, and G. Rinkenauer,
“Analyzing users in parallel computing: A user-oriented study,” in 14th
International Conference on High Performance Computing & Simulation
(HPCS), 2016.

[9] S. Schlagkamp and J. Renker, “Acceptance of waiting times in high
performance computing,” in HCI International 2015-Posters’ Extended
Abstracts. Springer, 2015, pp. 709–714.

[10] “Parallel workloads archive,” http://www.cs.huji.ac.il/labs/parallel/workload.
[11] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards

characterizing cloud backend workloads: insights from google compute
clusters,” ACM SIGMETRICS Performance Evaluation Review, vol. 37,
no. 4, pp. 34–41, 2010.

[12] D. G. Feitelson, Workload modeling for computer systems performance
evaluation. Cambridge University Press, 2015.

[13] S. Schlagkamp, R. Ferreira da Silva, W. Allcock, E. Deelman, and
U. Schwiegelshohn, “Consecutive job submission behavior at Mira
supercomputer,” in ACM International Symposium on High-Performance
Parallel and Distributed Computing (HPDC), 2016.

[14] S. Schlagkamp, R. Ferreira da Silva, E. Deelman, and
U. Schwiegelshohn, “Understanding user behavior: from HPC to
HTC,” in International Conference on Computational Science (ICCS),
2016.

[15] U. Schwiegelshohn, “How to design a job scheduling algorithm,” in
Job Scheduling Strategies for Parallel Processing. Springer, 2014, pp.
147–167.

[16] D. A. Lifka, “The anl/ibm sp scheduling system,” in Job Scheduling
Strategies for Parallel Processing. Springer, 1995, pp. 295–303.

[17] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Char-
acterization of backfilling strategies for parallel job scheduling,” in
Parallel Processing Workshops, 2002. Proceedings. International Con-
ference on. IEEE, 2002, pp. 514–519.

[18] D. Jackson, Q. Snell, and M. Clement, “Core algorithms of the
maui scheduler,” in Job Scheduling Strategies for Parallel Processing.
Springer, 2001, pp. 87–102.

[19] S. Grothklags and A. Streit, “On the comparison of cplex-computed job
schedules with the self-tuning dynp job scheduler,” in Proceedings of
the 18th International Parallel and Distributed Processing Symposium,
2004., April 2004.

[20] D. G. Feitelson, “Looking at data,” in Parallel and Distributed Pro-
cessing, 2008. IPDPS 2008. IEEE International Symposium on. IEEE,
2008, pp. 1–9.

[21] S. Schlagkamp, “Influence of dynamic think times on parallel job
scheduler performances in generative simulations,” in JSSPP 2015 - 19th
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP

2015), Hyderabad, India, May 2015.
[22] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Modeling user runtime

estimates,” in JSSPP, vol. 5. Springer, 2005, pp. 1–35.
[23] C. B. Lee and A. Snavely, “On the user–scheduler dialogue: studies of

user-provided runtime estimates and utility functions,” IJHPCA, vol. 20,
no. 4, 2006.

[24] R. Ferreira da Silva, G. Juve, E. Deelman, T. Glatard, F. Desprez,
D. Thain, B. Tovar, and M. Livny, “Toward fine-grained online task
characteristics estimation in scientific workflows,” in 8th Workshop on
Workflows in Support of Large-Scale Science, ser. WORKS ’13, 2013,
pp. 58–67.

[25] R. Ferreira da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny,
“Online task resource consumption prediction for scientific workflows,”
Parallel Processing Letters, vol. 25, no. 3, 2015.

[26] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, “Optimiza-
tion and approximation in deterministic sequencing and scheduling: a
survey,” Annals of discrete mathematics, vol. 5, pp. 287–326, 1979.

[27] M. L. Pinedo, Scheduling: theory, algorithms, and systems. Springer
Science & Business Media, 2008.

