
Bridging Paradigms: Designing for HPC-Quantum Convergence

Amir Shehataa,→, Peter Groszkowskia, Thomas Naughtonb, Muralikrishnan Gopalakrishnan Meenaa, Elaine Wongb, Daniel
Claudinoc, Rafael Ferreira da Silvaa, Thomas Becka

a National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
b Computer Science and Mathematics, Oak Ridge National Laboratory, Oak Ridge, TN, USA

c Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

This paper presents a comprehensive software stack architecture for integrating quantum computing (QC) capabilities with High-
Performance Computing (HPC) environments. While quantum computers show promise as specialized accelerators for scientific
computing, their effective integration with classical HPC systems presents significant technical challenges. We propose a hardware-
agnostic software framework that supports both current noisy intermediate-scale quantum devices and future fault-tolerant quantum
computers, while maintaining compatibility with existing HPC workflows. The architecture includes a quantum gateway inter-
face, standardized APIs for resource management, and robust scheduling mechanisms to handle both simultaneous and interleaved
quantum-classical workloads. Key innovations include: (1) a unified resource management system that efficiently coordinates quan-
tum and classical resources, (2) a flexible quantum programming interface that abstracts hardware-specific details, (3) A Quantum
Platform Manager API that simplifies the integration of various quantum hardware systems, and (4) a comprehensive tool chain for
quantum circuit optimization and execution. We demonstrate our architecture through implementation of quantum-classical algo-
rithms, including the variational quantum linear solver, showcasing the framework’s ability to handle complex hybrid workflows
while maximizing resource utilization. This work provides a foundational blueprint for integrating QC capabilities into existing
HPC infrastructures, addressing critical challenges in resource management, job scheduling, and efficient data movement between
classical and quantum resources.

Keywords: Quantum Computing, High-Performance Computing, System Integration, Quantum Applications.

Sections

1. Introduction

Quantum Computing (QC) holds immense promise for ac-
celerating scientific discovery across multiple domains, includ-
ing quantum chemistry, materials science, optimization, and ar-
tificial intelligence (AI). However, QC is not expected to re-
place classical computing but rather serve as an accelerator for
tasks best suited to its capabilities, necessitating their integra-
tion with their classical counterparts, particularly High Perfor-
mance Computing (HPC). Similar to how GPUs enhance clas-
sical computing through heterogeneous integration, quantum
processing units (QPUs) could accelerate specific quantum ad-

→Corresponding address: National Center for Computational Sciences, Oak
Ridge National Laboratory, Oak Ridge, TN, 37831, USA
→→This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-

00OR22725 with the US Department of Energy (DOE). The publisher acknowledges
the US government license to provide public access under the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

Email addresses: shehataa@ornl.gov (Amir Shehata),
groszkowskip@ornl.gov (Peter Groszkowski), naughtont@ornl.gov
(Thomas Naughton), gopalakrishm@ornl.gov (Muralikrishnan
Gopalakrishnan Meena), wongey@ornl.gov (Elaine Wong),
claudinodc@ornl.gov (Daniel Claudino), silvarf@ornl.gov (Rafael
Ferreira da Silva), becktl@ornl.gov (Thomas Beck)

vantaged algorithms while leveraging classical systems for other
computations within larger scientific workflows.

Currently, several major research centers worldwide are ac-
tively pursuing QC/HPC integration initiatives. The European
Union’s EuroHPC project has designated multiple centers for
quantum computer installation, including facilities in Czechia,
Finland, France, Germany, Italy, Poland, and Spain. Similarly,
significant efforts are underway at various national research lab-
oratories in the United States. These initiatives primarily focus
on developing optimized software stacks and workflows for var-
ious quantum technologies, preparing for the eventual integra-
tion of fault-tolerant quantum computers (FTQC).

The Oak Ridge Leadership Computing Facility (OLCF) at
Oak Ridge National Laboratory (ORNL) has established con-
siderable expertise in deploying world-leading supercomputers
that utilize accelerator technologies, as demonstrated by sys-
tems like Frontier and Summit. Through the Quantum Com-
puting User Program (QCUP), ORNL has gained valuable ex-
perience in providing access to diverse quantum resources and
managing hybrid quantum-classical workflows. In our previous
work [5], we outlined a comprehensive framework for integrat-
ing QC capabilities into HPC environments and detailed the in-
frastructure requirements for supporting quantum-classical work-
flows. This experience, combined with ORNL’s established
processes for supercomputer lifecycle management, provides a

Preprint submitted to Future Generation Computer Systems June 16, 2025

http://energy.gov/downloads/doe-public-access-plan


Network

Quantum
Controller

HPC/QC Hybrid Application

Quantum
Compiler
Toolchain Quantum Programming Interface (QPI)

Quantum TaskQuantum Platform Manager (QPM)

MPI Library

Quantum
Hardware
interface

Pulse
Generator

Resource Management System (e.g., SLURM)

Quantum Gateway

Figure 1: A high-level physical view of QC/HPC integration, overlaid with a simplified representation of the quantum software stack. The quantum gateway can
interface with multiple quantum hardware systems of the same type. Additionally, multiple gateways, including virtualized ones, can be configured to communi-
cate with different types of hardware. This separation is designed to minimize workload on the gateway, reducing congestion and preventing over-subscription.

strong foundation for developing comprehensive QC/HPC inte-
gration strategies.

Building upon our previous integration framework [5], this
paper advances the state of the art by presenting a detailed soft-
ware stack design and implementation strategies for quantum-
HPC integration. While our previous work established the foun-
dational requirements, this paper focuses on the practical soft-
ware architecture and design aspects, as well as validation of
the software stack in real-world scenarios. Our key contribu-
tions include:

1. A hardware-agnostic software stack design that supports
both current noisy intermediate-scale quantum-era (NISQ)
devices and future fault-tolerant quantum computers, while
maintaining compatibility with existing HPC workflows
and resource management systems.

2. A comprehensive software stack architecture that addresses
critical challenges in quantum-HPC integration, includ-
ing resource scheduling, job management, and efficient
data movement between classical and quantum resources.

3. An analysis of the proposed software architecture, in-
cluding its interaction with scientific applications and its
integration with external software components such as
workflow management systems.

4. Implementation strategies for supporting both on-premises
quantum hardware and cloud-based quantum resources,
enabling flexible deployment options for HPC centers.

2. Framework Overview

A high-level physical view of the integration of an on-premises
quantum machine is illustrated in Figure 1. In the figure, the
quantum machine is connected to a quantum controller. The
quantum controller acts as the interface between classical con-
trol hardware and quantum processors (qubits). The main func-
tion of the controller is to generate, manipulate, and read out
signals that control the quantum computation.

A classical compute node is directly connected to the quan-
tum controller and acts as a “quantum gateway” for access to

the quantum resource. The quantum gateway computer runs
classical services, which include resource management soft-
ware to efficiently allocate/reserve the quantum hardware. The
gateway computer also provides dedicated, low-latency compu-
tational resources for any classical operations that are needed by
the quantum controller to satisfy timing constraints. Lastly, the
gateway can host portions of the resource management plugins
that are hardware-aware and used to interface resources else-
where on the network (e.g., Frontier HPC supercomputer).

The bulk of the QC/HPC software stack resides on tradi-
tional classical HPC resources, e.g., service nodes, compute
nodes, etc. The resource manager (e.g., SLURM [21]) runs
on the HPC service nodes and the compute node where appli-
cation processes are launched. The hybrid application spans
the HPC and QC resources. Figure 1 overlays a notional map-
ping of where the different services and capabilities reside. The
Quantum Programming Interface (QPI) is the application facing
layer that is used by the hybrid application on the HPC compute
nodes to interact with the quantum resources. The Quantum
Platform Manager (QPM) is the hardware facing layer that pro-
vides access to underlying quantum resources from the HPC
compute nodes. These software layers are described in more
detail in Section 7.

3. Traditional HPC Accelerators: GPU Example

For the foreseeable future, QC will likely be regarded as
a specialized computational accelerator for tasks particularly
suited to this paradigm. Therefore, it is instructive to analyze
the integration of GPUs in classical computing to draw parallels
and lessons from GPU/CPU integration. ORNL’s Frontier [28]
supercomputer utilizes AMD GPUs and has further emphasized
the need for specialized accelerators in computer architecture.

3.1. GPU Control Interfaces
Developing efficient GPU programs requires mastering two

distinct phases: (1) Developing and compiling GPU-enabled

2



code, and (2) Running the resulting binary on the target sys-
tem. Typically, GPU kernels are annotated with specific syntax,
such as __global__, to signify that the function is intended
for execution on the GPU. GPU APIs, like CUDA [19, 23] or
HIP [18], provide a method to interact with the GPU and can
be categorized into several groups. For example, Initialization
and Version Management APIs manage the setup and version
checking of the GPU environment. Device Management APIs
handle device selection, querying device attributes, and setting
various device configuration. Execution Control APIs govern
how kernels are launched and executed on the GPU. Memory
Management APIs handle GPU memory management, includ-
ing allocation, deallocation, and copying. These APIs are em-
ployed within host code, running on the CPU, to set up the
essential components needed for GPU kernel execution. For
example, device management APIs enable the selection of a
specific GPU for executing GPU code, while execution con-
trol APIs facilitate launching GPU kernels on the chosen GPU.
These APIs are typically encapsulated within user-space GPU
libraries, which interact with the GPU kernel driver to perform
their functions.

3.2. GPU Compilation
A specialized compiler is utilized to process GPU-enabled

source code. It first pre-processes directives, macros, and in-
cludes. It also splits the code into parts that will run on the
device (i.e., the GPU) and those that will execute on the host
(i.e., the CPU). Host code is compiled using standard compil-
ers such as gcc or clang. GPU code is lowered into an interme-
diate representation suitable for further compilation. HIP for
example uses LLVM IR. During this process, any optimization
passes are carried out on the compiled code. If the GPU tar-
get architecture is known, the code is lowered down to a format
suitable for execution on the GPU. Otherwise, the intermediate
representation is stored in the combined host and GPU binary.

