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Abstract
Scientific discovery is being revolutionized by AI and autonomous
systems, yet current autonomous laboratories remain isolated is-
lands unable to collaborate across institutions. We present the Au-
tonomous Interconnected Science Lab Ecosystem (AISLE), a grass-
roots network transforming fragmented capabilities into a unified
system that shorten the path from ideation to innovation to impact
and accelerates discovery from decades to months. AISLE addresses
five critical dimensions: (1) cross-institutional equipment orches-
tration, (2) intelligent data management with FAIR compliance,
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(3) AI-agent driven orchestration grounded in scientific principles,
(4) interoperable agent communication interfaces, and (5) AI/ML-
integrated scientific education. By connecting autonomous agents
across institutional boundaries, autonomous science can unlock
research spaces inaccessible to traditional approaches while de-
mocratizing cutting-edge technologies. This paradigm shift toward
collaborative autonomous science promises breakthroughs in sus-
tainable energy, materials development, and public health.
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1 Introduction
The scientific discovery process is undergoing a profound trans-
formation, marked by the rise of automation, robotics, machine
learning (ML), and artificial intelligence (AI). As we navigate the
“fourth industrial revolution" [36], intelligent agents are emerging
as the driving force behind a new paradigm where scientific explo-
ration is no longer constrained by human cognitive limitations or
decision-making timescales. The traditional research model, where
human scientists manually design experiments, analyze data, and
iterate hypotheses, is increasingly inadequate to address urgent
global challenges in sustainable energy, climate science, materials
development, and public health. Modern scientific instruments can
generate data at rates that far outpace human analysis capabilities,
creating a fundamental bottleneck in the discovery process. Au-
tonomous science offers a transformative solution by combining
AI, robotics, and computational workflows to accelerate discovery,
eliminate human biases, and allow for the exploration of previously
intractable research spaces [7]. This mismatch between the length
of human decision-making cycles and the potential speed of sci-
entific exploration represents an opportunity for AI agent-driven
workflows to revolutionize scientific practice [19].

Significant progress has been made toward the development of
autonomous laboratories. Recent breakthroughs combining materi-
als science and high-performance computing (HPC) have yielded
tangible results in accelerating scientific discovery, evidenced by
groundbreaking achievements such as the rapid discovery of novel
metallic glasses through ML-enhanced high-throughput experimen-
tation [22], successful isolation of gradient co-polymers using AI
workflows in automated chemical synthesis [29], development of
new organic semiconductor materials [25] and electronic polymer
films [33], and the accelerated discovery of materials for energy
storage through AI-driven prediction [30]. Initiatives like ORNL’s
INTERSECT [12], ANL’s Autonomous Research Laboratories [3, 32],
and PNNL’s AT SCALE [2] showcase the potential of AI-driven
autonomous systems. These approaches allow for faster, less ex-
pensive, and less labor-intensive research processes that ensure
that data collection, synthesis, and analysis are conducted without
human biases. With autonomous systems in place, the typical cycle
of scientific problem solving, which often takes years or decades,
can be shortened to months, weeks, or even days.

Despite recent progress, the current landscape of autonomous
science remains fragmented, with most systems operating in isola-
tion and unable to communicate across institutions or disciplines.
This contrasts with scientific workflows that naturally span multi-
ple facilities, e.g., synthesizing a material in one lab, characterizing
it at national user facilities, and running simulations on HPC sys-
tems. The federated nature of research infrastructures poses unique
challenges: distributed resources have diverse access protocols, in-
teractions between computational and experimental entities are
asynchronous, and the dynamic availability of resources requires
fault-tolerant and adaptive systems. Thus, we face critical chal-
lenges in developing a unified ecosystem, including: (1) enabling

communication between heterogeneous agent systems operating
diverse scientific instruments; (2) standardizing data and control in-
terfaces to allow, for example, seamless agent collaboration; (3) the
development of AI/ML systems and AI agents that understand
fundamental scientific principles; and (4) creating adaptive, fault-
tolerant agent coordination mechanisms that can navigate the com-
plexities of distributed research infrastructure.