3.3. GPU Scheduling and Execution
When the program is executed, the operating system loads

the binary into memory and begins executing the host code.
Any invocation of the GPU API results in the execution of the
GPU library code, which interacts with the GPU device driver
to perform operations such as GPU memory allocation, context
creation, and device management. When the host code launches
a GPU kernel, the GPU API looks up the function symbol in the
kernel symbol table within the ELF binary. If the GPU function
has already been compiled to the target GPU architecture, it is
queued on the GPU scheduler. If it is still in an intermediate
representation (IR) format the GPU API compiles it down to
the specific machine code for the GPU architecture present in
the system. This Just-In-Time (JIT) compilation is optimized
for the current hardware and the compiled code is often cached
to avoid recompilation in future executions, significantly im-
proving performance.

Once compiled, the kernel is queued on the GPU scheduler,
which manages the execution order of multiple kernels to ef-
ficiently utilize the GPU resources. On program completion,

GPU Kernels

GPU Application

GPU Runtime Calls 

Heterogeneous Interface for
Portability (HIP)

ROCm
lib

MMIO/PCIe

GPU

CUDA
lib

ROCr
Kernel
Module

CUDA
Kernel
Module

Hardware Specific Calls 

Access hardware via
PCIe or MMIO registers

Figure 2: GPU software stack showing a number of abstraction layers that
separate the application interface from low level tools that may be hardware-
specific. A similar general approach will be employed with working with
quantum hardware based accelerators.

the GPU library performs finalization, ensuring that all GPU
operations are completed, memory is deallocated, and other re-
sources are cleaned up gracefully. This includes releasing any
device contexts, freeing allocated memory, and ensuring that
the GPU is in a clean state for future operations.

3.4. Discussion
The GPU software stack described in this section serves as a

good template for the QC software stack, refer to Figure 7. Sim-
ilar to the control interfaces shown in Figure 2, QC will require
a comparable set of interface APIs that provide the appropri-
ate level of abstraction for applications. The GPU compilation
process shares many parallels with quantum circuit compila-
tion, where circuits are lowered to an intermediate representa-
tion and further optimized into a hardware-specific format, fol-
lowing the JIT compilation process. Finally, circuits will need
to be scheduled and executed on the target platform raising sim-
ilar challenges to host/GPU allocation and coordination. These
points will be elaborated on further in Sections 5, 6, and 7.

3



4. Application Patterns

Although hybrid classical-quantum algorithms inherently rely
on both types of hardware, it is useful to classify application
patterns based on their varying computational demands. Such
distinction is important, given the significant asymmetry in the
availability of quantum computers in the foreseeable future. In
both current, and even next generation of QC/HPC ecosystems,
quantum hardware deployment will be limited (i.e., only a sin-
gle or few quantum devices will likely be available), in contrast
to classical compute infrastructure, which will continue to be
the dominant computational resource. Below, we distinguish
between different application patterns based on their need to
utilize quantum and classical hardware. These approaches span
from those requiring minimal QC resources to implementations
where quantum computation dominates the total resource allo-
cation1. While it is expected that all these application types are
treated as first-class citizens by the underlying software tools
(e.g., ORNL’s QFw), explicitly identifying the core differences
between them, can help optimize resource allocation and im-
prove overall runtime efficiency in hybrid computing environ-
ments.

1. High quantum, low classical resource usage: This cat-
egory includes applications where the quantum resource
requirements dominate the computational workload. Here
the classical resources are primarily used for (usually fast,
and requiring a minimal HPC node count to execute) pre-
and post-processing tasks that may include circuit gener-
ation or transpilation, and classical analysis of measure-
ment results.

2. Low quantum, high classical resource usage: In this cat-
egory, the core of computation is classical in nature and
only a small amount of quantum resources are required.
This pattern mainly expands on applications currently en-
countered in HPC ecosystems, where many HPC nodes
are utilized over long times, but where quantum resources
may be invoked very selectively, only for specific parts of
the total computational task.

3. Roughly equal quantum and classical resource usage:
Here, quantum and classical computations are more bal-
anced, each playing a substantial role in the total com-
putational task, and neither dominating the total resource
requirements.

Having a framework (and crucially a scheduler) that is able
to understand these different application patterns, can help min-
imize resource idle time, and thus maximize overall hybrid sys-
tem performance of the full QC/HPC system. For example, in
the case of applications that adhere to Pattern 2 above, in order

1Although often the classical HPC compute requirements are expressed
in terms of a measure such as node-hours, and equivalent can be used for
quantum devices, due to the generally very limited availability of the latter, it
may initially be more useful to discuss the (quantum especially) requirements
in terms of a fraction-of-the-total that are available.

to optimally utilize the (highly scarce) quantum hardware, the
scheduler may need to interleave quantum execution of multi-
ple hybrid jobs, whereas in the case of jobs that mainly adhere
to Pattern 1, the scheduling becomes more straightforward, as
jobs can be largely scheduled sequentially. See Section 5 for
further discussion.

4.1. Time-Sensitive Classical-Quantum Computation
Some hybrid applications may also have a hard constraint

on the latency between interleaved classical and quantum parts
of the computation. One example of such a scenario includes
quantum circuits with mid-circuit measurements (see, e.g., [15]),
where parts of the algorithm can be conditionally executed de-
pending on measurement results of a qubit (or many qubits)
during (i.e., mid-way through) the quantum evolution. In the
simplest variant of above paradigm, the classical processing in-
volved can be fairly minimal, and in practice can be often done
on the close-to-quantum hardware electronics (e.g., on a FPGA-
or ASIC-based devices, with minimal communication latency
to the quantum hardware). One can, however, also imagine
more involved scenarios, where such mid-circuit measurements
spawn complicated, even HPC-based computations, which in
turn determine what further quantum operations should be ex-
ecuted. This latter operational pattern is currently not prac-
tical, due to the very limited coherence times2 of the avail-
able, even state-of-the-art, quantum computers. As quantum
hardware evolves, however, and some level of fault-tolerance
is achieved, the timescales on which quantum devices will stay
coherent will be extended dramatically (to seconds, minutes, or
beyond), thus reducing the hard-time constraints on how long
hybrid computations (and related communications) that require
time-sensitive processing, can take. It is worth pointing out that
the inability of a hybrid QC/HPC systems to keep pace, will
generally result in a reduction of the fidelity of obtained results
(formally, as coherence is gradually lost, quantum states be-
come more mixed, thus introducing classical uncertainty in the
qubit measurements, see e.g., [16]).

Another important example where time-sensitive classical-
quantum interactions are required is syndrome-decoding (a mech-
anism by which one can understand how errors can be corrected
in a quantum computer, when quantum error correcting codes
are being utilized). This process usually involves continually
obtaining selective measurements, which then need to be clas-
sically processed (i.e., decoded) before future quantum opera-
tions are applied, see e.g., [29] – each iteration of this proto-
col, must happen in a well defined time (that depend on vari-
ous implementation details such as the hardware being used, or
the specific error correction code being utilized). Although re-
searchers previously believed that the decoding process would
require substantial classical resources, recent studies [17, 30]
suggest that dedicated FPGA/ASIC hardware may suffice, and
HPC-level ecosystems will likely not be directly utilized for

2In simple terms, a “coherence time” of a quantum system defines a
timescale beyond which the environmental noise can destroy a quantum state,
thus making a quantum computation no longer quantum.

4



syndrome decoding. Nevertheless, given the algorithmic use-
fulness of time-sensitive computations and communications we
outline above, it is important for the software stack and tooling
to be able to fully support this useful mode of operations.

4.2. Special Cases and Scheduling Flexibility
The categorization of hybrid applications based on the rel-

ative demand for quantum and classical resources provides a
useful starting point for designing resource allocation strategies
and guiding scheduler behavior. However, in practice, more
fine-grained classifications may also be warranted. These could
account for factors such as algorithmic structure, tolerance to
execution delays or job duration.

Moreover, certain applications may require exceptions to
general scheduling policies. Examples include benchmarking
jobs, debugging or testing runs, and workflows tied to time-
sensitive experimental campaigns or calibration events. Such
cases may not align neatly with the high/low resource usage pat-
terns defined earlier, and instead demand more dynamic treat-
ment within the scheduler. These scenarios can be accommo-
dated by incorporating metadata into job submissions—such as
user—defined priority levels or job types—that enable policy
overrides or custom handling.

While the current work does not aim to implement these
mechanisms directly, we recognize their potential value and
consider them an important direction for future extension of this
effort.

5. Resource Management

The effective management of resources is an essential com-
ponent in a QC/HPC software stack. A balance must be met be-
tween resource utilization (platform viewpoint) and application
productivity (application viewpoint). The platform viewpoint
seeks to maximize utilization of the resources, which keeps
the available resources as busy as possible. The application
may have a different objective, whereby the focus is on min-
imizing time to solution. This latter viewpoint may care less
about overall utilization if it simplifies the programming experi-
ence or provides benefits strictly to the singular application (i.e.,
ignoring consequences to other users of the shared resource).
These resource management viewpoints are not unique to the
QC/HPC context, but do help guide choices for interfaces and
policies to support coordinated use cases that emerge in coupled
QC/HPC systems.

5.1. Allocation
The allocation of computational assets is driven by the ap-

plication usage patterns, which involve quantum and classical
steps that determine the allocation strategies (Figure 3). The
application patterns outlined in Section 4 identify three gen-
eral usage modes, characterized by the application’s balance of
quantum and classical computing (i.e., High QC/Low classical,
Low QC/High classical, and roughly equal).