A grassroots network approach is essential to connect au-
tonomous capabilities across institutions, standardize protocols,
democratize access, and accelerate the technology transition from
research to application. This paper presents a vision for a nation-
wide grassroots network of interconnected autonomous laborato-
ries (AISLE) that will transform scientific discovery. We discuss
five critical dimensions for building this ecosystem (Fig. 1):
(1) Instruments and Cyberinfrastructure Integration that enables

agents to orchestrate various scientific instruments across
institutional boundaries.

(2) Agent-Driven Data Management where autonomous agents
actively curate, validate, and orchestrate scientific data across
institutional boundaries while automatically enforcing the
principles of FAIR [34].

(3) AI Agent-Driven Autonomous Orchestration, exploring robust
hierarchical architectures that can leverage agentic capabili-
ties of LLM-based agents to orchestrate traditional methods
grounded in scientific knowledge and physics.

(4) Interoperable Agent Communication Interfaces and Standards
for multi-agent systems to enable seamlessly information ex-
change, activities coordination, and the integration of capabil-
ities across institutional and disciplinary boundaries.

(5) Education and Workforce Development, preparing scientists for
human-AI collaboration in environments increasingly dom-
inated by autonomous systems while maintaining scientific
rigor and critical thinking.

2 The AISLE Network
The Autonomous Interconnected Science Lab Ecosystem (AISLE,
https://autonomousscience.org) represents a grassroots network
dedicated to revolutionizing scientific discovery through intercon-
nected autonomous laboratories. AISLE aims to dramatically accel-
erate the journey from ideation to innovation to market application,
reducing time frames from decades to months, while enabling pre-
viously unattainable discoveries. This initiative integrates AI-ready
hardware, software, and data infrastructure to create a nationwide
capability that enhances the scope, speed, and responsiveness of sci-
entific research. The core mission focuses on developing a cohesive
cross-domain data fabric that optimizes workflows, enhances repro-
ducibility, democratizes access to cutting-edge scientific technolo-
gies, and facilitates rapid technology transition across disciplines
with direct applications to national priorities.

AISLE unites forward-thinking scientists, engineers, and tech-
nologists committed to reimagining scientific methodologies. This
diverse community spans multiple disciplines including materials
research, computer science, engineering, robotics, AI, accelerator
science, chemistry, and data management. Rather than operating
within formal institutional structures, AISLE functions as a col-
laborative knowledge exchange network where expertise flows

https://doi.org/XXXXXXX.XXXXXXX
https://autonomousscience.org
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Figure 1: The AISLE network architecture illustrating the five critical dimensions for interconnected autonomous laboratories:
Instruments and Cyberinfrastructure Integration, Agent-Driven Data Management, AI-Agent Driven Orchestration, Interoper-
able Agent Communication Protocols and Standards, and Education and Workforce Development, all connected through a
distributed data fabric with intelligent agents.

across organizational boundaries, creating an environment where
experimental insights inform computational approaches in a tightly
coupled virtuous circle. The network’s strength lies in its variety of
perspectives, with members contributing complementary capabili-
ties to build a foundation for transforming scientific experimenta-
tion through autonomous intelligent systems that augment human
creativity while addressing society’s most pressing challenges.

3 Critical Dimensions of the AISLE Network
The realization of interconnected autonomous science laborato-
ries requires a framework built upon five critical dimensions that
collectively enable seamless collaboration between autonomous
agents across institutional and disciplinary boundaries. These lay-
ers work synergistically to create an ecosystem greater than the
sum of its parts. Each dimension presents unique challenges and
research opportunities that must be addressed through coordinated
development efforts, recognizing the interdependencies between
technical infrastructure, intelligent systems, and human expertise.