When quantum and classical computing power must be al-
located concurrently and remain reserved for the same duration,

we refer to this as simultaneous allocations (Figure 3a). An
interleaved allocation allows for independent reservations, po-
tentially overlapping or forming a chained sequence (see Fig-
ure 3b). For example, HPC capabilities might be used first
for pre-processing, followed by quantum systems for execution,
with results stored for later post-processing on HPC infrastruc-
ture. We use “HPC" instead of simply “classical" in this exam-
ple to emphasize the allocation dynamics of hybrid QC/HPC
applications.

Quantum Step Classical StepTime

(a) Simultaneous Allocation

Quantum Step Classical Step

Time

...

(b) Interleaved Allocation

Figure 3: Allocation strategies to support hybrid QC/HPC applications.

The steps in the hybrid application correspond to work that
must be managed by the quantum and classical reservation sys-
tems, as shown in Figure 4. The typical HPC approach has
a single work queue that is used to submit jobs for execution
on the HPC compute nodes. The HPC scheduler selects the
appropriate time and location for the job and grants exclusive
access to a set of compute nodes for a fixed time period. This
access is governed by policies that help balance system usage.
Similar to the HPC scenario, the individual quantum computa-
tional devices are used exclusively for the duration of a given
computation (i.e., circuit execution) with appropriately defined
policies.

5.2. Scheduling
Currently, we are exploring the use of the existing HPC

workload manager, SLURM, to manage both HPC and Quan-
tum resources. We use the heterogeneous job (hetjob) capa-
bility in SLURM to enable different resource specifications to
be given for the HPC and QC (job) portions of a hybrid appli-
cation. This allows us to support the simultaneous allocation
mode.

We are currently investigating an approach that would lever-
age SLURM’s features to define generic resources that would
represent a QC device. For example, the Generic RESource [22]
functionality allows for defining a named resource and quantity
that can be used to track availability of quantum resources. This
will allow us to support both the simultaneous and interleaved
allocation strategies. This integration of both HPC and QC de-
vices under a single resource management system will enable
more detailed investigations into different scheduling policies
and prioritization schemes.

5



Classical Reservation
System

Quantum Resources

Hybrid HPC/QC Application (s)

Task Scheduling

App 1
Credit bound

Queue

App N 
Credit bound

Queue

Quantum Reservation
System

Job Scheduling

HPC Nodes

HPC Queue

Quantum Step Classical Step

Figure 4: Illustration of hybrid QC/HPC application resource management.
The classical reservation system uses a system wide queue. The quantum
resources are exposed via a reservation system that determines the scheduling
of tasks (ciruits). The illustration highlights our envisioned approach to the
quantum resource management whereby credit-based application queues help
provide practical time bounds needed for hybrid applications.

5.3. Multi-resource Scheduling
Hybrid QC/HPC applications leverage multiple resources

to solve problems that are computationally expensive. The re-
source requirements are provided to help guide scheduling de-
cisions for allocating access to the computing devices. As men-
tioned previously, the traditional HPC approach is to block al-
locate a set of compute nodes for exclusive (single user) access.
Whether using a simultaneous or interleaved approach, the QC
resources must be usable during the time window that aligns
with the HPC compute allocation. This introduces timing con-
straints for the hybrid applications, which involve coordination
among different scheduling and resource management systems.

The quantum resource manager is driven by requests to ex-
ecute tasks (i.e., quantum circuits). The system tracks what
quantum devices are in-use, and allocates available devices to
run tasks (quantum circuits). The tasks run exclusively on the
quantum devices. The allocation of the quantum devices is gov-
erned entirely by the resource manager to maximize utilization
of the scarce quantum resources.

The coordinated scheduling of the HPC and QC resources
introduces several interesting problems. Chief among these is
the fact that task duration is not uniform across the HPC and QC
resources. In the case of a simultaneous allocation, the HPC
portion uses the QC hardware and must have some quality of
service on quantum task activation (i.e., bounded request time).
Otherwise, the HPC resource will idle waiting for results from
the QC resource. Therefore some form of “soft allocation” is
needed to constrain the activation time for quantum task sub-
missions. A credit system can be used to provide these service
agreements in order to meet general bounds on execution.

The QC/HPC software stack needs to provide support for
this two-level scheduling problem to manage quality of ser-
vice constraints for the hybrid applications using combined re-
sources. The current plans are to explore the creation of dy-
namic work queues for the quantum application contexts, as
illustrated in Figure 4 (e.g., App N credit bound queue). These
hybrid application queues would help control time bounding
via a credit system to help throttle requests to the quantum re-
source. This is similar to other techniques employed in HPC
where shared resources need to be used during phases of the
application and need some degree of quality of service guar-
antees (e.g., network latency/bandwidth, parallel filesystems).
The credit-based approach is often useful to ensure provision-
ing of the shared resource. The hybrid application requires ac-
cess to quantum resources that is managed via a “soft reserva-
tion” to ensure bound on quantum task activation time. This
will require development of new mechanisms and scheduling
capabilities to expose quantum resource load to enable more
advanced coordinated scheduling of hybrid applications.

6. Hybrid QC/HPC Application Preparation

Having examined various application types and resource
management approaches for hybrid quantum-classical comput-
ing, we now turn our attention to the critical preprocessing steps
needed to prepare these hybrid applications for successful exe-
cution. A hybrid application consists of two segments: classical
and quantum code. The classical code follows standard han-
dling procedures, while the quantum code undergoes several
compiler passes before reaching the hardware, as illustrated in
Figure 5. Typically, a quantum circuit is programmed using
generic gates, then lowered to an intermediate representation
(IR). User-specified transformations, such as circuit cutting and
gate reduction, are applied to optimize the circuit. The circuit is
then transpiled into hardware-compatible gates, which are ulti-
mately converted into pulses by the quantum controller for ex-
ecution.

Hybrid applications can be either interpreted or compiled,
requiring a unified software stack to support both approaches.
In the interpreted case, all outlined steps are executed on de-
mand once the application builds and runs the circuit, with clas-
sical processing up to the pulse generation stage. The proposed
software stack abstracts the steps beyond circuit construction
while providing configurable controls for quantum circuit trans-
formations, aligning with familiar frameworks like Qiskit [2].

The compiled case differs in that some of the quantum pro-
cessing passes can occur while compiling the hybrid applica-
tion. The GPU compilation process described in Section 3 of-
fers a valuable framework that can serve as a model for devel-
oping the analogous process in QC. Figure 6 illustrates a high-
level view of a quantum enabled compilation flow.

A hybrid application delineates quantum tasks using spe-
cialized syntax. A quantum-enabled compiler is then able to
pre-process and split the code into host and quantum segments.
The quantum segments are lowered into an IR, where compiler
passes optimize the quantum operations further. These com-
piler passes can be configured by the user. If the target quan-

6



Program

Compiler passes

Quantum Code

Classical Code

Quantum Circuit
Transformations

Transpilation

Quantum Circuit
compilation

Transformation 1

...

Pulse Generator

Quantum
Hardware

Figure 5: Quantum circuit processing passes.

Application
Source Code

Hybrid
Quantum
Compiler

Host Code

Compiled to host
architecture

Quantum Code

Compiled to IR
(ex: QIR)

Link Program
Combines host and QIR into

executable

Libraries
(ex: QFw)

Compiler Passes

Application Developer

Figure 6: Quantum compiler toolchain.

tum hardware is known, the circuit can be lowered further into
hardware specific IR; otherwise, it remains in the generic IR
form.

The host code is compiled into the target architecture us-
ing standard compilers, e.g., gcc or clang. Both the IR and
the compiled host code are then linked against the necessary

Generic Quantum Task

HPC/QC Hybrid Application

Hardware Specific
Quantum Task

Quantum Programming Interface
(QPI)

Quantum Instructions

Quantum Platform Manager
(QPM)

Hardware Instructions

Quantum Controller

Hardware Interface

GPU Kernels

GPU Application

GPU Runtime Calls 

Heterogeneous Interface for
Portability (HIP)

Hardware Specific Calls 

Quantum Hardware

Quantum Software Stack GPU Software Stack

Quantum Software Stack Backend

MMIO/PCIe

GPU

ROCr
Kernel
Module

CUDA
Kernel
Module

Access hardware via
PCIe or MMIO registers

ROCm
lib

CUDA
lib

Figure 7: Quantum accelerator software stack layers in contrast to a typical
GPU accelerator software stack.

libraries into a binary that can be executed on classical comput-
ing resources.

The target quantum hardware may not be known at the time
of the hybrid application compilation. Even if it is known,
the dynamic nature of quantum circuit formulation and ongo-
ing hardware calibration, which can alter specific hardware at-
tributes, necessitate an additional transpilation pass followed by
translation into pulses. The same infrastructure that processes
quantum code, from lowering it to a generic IR to generating
pulses, can be utilized both during compilation and at runtime
when the hybrid application requests a quantum circuit execu-
tion. Therefore, it is essential to formalize the interfaces to that
infrastructure, henceforth referred to as the Quantum Toolchain,
as shown in Figure 8.

7. QC/HPC Architecture

7.1. Software Layer View
To achieve the described functionality, we propose dividing

the software stack into distinct software layers, with each layer
providing an appropriate abstraction level to the layer above
it as shown in Figure 7. In that diagram, we draw parallels be-
tween the GPU software stack layers and the proposed quantum
software stack layers.

The highest layer of the software stack is the hybrid appli-
cation itself, which can run either through an interpreter or as a
compiled executable. Similar to how an MPI application initial-
izes the MPI library, the hybrid application must initialize the
software stack. This initialization process enables the software
stack to discover available quantum resources and execute the

7



necessary setup procedures. Once initialized, the application
can leverage the most appropriate circuit-building package for
its needs. For interpreted applications, Qiskit is one example of
such a package.

The proposed software stack provides a backend for a select
set of circuit-building packages. The purpose of this backend is
to allow the application to use these packages as it normally
would, with the only difference being the selection of the back-
end. This approach enables application developers to build and
test their code locally using simulators before seamlessly tran-
sitioning to a QC/HPC environment when ready. The backend
communicates with the rest of the software stack through the
Quantum Programming Interface (QPI) layer.

The QPI layer offers several categories of APIs designed
to simplify interactions with the software stack. These include
initialization and finalization of the software stack, device man-
agement for discovering and configuring quantum devices, tool
management for defining and configuring compilation passes,
execution control for launching quantum tasks, resource man-
agement for configuring how resources are allocated, and result
and error handling. The QPI is implemented as a library linked
against the hybrid application and also provides Python bind-
ings to support Python-based applications. The QPI can be ac-
cessed directly by the hybrid application or, when used with a
package like Qiskit, through the provided backend.

To submit a quantum task for execution, the application uses
the execution control APIs provided by the QPI layer. After
processing the task, the QPI layer hands off a hardware-specific
quantum task to the Quantum Platform Manager (QPM). The
QPM serves as a hardware abstraction layer, offering APIs to
facilitate quantum task submission, result retrieval, and queries
regarding device status, attributes, and configuration.

The QPM is implemented as a plugin-enabled library that
includes a set of utility operations for all hardware providers.
The plugin architecture allows each quantum hardware provider
to develop their own plugin that implements the QPM API.
Common utilities like an RPC communication layer or a schedul-
ing system will be provided by the QPM library. These are
intended to ease plugin development. This modular design en-
ables the software stack to support multiple quantum hardware
platforms without requiring modifications to the higher layers.

7.2. Interface Normalization
Building on the software layer view introduced in Section 7.1,

we further define a set of normalized interfaces, as illustrated in
Figure 8. These interfaces standardize interactions across dif-
ferent hardware and software layers, reducing complexity for
hardware vendors and enhancing interoperability. By formal-
izing these interfaces, different entities can independently de-
velop various components of the software stack while ensuring
seamless integration between them.

Two key interfaces, the Quantum Programming Interface
(QPI) and the Quantum Platform Manager (QPM), were men-
tioned earlier and will be discussed in more details in the fol-
lowing sections. Positioned at the top and bottom of the stack,
respectively, their primary role is to standardize interactions be-

Q
ua

nt
um

 T
oo

lc
ha

in
A

PI

Quantum Platform Manager (QPM)
API

Quantum Programming Interface
(QPI)

Application

Quantum Platform

Libraries

Tools

Figure 8: The diagram illustrates the proposed common interfaces that en-
able interoperability across different implementations. The hybrid application
interacts with the software stack through the Quantum Programming Inter-
face. Quantum circuit transformation tools can be integrated via the Quantum
Toolchain Interface, while quantum hardware connects to the software stack
by implementing the Quantum Platform Manager API.

tween the application layer and the underlying quantum hard-
ware. The first providing an application-friendly interface and
the latter a hardware-friendly interface.

7.3. Quantum Platform Manager
The Quantum Platform Manager (QPM) API provides a

unified abstraction layer for quantum hardware, enabling the
software stack to remain hardware-agnostic by exposing hard-
ware capabilities and features consistently. However, given the
diverse modalities and varying hardware capabilities, a single
generic API risks being overly broad, making it challenging to
express hardware configurations and features effectively. To ad-
dress this, the QPM API is divided into three categories. The
first, Resource Management APIs, allows the resource man-
ager to allocate resources for hybrid applications. The second,
Runtime APIs, enables hybrid applications to execute quantum
tasks during operation. The third category, still under inves-
tigation, includes hardware-specific APIs that focus on low-
level primitives, such as gate and pulse level control, tailored
to unique hardware features. These hardware-specific APIs are
designed to map directly to hardware capabilities, while more
complex logical operations are handled by higher-level layers,
such as the Quantum Programming Interface (QPI). A listing of
the QPM APIs is provided in the supplementary material.

8



Figure 9: Quantum Programming Interface (QPI) object relationship diagram.

7.4. Quantum Programming Interface
The Quantum Programming Interface (QPI) acts as a high-

level abstraction layer that simplifies how applications inter-
act with diverse quantum hardware. It provides a consistent,
application-friendly API that presents a unified view of avail-
able resources, allowing applications to configure their execu-
tion environment according to their specific needs. This high-
level perspective contrasts with the low-level, hardware-oriented
API of the Quantum Platform Manager (QPM), which is de-
signed to be closer to kernel driver interfaces and more amenable
to vendor implementation. By handling common resource or-
chestration tasks at the QPI level, the framework avoids re-
dundant implementations across different QPMs. Through the
standardization of essential constructs, the QPI promotes con-
sistency across varied quantum hardware platforms, even when
individual QPMs expose differing capabilities. Unlike compre-
hensive quantum programming frameworks such as Qiskit or
PennyLane, the QPI does not define a programming paradigm.
Instead, it focuses on enabling efficient integration and execu-
tion of quantum tasks on heterogeneous backends. At the same
time, it supports access to hardware-specific optimizations via
QPM-provided APIs, striking a balance between portability and
performance.

Beyond abstraction, the QPI introduces a mechanism for
configuring and managing the quantum software toolchain.
Through its tool management APIs, users can define compiler
passes, including circuit cutting or gate reduction, and delegate
task execution across available high-performance computing
(HPC) resources. The QPI is responsible for orchestrating the
software stack, selecting appropriate quantum backends, and
tailoring the final transpilation stage based on the targeted hard-
ware. It also supports event-driven execution by offering con-
structs for monitoring task completion and system-level events
such as noise fluctuations, calibration updates, or hardware fail-
ures, thereby improving operational transparency. To support
efficient quantum task execution, the QPI provides a q-stream
construct that groups quantum tasks for sequential or parallel
execution. These tasks can be explicitly assigned to resources
by the user or dynamically scheduled by the QPI based on re-
source availability. Together, these features position the QPI
as a key architectural component for enabling scalable, hybrid
quantum-classical workflows.

7.4.1. QPI Object View
The QPI design, illustrated in Figure 9, abstracts access

to one or more quantum resources through a set of logical
constructs. At its core, the Mesh object encapsulates one or
more quantum devices, with operations applied to the Mesh af-
fecting all contained devices. These operations are managed
by a q-stream object, a container for a sequence of opera-
tions—ranging from simple device queries to full quantum task
execution, that can be executed together. Multiple q-streams
can be bound to a single Mesh, each representing a distinct
set of operations configured to run sequentially or in parallel.
A Mesh can also distribute operations across its devices, sup-
porting either embarrassingly parallel execution or complex en-
tanglement procedures, such as distributing a quantum circuit
across multiple devices within the same Mesh.

Each quantum resource is represented as a device object
within a Mesh, and individual devices can also have one or
more q-streams bound to them, with operations restricted to
the specific device. An event queue object, bound to a device,
captures events such as noise incidents, calibration updates, or
hardware faults; multiple event queues can be created to handle
different event types, but events are ignored if no queues are
bound. Similarly, a completion queue, bound to a q-stream, re-
ceives notifications when operations in the q-stream complete,
such as quantum task results or calibration outcomes. If a q-
stream runs operations in parallel, notifications may arrive out
of order; otherwise, the QPI ensures ordered delivery. A q-
stream can have multiple completion queues, each dedicated to
specific completion types.

Finally, the tool pipeline object manages tools applied to
quantum tasks, such as compiler passes for circuit cutting or
gate reduction. A single tool pipeline can be bound to mul-
tiple q-streams, ensuring consistent tool application across all
quantum tasks originating from those q-streams. These con-
structs collectively enable the QPI to streamline interaction with
quantum hardware, monitor operation completion and system
events, and optimize hybrid quantum-classical workflows. The
QPI module is currently under active development. The pro-
posed API is included in the supplementary materials.

7.5. Quantum Toolchain
Another critical interface is the Quantum Toolchain API.

As discussed in Section 6, quantum tasks require transpilation
at runtime, even if they have already undergone compilation at
compile-time. This transpilation process is not limited to con-
verting a high-level quantum task into a hardware-compatible
form; it also includes essential optimizations such as, gate re-
duction and circuit cutting. These operations refine quantum
tasks to maximize efficiency and adapt them to the constraints
of specific hardware backends.

The objective of this software stack proposal is to formalize
the interface to these tools, enabling tool developers to extend
the stack without requiring modifications to other components.
By establishing a well-defined Quantum Toolchain API as in
Figure 8, the stack ensures flexibility, allowing new tools and
optimizations to be integrated seamlessly while preserving in-
teroperability with existing software and hardware layers.

9



Each tool will take quantum programs expressed in QIR [32]
or OpenQASM [35], perform circuit transformation, and pro-
duce a modified QIR or OpenQASM representation that can be
passed to the next tool in the pipeline. This process forms a
toolchain of operations, where a quantum task is introduced at
the top of the pipeline and progressively refined through a se-
ries of transformations. At the end of this pipeline, the final
version of the quantum task is fully optimized and lowered into
a hardware-compatible format to be accelerated to the corre-
sponding backend [31, 34, 25]. For example, the execution en-
gine for QIR [31] (QIR-EE) can be invoked for the purposes of
parsing, interpreting and executing QIR across multiple hard-
ware platforms. The software stack, through the QPI, provides
applications with the ability to configure this pipeline to suit
their specific needs, ensuring flexibility in how quantum tasks
are processed and optimized before execution.

Additionally, the tools themselves can leverage HPC re-
sources for execution, as certain transformations, such as large
scale circuit optimization or gate reduction, can be computa-
tionally intensive and time-consuming. By utilizing the avail-
able HPC allocation, these operations can be distributed across
multiple compute nodes, significantly reducing processing time
and enabling efficient handling of complex quantum tasks.

7.6. Architectural Overview
The architecture depicted in Figure 10 outlines a more de-

tailed breakdown of the software stack. The Quantum Frame-
work (QFw) includes the quantum software stack backend, the
QPI Library implementation, the quantum toolchain implemen-
tation and the simulation environment, which includes multiple
simulator support, e.g., TNQVM [27] and NWQ-Sim [26]. It
also includes a set of scripts which give the user a familiar HPC
like interface. The prototype we have implemented thus far re-
alizes key components of the architecture and serves as a means
to validate our conceptual designs. It has been described in
greater detail in our previous work [5] as well as in the supple-
mentary material.

We will analyze the architecture with a top-down approach.
Typically, users would compose an sbatch script for submission
as a SLURM job on a supercomputer like Frontier, where the
script specifies the resources needed for the job, which could
be HPC resources, QC resources, or a combination thereof. The
QFw provides a set of startup scripts that initialize its infrastruc-
ture. These scripts should be incorporated into the sbatch script
when launching a job. The design capitalize on two SLURM
features, Generic RESource (GRES) and Heterogeneous Job
features. The latter is used to identify two sets of resources
which need to be allocated at the same time, as shown in Fig-
ure 11.

The first component indicates a request for ten nodes from
the compute cluster while the second component requests one
QC node. GRES allows the specification of criteria which is
passed down to the GRES plugin aiding in the selection of the
quantum resource. As described in Section 5, during this step
the QC reservation system is engaged to determine if the QC re-
source can accommodate the job. Only when the QC and HPC
reservation is successful will the hybrid application reservation

RMS
Service

(e.g,slurmd)

RMS
Service

(e.g,slurmd)

Quantum ResourcesQuantum Resources

Quantum Platform Manager (QPM) API

Resource Management System

Hybrid HPC/QC Application

Classical Logic Quantum Functions

Q
ua

nt
um

 T
oo

l-c
ha

in

EX: Circuit Cutting

EX: Gate Reduction

Transpiler

...

IR

IR

IR

IR/HW specific representation

Quantum Programming Interface (QPI)
Library

Quantum Resources
Quantum ResourcesQuantum ResourcesHPC Resources

Quantum Programming
Interface (QPI)

Quantum Hardware

QPM Implementation

QIR Execution Engine
(QIREE)

sBATCH Script

Simulation Environment

Reservation &
Scheduling

Simulator Specific
Interface

Quantum Software Stack Backend

Reservation & Scheduling

QPM Implementation

User

Figure 10: QC/HPC detailed software stack architecture

1 #!/bin/bash
2

3 # job component 1
4 #SBATCH -A stf008
5 #SBATCH -N 10
6 #SBATCH --partition=compute
7 #SBATCH -t 1:00:00
8

9 #SBATCH hetjob
10

11 # Heterogeneous job definition
12 # for the QC node
13 #SBATCH --partition=quantum
14 #SBATCH --nodes=1
15 #SBATCH --ntasks=1
16 #SBATCH --gres=qc:QC:1
17 #SBATCH --time=01:00:00

Figure 11: Example of a SLURM heterogenous job that includes two parts
representing the HPC and QC sides of the hybrid application; 10 nodes allo-
cated for the HPC portion, and 1 node for the QC portion.

10



1 # Setup the QFw infrastructure
2 qfw_setup.sh
3 # Run the application
4 qfw_srun.sh python3 application.py
5 # Teardown the QFw infrastructure
6 qfw_teardown.sh

Figure 12: Example of QFw helper scripts for framework setup, application
execution wrapper and framework teardown.

be granted and the rest of the script execute. The sbatch script
can then use the provided scripts to setup the QFw infrastruc-
ture, run the application and teardown the QFw infrastructure
as shown in Figure 12.

As discussed in Section 5, ensuring the most efficient use of
quantum hardware is paramount. Given the high demand and
limited availability of QPUs, an effective resource management
strategy is essential to maximize utilization and minimize idle
time. To address this, the QFw will provide a reservation and
scheduling library. This library will be responsible for handling
job reservations, ensuring that quantum resources are allocated
efficiently. During job reservation, this library will be used to
request and secure access to the quantum hardware before the
job runs.

The cluster SLURM controller will interact with SLURMd
to determine the availability of quantum resources. As illus-
trated in the corresponding diagram, the reservation library is
designed to integrate with the SLURMd plugin running on the
quantum gateway via a GRES plugin. The reservation library
will leverage the QPM API to query quantum hardware for
resource-specific details, such as qubit availability, calibration
status, and expected circuit runtime constraints. Based on these
criteria, the library will make an informed reservation decision,
ensuring that job scheduling aligns with the current state of the
quantum hardware. Once a reservation decision is made, the
result is communicated back to the SLURM controller, which
finalizes the scheduling process and allocates the necessary re-
sources accordingly.

Once the resources are granted, the application begins exe-
cution on the classical compute portion of the allocation. This
may include HPC nodes or, in cases where only quantum re-
sources are requested, the quantum gateway. The application
first calls the initialization routine of the QPI, setting up the nec-
essary components before proceeding with its computational
tasks. During execution, the application configures the tool
pipeline and launches quantum tasks through appropriate QPI
calls. The QPI library ensures that each quantum task is pro-
cessed through the tool pipeline and ultimately lowered down to
the target hardware. To achieve this, the QPI interacts with the
QPM API, querying hardware-specific details and selecting the
appropriate transpiler based on the returned information. Once
the quantum task is processed through the toolchain, the QPI
then invokes the QPM APIs responsible for executing the quan-
tum task on the hardware. Since the hardware could be manag-
ing multiple jobs, the QPM utility layer, provides a scheduling
library, as outlined in the system architecture, to coordinate be-
tween the different jobs ensuring tasks are completed within a

time bound as discussed in Section 5.
Once execution is complete, the results are propagated back

up the stack to the application. From the application’s perspec-
tive, this process appears as a standard synchronous or asyn-
chronous function call, abstracting the complexities of quan-
tum execution. Finally, after completing all quantum and clas-
sical computations, the application calls the QPI finalization
routines, which gracefully clean up allocated resources and ter-
minate the session.

7.7. Simulation Environment
Quantum computers are expected to remain a scarce re-

source for the foreseeable future. As a result, classical quan-
tum simulators will continue to play a crucial role in aiding
researchers with testing and debugging their applications be-
fore deploying them on actual quantum hardware. To support
this need, the QFw infrastructure provides a simulation envi-
ronment designed to simplify the integration and management
of multiple simulator backends.

The simulation environment can be assigned multiple HPC
nodes, allowing it to fit seamlessly into the overall software ar-
chitecture described thus far. It achieves this integration by im-
plementing a QPM plugin, similar to how real quantum hard-
ware interfaces with the software stack. Since each simulator
may have unique characteristics and requirements, it is possible
for each simulator backend to have its own QPM implementa-
tion, ensuring compatibility with the broader quantum execu-
tion framework.

Managing the various simulator instances is a key func-
tion of the simulation environment. This is accomplished using
the PMIx Reference Run-Time Environment (PRTE), a well-
established library designed to handle parallel process execu-
tion on HPC clusters. A single PRTE instance runs within the
simulation environment and manages all allocated nodes. This
setup allows applications to utilize multiple types of quantum
simulators simultaneously, with PRTE orchestrating their exe-
cution.

Since the simulation environment spans multiple HPC nodes,
it can distribute quantum task simulations across available re-
sources by launching multiple simulator instances concurrently.
If a simulator supports MPI operations, the environment can
take advantage of all allocated nodes to run a single large-scale
simulation, significantly enhancing circuit simulation capabil-
ities. However, the scalability of this approach is constrained
by factors such as the simulator type, the number of available
nodes, and the total memory capacity.

By providing a flexible and scalable simulation environ-
ment, the QFw infrastructure facilitates experimentation, bench-
marking, and debugging. Researchers can test their algorithms
in a stable environment before deploying them on quantum hard-
ware, improving efficiency and reducing the need for costly
quantum computing time.

11



Resource Management SystemResource Management System

Workflow Management System

Workflow Definition

Quantum ResourcesQuantum ResourcesQuantum Resources
Quantum ResourcesQuantum ResourcesHPC Resources

Classical ApplicationQuantum Application

user

Figure 13: Illustrate the integration of the quantum software stack described in
this paper with workflow management systems

8. Architecture Validation

8.1. Workflow Integration and Service Management Architec-
ture

The integration of quantum computing within HPC envi-
ronments requires robust workflow management and service
infrastructure to support diverse operational patterns. Our ar-
chitecture addresses this through three complementary compo-
nents: (1) distributed workflow management, (2) secure service
integration, and (3) comprehensive system telemetry. The soft-
ware stack architecture proposed in this paper is designed to
work seamlessly with workflow orchestration frameworks that
manage distributed quantum-classical workflows across hetero-
geneous resources.

Traditional HPC ecosystems typically rely on direct SSH
access, batch schedulers like SLURM, and manual job submis-
sion processes. However, quantum-HPC integration requires
more sophisticated infrastructure capabilities including: (1) pro-
grammatic API access for automated systems, (2) real-time data
streaming between experimental facilities and compute resources,
(3) fine-grained authorization and policy enforcement, (4) work-
flow orchestration across heterogeneous resources, and (5) se-
cure communication channels for sensitive quantum algorithms.
A service mesh architecture addresses these requirements by
providing an infrastructure layer that facilitates secure and ef-
ficient communication between distributed services while ab-
stracting networking complexity and enforcing authentication,
authorization, and traffic management policies.

The proposed software stack provides key abstractions for
resource allocation, and task decomposition, enabling efficient
coordination between quantum and classical computing elements.
As mentioned in Section 5, it will also ensure quantum re-
sources are utilized optimally, by supporting dynamic resource

allocation and intelligent task scheduling. These features can
be further leveraged by workflow management systems such
as Pilot-Quantum [13] to handle complex dependency patterns
such as variational quantum algorithms and circuit cutting work-
flows.

OLCF’s Secure Scientific Service Mesh (S3M) [14] will
provide the foundational infrastructure for secure and flexible
integration of quantum resources within the broader HPC ecosys-
tem. S3M will enable controlled access to quantum and classi-
cal resources through policy-driven interfaces, supporting both
traditional HPC workloads and emerging quantum-classical hy-
brid applications. The framework implements sophisticated ac-
cess control, rate limiting, and centralized authentication, while
providing a secure bridge between external workflow systems
and internal HPC resources. This architecture will allow quan-
tum applications to leverage HPC resources as computational
accelerators within larger scientific workflows, while maintain-
ing operational security and trust boundaries.

Other HPC centers can implement similar capabilities through
various approaches:

1. API Gateway Solutions: Centers using traditional batch
schedulers can implement RESTful API layers that pro-
vide programmatic access to SLURM/PBS systems while
maintaining existing authentication mechanisms.

2. Container Orchestration Platforms: Sites with Kuber-
netes or OpenShift deployments can leverage service mesh
technologies to provide similar traffic management, secu-
rity, and observability features.

3. Workflow Management Integration: Existing workflow
systems can be extended with quantum-aware scheduling
and resource management capabilities.

4. Cloud-Native Approaches: Centers adopting cloud-native
architectures can utilize managed services from cloud ser-
vice providers to achieve comparable functionality.

The key architectural requirements (secure API access, real-
time streaming workflow orchestration, and policy reinforce-
ment) can be satisfied through different technological imple-
mentations while maintaining the same functional capabilities
for quantum-HPC integration.

The system also incorporates comprehensive telemetry ca-
pabilities that collect operational metrics across both quantum
and classical resources. A dedicated telemetry service utilizes
the QPM APIs to gather quantum hardware-specific data, in-
cluding qubit calibration status, error rates, and queue depths.
This data is stored in a persistent database alongside classical
system metrics, enabling correlation analysis and performance
optimization. The telemetry infrastructure supports both real-
time monitoring for operational decision-making and historical
analysis for resource utilization optimization. Through integra-
tion with S3M, the telemetry data could be securely accessed by
authorized workflow systems and analysis tools, facilitating in-
formed scheduling decisions and hardware-aware optimization
of quantum-classical workflows.

12



1 # Initial implementation

2 dev_mu = qml.device("lightning.qubit",

3 wires=tot_qubits , shots=n_shots)

(a) Initial implementation

1 # QFw porting

2 from qfw_qiskit import QFWBackend ,

ω↑QFwBackendType , QFwBackendCapability

3

4 nwqsim = QFWBackend(

5 betype=QFwBackendType.QFW_TYPE_NWQSIM ,

6 capability=QFwBackendCapability.

ω↑QFW_CAP_STATEVECTOR)

7

8 dev_mu = qml.device("qiskit.remote",

9 wires=tot_qubits , backend=nwqsim ,

ω↑shots=n_shots)

(b) QFw port

Figure 14: Listing showing required changes for port of VQLS using
Xanadu’s Lightning simulator [48] to the QFw backend.

8.2. Application Experience
We tested the QFw framework with an NWQ-Sim back-

end to tackle a hybrid quantum-classical application: the vari-
ational quantum linear solver (VQLS) [6]. VQLS is a varia-
tional approach for solving linear systems of equations of the
form Ax = b, offering a scalable solution for quantum linear
solvers in existing NISQ devices. It has practical applications
in various fields, including fluid dynamics [12, 10], which is
our specific focus–solving canonical fluid flow problems using
NISQ devices [8, 1].

The algorithm formulates an optimization problem where a
quantum circuit represents the solution vector x, denoted as x̂.
The objective is to minimize the error in reconstructing b using
x̂, which defines the cost function to be minimized. The opti-
mization is performed iteratively (over multiple epochs), with a
classical optimization technique adjusting the parameters of the
quantum circuit at each epoch. The cost function is computed
using a QPU.

We implemented VQLS using Pennylane [4]. The integra-
tion with QFw is seamless from the application user’s perspective–
the only modification required is defining the Pennylane device
variable, as shown in Figure 14. For the specific test that we per-
formed, we solved a 2↓ 2 matrix problem, resulting in a circuit
with 3 qubits. We used a simple ansatz involving Hadamard
and RY rotation gates on each qubit, giving 3 parameters to be
optimized. One function evaluation of this problem for opti-
mization requires execution of 72 circuits.

As we continue exploring different ansatzes for our appli-
cation, porting our VQLS implementation to the QFw revealed
challenges related to optimizer selection. The initial PennyLane
implementation was validated using local simulators to assess
both accuracy and computational speed. The QFw framework
provided easier access to more detailed insights, including a

log of executed circuits, queuing times before execution, exe-
cution times per circuit, and other performance metrics. For
example, the total time per epoch for our use case was 342 sec,
with an average time of ↔ 0.4 sec per circuit evaluation. Us-
ing the Lightning simulator, running on a local node, the time
per circuit evaluation was ↔ 0.003 sec. This profiling informa-
tion revealed that a large number of circuits were being sub-
mitted to optimize the circuit parameters at each epoch - 480
circuit evaluations per epoch. This stemmed from the use of a
gradient-based optimization method that requires large number
of circuit evaluations per parameter update. Initially, we hy-
pothesized that due to the complexity of our end application,
a gradient-based strategy, such as stochastic gradient descent,
might be necessary to traverse the optimization landscape.

To address this, we replaced the optimizer with a gradient-
free optimization approach: the Constrained Optimization by
Linear Approximation (COBYLA) method [9, 11], which per-
forms only 1 function evaluation per epoch. This modification
reduced the optimization time for our application due to lower
number of function (circuit) evaluations - only 1 function eval-
uation per epoch, resulting in 72 circuit evaluations per epoch.
Gradient-based optimization can be useful to tackle certain sce-
narios with complex function evaluations to compute the gradi-
ents. The analysis using QFw denotes that the choice and ap-
plicability of the optimizer for our application warrants further
exploration. The original Pennylane implementation did not re-
veal this inefficiency, as local simulators have negligible over-
head in circuit execution and parameter updates for such small
test cases. Similarly, running on a real QPU through cloud ser-
vices need not expose this bottleneck either, since the connec-
tion latency to the quantum cloud service would overshadow the
computational overhead of evaluating numerous circuits. The
profiling and debugging capabilities enabled by QFw for sim-
ulators can be invaluable for identifying such inefficiencies in
hybrid applications.

Looking toward the near future, quantum computers will
likely remain standalone machines interfaced with HPC sys-
tems via high-speed networks, adding layers of complexity to
hybrid quantum-classical workflows. These systems will in-
cur overheads from the surrounding infrastructure—such as la-
tency from framework layers, communication delays between
HPC and quantum subsystems, queuing delays, or device—
specific I/O bottlenecks. The software stack can often mitigate
framework latency by maximizing the use of HPC resources for
processing quantum tasks and optimizing network communica-
tions. However, these optimizations will not eliminate latency
limitations entirely.

Applications will also need to be mindful of circuit gen-
eration and execution. As described above, applications like
VQLS—or other variational algorithms—when scaled to larger
problem sizes, may generate thousands of quantum circuits.
Moreover, some of this circuit generation may be inherently
sequential, as the structure of a given circuit can depend on re-
sults obtained from previously executed ones, thereby limiting
opportunities for parallelism and making the overall workflow
more sensitive to latency-related overheads.

Nevertheless, efforts should be made to parallelize circuit

13



generation whenever possible. For example, Lu et al. [3] demon-
strate a workflow (not involving hybrid Q-HPC execution) that
enables parallel circuit generation for the Quantum Phase Esti-
mation (QPE) algorithm. More broadly, application developers
should remain mindful of the structure and dependencies within
their workflows. Latency constraints that arise from sequential
circuit generation or tight classical-quantum feedback loops are
often difficult to mitigate implicitly at the framework level. De-
signing algorithms and workflows that expose opportunities for
concurrency, where possible, can significantly reduce end-to-
end execution time in hybrid settings.

9. Related Work

The space exploring QC integration with existing HPC re-
sources is relatively nascent, with a flurry of activity and collab-
orations surfacing only within the last few years. Some exam-
ples include conceptual renderings of QHPC middleware [47],
an effort at ORNL [37] integrating quantum runtimes in parallel
with other accelerators onto CPUs and GPUs within an estab-
lished task-based kernel framework IRIS [38], and the Munich
Quantum Valley [40], a consortium of research institutions and
universities in Bavaria focused on a unified software stack for
the HPC-QC ecosystem [39, 49]. However, other international
teaming underscores the importance of pursuing robust integra-
tion efforts and and providing frameworks for effectively en-
hancing conventional computing. For example, HPC-QS [41],
funded by the European Union, has intentions to integrate and
couple two quantum simulators, with two existing European
Tier-0 supercomputers, and to deploy an open European fed-
erated hybrid infrastructure. More recently, IBM joined forces
with the Riken Quantum Computing Center [42], where the
IBM system powered by a 133-qubit IBM Quantum Heron pro-
cessor, would be co-located and integrated with the Fugaku su-
percomputer. Additionally, with Pasqal [43], they aim to de-
velop a unified programming model built on Qiskit, aiming to
integrate quantum and classical computing resources for HPC
workflows. Lastly, IQM have partnered with Hewlett Packard
Enterprise (HPE) for their version of quantum-HPC integra-
tion [44]. Other industry developments that can potentially en-
able effective hybrid QC-HPC include Nvidia’s Cuda-Q [45]
and Riverlane’s Deltaflow [46].

10. Conclusion

This paper has developed a framework for the integration
of Quantum Computing (QC) with High-Performance Comput-
ing (HPC) architectures. Building upon previous work that in-
tegrated GPU acceleration hardware into HPC, the paper de-
tails the design and functionality of a multi-layered software
stack that aims to bridge these two computational paradigms
in a seamless and hardware agnostic way. Our approach is
to maintain the familiar HPC user experience while introduc-
ing quantum acceleration capabilities, addressing a range of
application motifs that includes simultaneous and interleaved
QC/HPC workflows.

Our framework emphasizes the necessity for low-latency
interaction between classical and quantum resources. We inte-
grate quantum hardware with classical HPC by developing stan-
dardized APIs such as the Quantum Platform Manager (QPM)
that manages resource utilization effectively. At the top of the
stack, the Quantum Programming Interface (QPI) abstracts the
quantum resources, providing a unified interface for applica-
tions. The design accommodates resource sharing, batch pro-
cessing of quantum tasks, and the use of simulation backends
for testing and development, all of which contribute to maxi-
mizing the utilization of scarce quantum resources.

The introduction of a Workflow Management System for
the QC/HPC interleaved workflows allows for optimized re-
source allocation and usage, ensuring that neither quantum nor
classical resources remain idle. Moreover, we highlight the im-
portance of telemetry and result persistence through a database
system, which not only aids in machine health monitoring but
also enhances the utility of results in both internal and external
workflow contexts, particularly with OLCF’s Secure Scientific
Service Mesh (S3M).

The methodologies presented in this paper provide a blueprint
for integrating quantum computing into existing HPC infras-
tructures. They address critical challenges such as latency, re-
source management, and workflow optimization, paving the way
for a future where quantum computing can be seamlessly lever-
aged to accelerate scientific and computational tasks. As quan-
tum technologies evolve, these frameworks will need to adapt,
but the foundational concepts introduced here offer a robust
starting point for this integration, promising to unlock new com-
putational possibilities in scientific research and beyond.

The strategies outlined here begin to expose the complexi-
ties involved in advancing an adaptive ecosystem model for the
next generation of HPC. Extensive progress has already been
made during the transition from CPU-based to GPU-based par-
allel supercomputing over the last two decades, culminating
in the recent crossing of the exascale barrier (see Section 3).
The application-dependent challenges presented by integrating
quantum resources, however, are apparent in the detailed devel-
opment of the quantum framework (QFw) outlined above. The
goals of balancing the demands of resource allocation/manage-
ment, scheduling, data movement between heterogeneous pro-
cessors, and the development of complex workflows that op-
timally coordinate the multi-user computing environment in a
hardware-agnostic way present a computing grand challenge
for the next decade. The long-term aim for the convergence of
modeling and simulation, artificial intelligence, and quantum
computing into powerful and adaptive tools that significantly
accelerate scientific discovery is certainly a worthy goal for the
computational science community.

Acknowledgments

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725. Research

14



sponsored by the Laboratory Directed Research and Develop-
ment Program of Oak Ridge National Laboratory, managed by
UT-Battelle, LLC, for the US Department of Energy. This work
was also partially supported by Office of Advanced Scientific
Computing Research’s Accelerated Research in Quantum Com-
puting Program MACH-Q project.

We thank Dr. Chao Lu (ORNL) for his contributions to the
development of the VQLS application, which was used as a
representative example in this work.

References

[1] M. Gopalakrishnan Meena, Y. Zhang, W. Jiang, Y. Lin, S. Günther,
X. Gao, Towards a quantum algorithm for the incompressible nonlin-
ear navier-stokes equations, in: 2024 IEEE International Conference on
Quantum Computing and Engineering (QCE), Vol. 1, IEEE, 2024, pp.
662–668.

[2] A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman,
J. Gacon, S. Martiel, P. D. Nation, L. S. Bishop, A. W. Cross, B. R. John-
son, J. M. Gambetta, Quantum computing with Qiskit (2024). arXiv:
2405.08810, doi:10.48550/arXiv.2405.08810.

[3] C. Lu, M. G. Meena, K. C. Gottiparthi, Lugo: an enhanced quantum phase
estimation implementation, arXiv preprint arXiv:2503.15439 (2025).

[4] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S.
Alam, G. Alonso-Linaje, B. AkashNarayanan, A. Asadi, et al., Penny-
lane: Automatic differentiation of hybrid quantum-classical computa-
tions, arXiv preprint arXiv:1811.04968 (2018).

[5] T. Beck, A. Baroni, R. Bennink, G. Buchs, E. A. Coello Perez, M. Eisen-
bach, R. Ferreira da Silva, M. Gopalakrishnan Meena, K. Gottiparthi,
P. Groszkowski, T. S. Humble, R. Landfield, K. Maheshwari, S. Oral,
M. A. Sandoval, A. Shehata, I.-S. Suh, C. Zimmer, Integrating quantum
computing resources into scientific hpc ecosystems, Future Generation
Computer Systems 161 (2024) 11–25. doi:10.1016/j.future.2024.
06.058.

[6] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P. J. Coles,
Variational quantum linear solver, Quantum 7 (2023) 1188.

[7] L. Lamport, LATEX: A document preparation system, 2nd Edition, Addi-
son Wesley, Massachusetts, 1994.

[8] M. Gopalakrishnan Meena, K. C. Gottiparthi, J. G. Lietz, A. Geor-
giadou, E. A. Coello Pérez, Solving the hele–shaw flow using the harrow–
hassidim–lloyd algorithm on superconducting devices: A study of effi-
ciency and challenges, Physics of Fluids 36 (10) (2024).

[9] M. J. Powell, A direct search optimization method that models the objec-
tive and constraint functions by linear interpolation, Springer, 1994.

[10] C.-C. Ye, N.-B. An, T.-Y. Ma, M.-H. Dou, W. Bai, D.-J. Sun, Z.-Y. Chen,
G.-P. Guo, A hybrid quantum-classical framework for computational fluid
dynamics, Physics of Fluids 36 (12) (2024).

[11] A. Pellow-Jarman, I. Sinayskiy, A. Pillay, F. Petruccione, A comparison
of various classical optimizers for a variational quantum linear solver,
Quantum Information Processing 20 (6) (2021) 202.

[12] R. Demirdjian, D. Gunlycke, C. A. Reynolds, J. D. Doyle, S. Tafur, Vari-
ational quantum solutions to the advection–diffusion equation for appli-
cations in fluid dynamics, Quantum Information Processing 21 (9) (2022)
322.

[13] P. Mantha, F. J. Kiwit, N. Saurabh, S. Jha, A. Luckow, Pilot-Quantum:
A Quantum-HPC Middleware for Resource, Workload and Task Manage-
ment, arXiv preprint arXiv:2412.18519 (2024).

[14] S. Oral, R. Ferreira Da Silva, S. Abraham, R. Adamson, V. Anantharaj,
T. Beck, A. Barker, K. Bethea, J. Brown, M. Brim, et al., OLCF’s Ad-
vanced Computing Ecosystem (ACE): FY24 Efforts for the DOE Inte-
grated Research Infrastructure (IRI) Program, Tech. rep., Oak Ridge Na-
tional Laboratory (ORNL), Oak Ridge, TN (United States) (2024).

[15] K. Rudinger, G. J. Ribeill, L. C. Govia, M. Ware, E. Nielsen,
K. Young, T. A. Ohki, R. Blume-Kohout, T. Proctor, Charac-
terizing midcircuit measurements on a superconducting qubit
using gate set tomography, Phys. Rev. Appl. 17 (2022) 014014.
doi:10.1103/PhysRevApplied.17.014014.

URL https://link.aps.org/doi/10.1103/PhysRevApplied.
17.014014

[16] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum infor-
mation, Cambridge university press, 2010.

[17] B. Barber, K. M. Barnes, T. Bialas, O. Buğdaycı, E. T. Campbell, N. I.
Gillespie, K. Johar, R. Rajan, A. W. Richardson, L. Skoric, et al., A real-
time, scalable, fast and resource-efficient decoder for a quantum com-
puter, Nature Electronics (2025) 1–8.

[18] HIP Documentation, Advanced Micro Devices, Inc. Accessed: 2025-02-
15 (2025).
URL https://rocm.docs.amd.com/projects/HIP/

[19] CUDA Toolkit Documentation, NVIDIA, Inc. Accessed: 2025-02-15
(2025).
URL https://docs.nvidia.com/cuda/

[20] Qristal – The Quantum Brilliance SDK, Quantum Brilliance, Inc. Ac-
cessed: 2025-02-15 (2025).
URL https://qristal.readthedocs.io/en/latest/

[21] SLURM Work Manager, SchedMD, Inc. Accessed: 2025-02-15 (2025).
URL https://slurm.schedmd.com/overview.html

[22] SLURM: Generic RESource Scheduling, SchedMD, Inc. Accessed:
2025-06-04 (2025).
URL https://slurm.schedmd.com/gres.html

[23] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel program-
ming with CUDA: Is CUDA the parallel programming model that ap-
plication developers have been waiting for?, Queue 6 (2) (2008) 40–53.
doi:10.1145/1365490.1365500.
URL https://doi.org/10.1145/1365490.1365500

[24] C. Lattner, V. Adve, LLVM: A compilation framework for lifelong pro-
gram analysis & transformation, in: Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, CGO ’04, IEEE Computer Society, USA,
2004, p. 75.

[25] A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers, T. S.
Humble, Xacc: a system-level software infrastructure for heterogeneous
quantum–classical computing, Quantum Science and Technology 5 (2)
(2020) 024002.

[26] A. Li, B. Fang, C. Granade, G. Prawiroatmodjo, B. Hein, M. Rotteler,
S. Krishnamoorthy, Sv-sim: Scalable pgas-based state vector simulation
of quantum circuits, in: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2021.

[27] T. Nguyen, D. I. Lyakh, E. F. Dumitrescu, D. Clark, J. Larkin, A. J. Mc-
Caskey, Tensor network quantum virtual machine for simulating quantum
circuits at exascale, ACM Transactions on Quantum Computing 4 (2021)
1 – 21.
URL https://api.semanticscholar.org/CorpusID:233324255

[28] S. Atchley, C. Zimmer, J. Lange, D. Bernholdt, V. Melesse Vergara,
T. Beck, M. Brim, R. Budiardja, S. Chandrasekaran, M. Eisenbach,
T. Evans, M. Ezell, N. Frontiere, A. Georgiadou, J. Glenski, P. Grete,
S. Hamilton, J. Holmen, A. Huebl, D. Jacobson, W. Joubert, K. Mcma-
hon, E. Merzari, S. Moore, A. Myers, S. Nichols, S. Oral, T. Pap-
atheodore, D. Perez, D. M. Rogers, E. Schneider, J.-L. Vay, P. K. Ye-
ung, Frontier: Exploring exascale, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’23, Association for Computing Machinery, New York, NY,
USA, 2023. doi:10.1145/3581784.3607089.
URL https://doi.org/10.1145/3581784.3607089

[29] D. Gottesman, An introduction to quantum error correction and fault-
tolerant quantum computation, in: Quantum information science and its
contributions to mathematics, Proceedings of Symposia in Applied Math-
ematics, Vol. 68, 2010, pp. 13–58.

[30] J. Bausch, A. W. Senior, F. J. Heras, T. Edlich, A. Davies, M. Newman,
C. Jones, K. Satzinger, M. Y. Niu, S. Blackwell, et al., Learning high-
accuracy error decoding for quantum processors, Nature (2024) 1–7.

[31] QIR-EE Developers, QIR-EE, [Computer Software] https://doi.
org/10.11578/qiree/dc.20250114.1 (2025).
URL https://github.com/ORNL-QCI/qiree

[32] QIR Alliance, QIR Specification, accessed: 2025-01-13 (2025).
URL https://github.com/qir-alliance/qir-spec

[33] QIR Alliance, The QIR Alliance, https://www.qir-alliance.org/
alliance/, accessed: 2025-02-05 (2025).

15

http://arxiv.org/abs/2405.08810
http://arxiv.org/abs/2405.08810
https://doi.org/10.48550/arXiv.2405.08810
https://doi.org/10.1016/j.future.2024.06.058
https://doi.org/10.1016/j.future.2024.06.058
https://link.aps.org/doi/10.1103/PhysRevApplied.17.014014
https://link.aps.org/doi/10.1103/PhysRevApplied.17.014014
https://link.aps.org/doi/10.1103/PhysRevApplied.17.014014
https://doi.org/10.1103/PhysRevApplied.17.014014
https://link.aps.org/doi/10.1103/PhysRevApplied.17.014014
https://link.aps.org/doi/10.1103/PhysRevApplied.17.014014
https://rocm.docs.amd.com/projects/HIP/
https://rocm.docs.amd.com/projects/HIP/
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://qristal.readthedocs.io/en/latest/
https://qristal.readthedocs.io/en/latest/
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/gres.html
https://slurm.schedmd.com/gres.html
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://api.semanticscholar.org/CorpusID:233324255
https://api.semanticscholar.org/CorpusID:233324255
https://api.semanticscholar.org/CorpusID:233324255
https://doi.org/10.1145/3581784.3607089
https://doi.org/10.1145/3581784.3607089
https://doi.org/10.1145/3581784.3607089
https://github.com/ORNL-QCI/qiree
https://doi.org/10.11578/qiree/dc.20250114.1
https://doi.org/10.11578/qiree/dc.20250114.1
https://github.com/ORNL-QCI/qiree
https://github.com/qir-alliance/qir-spec
https://github.com/qir-alliance/qir-spec
https://www.qir-alliance.org/alliance/
https://www.qir-alliance.org/alliance/


[34] E. Wong, V. L. Ortega, D. Claudino, S. Johnson, S. Afrose, M. Gowr-
ishankar, A. M. Cabrera, T. S. Humble, A cross-platform execution en-
gine for the quantum intermediate representation (2024). arXiv:2404.
14299.
URL https://arxiv.org/abs/2404.14299

[35] A. W. Cross, L. S. Bishop, J. A. Smolin, J. M. Gambetta, Open quantum
assembly language (2017). arXiv:1707.03429.
URL https://arxiv.org/abs/1707.03429

[36] N. Ma, H. Li, Understanding and estimating the execution time of quan-
tum programs (2024). arXiv:2411.15631.
URL https://arxiv.org/abs/2411.15631

[37] M. A. H. Monil, E. Wong, N. R. Miniskar, V. Leyton-Ortega, A. Cabrera,
J. S. Vetter, T. S. Humble, Q-IRIS: The Evolution of the IRIS Task-Based
Runtime to Enable Classical-Quantum Workflows, In preparation. (2025).

[38] J. Kim, S. Lee, B. Johnston, J. S. Vetter, IRIS: A portable runtime system
exploiting multiple heterogeneous programming systems, in: 2021 IEEE
High Performance Extreme Computing Conference (HPEC), IEEE, 2021,
pp. 1–8.

[39] M. Schulz, M. Ruefenacht, D. Kranzlmüller, L. B. Schulz, Accelerating
HPC With Quantum Computing: It Is a Software Challenge Too, Com-
puting in Science & Engineering 24 (4) (2022) 60–64. doi:10.1109/
MCSE.2022.3221845.

[40] Munich Quantum Valley, HPC-QC, https://www.hpcqc.org/home,
accessed: 2025-02-24 (2025).

[41] European High-Performance Computing Joint Undertaking (JU), HPC-
QS, https://www.hpcqs.eu/, accessed: 2025-02-24 (2025).

[42] IBM Newsroom, RIKEN Selects IBM’s Next-Generation Quantum

System to be Integrated with the Supercomputer Fugaku, https://
tinyurl.com/ibmriken, accessed: 2025-02-24 (2024).

[43] IBM Newsroom, IBM and Pasqal Plan to Expand Quantum-Centric
Supercomputing Initiative, https://tinyurl.com/ibmpasqal, ac-
cessed: 2025-02-24 (2024).

[44] IQM Newsroom, IQM Quantum Computers collaborates with Hewlett
Packard Enterprise and demonstrates quantum-HPC integration at ISC
2024, https://tinyurl.com/iqmhpenews, accessed: 2025-02-24
(2024).

[45] Nvidia, CudaQ, https://developer.nvidia.com/cuda-q, ac-
cessed: 2025-02-24 (2025).

[46] Riverlane, Deltaflow: The Quantum Error Correction Stack, https:
//www.riverlane.com/quantum-error-correction-stack, ac-
cessed: 2025-02-24 (2025).

[47] N. Saurabh, S. Jha, A. Luckow, A Conceptual Architecture for a
Quantum-HPC Middleware, in: 2023 IEEE International Conference on
Quantum Software (QSW), IEEE Computer Society, Los Alamitos, CA,
USA, 2023, pp. 116–127. doi:10.1109/QSW59989.2023.00023.
URL https://doi.ieeecomputersociety.org/10.1109/
QSW59989.2023.00023

[48] Xanadu, Lightning Simulator, https://www.xanadu.ai/products/
lightning/, accessed: 2025-02-05 (2025).

[49] E. Kaya, J. Echavarria, M. N. Farooqi, A. Swierkowska, P. Hopf, B. Mete,
L. Burgholzer, R. Wille, L. Schulz, M. Schulz, A software platform to
support disaggregated quantum accelerators, in: SC24-W: Workshops of
the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, IEEE, 2024, pp. 1646–1653.

16

https://arxiv.org/abs/2404.14299
https://arxiv.org/abs/2404.14299
http://arxiv.org/abs/2404.14299
http://arxiv.org/abs/2404.14299
https://arxiv.org/abs/2404.14299
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
http://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/2411.15631
https://arxiv.org/abs/2411.15631
http://arxiv.org/abs/2411.15631
https://arxiv.org/abs/2411.15631
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://www.hpcqc.org/home
https://www.hpcqs.eu/
https://tinyurl.com/ibmriken
https://tinyurl.com/ibmriken
https://tinyurl.com/ibmpasqal
https://tinyurl.com/iqmhpenews
https://developer.nvidia.com/cuda-q
https://www.riverlane.com/quantum-error-correction-stack
https://www.riverlane.com/quantum-error-correction-stack
https://doi.ieeecomputersociety.org/10.1109/QSW59989.2023.00023
https://doi.ieeecomputersociety.org/10.1109/QSW59989.2023.00023
https://doi.org/10.1109/QSW59989.2023.00023
https://doi.ieeecomputersociety.org/10.1109/QSW59989.2023.00023
https://doi.ieeecomputersociety.org/10.1109/QSW59989.2023.00023
https://www.xanadu.ai/products/lightning/
https://www.xanadu.ai/products/lightning/

	Introduction
	Framework Overview
	Traditional HPC Accelerators: GPU Example
	GPU Control Interfaces
	GPU Compilation
	GPU Scheduling and Execution
	Discussion

	Application Patterns
	Time-Sensitive Classical-Quantum Computation
	Special Cases and Scheduling Flexibility

	Resource Management
	Allocation
	Scheduling
	Multi-resource Scheduling

	Hybrid QC/HPC Application Preparation
	QC/HPC Architecture
	Software Layer View
	Interface Normalization
	Quantum Platform Manager
	Quantum Programming Interface
	QPI Object View

	Quantum Toolchain
	Architectural Overview
	Simulation Environment

	Architecture Validation
	Workflow Integration and Service Management Architecture
	Application Experience

	Related Work
	Conclusion