3.1 Instrument and CI Integration
Scientific instruments and cyberinfrastructure (CI) integration ad-
dress how autonomous agents can orchestrate diverse experimental
equipments and computational resources. Unlike traditional sys-
tems that function within institutional silos, interconnected au-
tonomous laboratories require agents that can control instruments,
manage data flows, and coordinate computational analyses across
organizational boundaries. This integration is essential for accel-
erating materials discovery, where instruments such as electron
microscopes, X-ray diffractometers, and synthesis robots gener-
ate heterogeneous data that must be processed through complex
computational pipelines spanning multiple facilities.
Brief State-of-the-art. Current integration approaches demon-
strate promising directions in multiple scientific domains. The Ma-
terials Acceleration Platform (MAP) initiative exemplifies the in-
ternational momentum towards fully automated laboratories, with
several projects demonstrating end-to-end autonomous materials
discovery workflows [28]. The Academy middleware enables the
deployment of federated agents on experimental and computational

resources, providing abstractions to express stateful agents, and
managing interagent coordination with experimental control [19].
These systems support asynchronous execution, heterogeneous
resources, and high-throughput data flows essential for scientific
computing. Practical communication frameworks are emerging,
including popular ROS2 / DDS messaging protocols in robotics
applications, and companion standards of OPC UA specifically de-
signed for the integration of laboratory equipment [20]. Self-driving
labs like those described in the materials discovery domain have
begun to integrate AI-ready hardware, software, and data infras-
tructure to create autonomous capabilities that optimize workflows
and enhance reproducibility [15, 27]. Physics-aware digital twins
are increasingly being used for testing and validating autonomous
workflows before deployment on physical instruments, reducing
experimental risks and costs. Recent advancements in material- and
process-efficient self-driving laboratories (SDLs) have demonstrated
scalable and sustainable strategies for autonomous experimenta-
tion. These platforms combine miniaturized reaction vessels with
AI-guided decision-making and multi-modal characterization to
maximize information gained per experiment, minimize chemical
waste, and significantly reduce operational costs. Notably, fluidic
SDLs have achieved >100× data acquisition efficiency over tradi-
tional batch methods while maintaining reproducibility and closed-
loop optimization capabilities [24]. SDLs have proven particularly
valuable in organic synthesis and semiconductor materials discov-
ery, where multi-robot SDLs now coordinate synthesis, purification,
and characterization steps through modular robotic orchestration.
Integrating such SDLs into AISLE’s architecture can provide mod-
ular, high-throughput testbeds that are adaptable to distributed,
cross-institutional networks. In chemistry, ChemCrow extends the
capabilities of large language models (LLMs) by integrating 18
expert-designed tools for organic synthesis, drug discovery, and
material design [5]. Biological research has seen the emergence
of specialized systems, including CellAgent, which employs multi-
ple expert agents (Planner, Executor, and Evaluator) to automate
complex data analysis tasks [35].

Challenges. Integration faces significant technical and organiza-
tional challenges across domains. Scientific autonomous workflows
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must span various instruments ranging from established commer-
cial products to custom-built research equipment not originally
designed for networked automation [7]. The heterogeneous nature
of scientific instruments is addressed through concepts of “cellular"
or “modular" laboratory design that standardize interfaces while
allowing flexibility in equipment configuration. Recent implementa-
tions of autonomous science reveal additional systemic challenges.
Software frameworks designed with these principles in mind have
been recently introduced [15]. The automation of literature review
remains a bottleneck, with frameworks that exhibit significant per-
formance drops during the literature review phases compared to
other research stages [8]. Trustworthiness and reliability concerns
pose obstacles, as current systems struggle to avoid overfitting
and maintain predictable behavior in diverse scientific contexts.
Furthermore, coordination challenges in multi-agent systems be-
come amplified in distributed experimental environments, where
communication failures can lead to resource conflicts, protocol de-
viations, or safety hazards. Finally, critical organizational barriers
include intellectual property management and liability concerns
when cross-institutional failures occur, which are often overlooked
but will significantly constrain real-world deployments.

Research Priorities. Initial efforts should focus on developing
domain-specific integration frameworks for common scientific in-
struments and establishing reference implementations that demon-
strate cross-facility workflows in targeted domains such as materi-
als science or accelerator physics. These foundational activities in-
clude expanding currently available interfaces to support a broader
range of experimental equipment and implementing basic orches-
tration protocols for distributed instrument control. Building upon
these capabilities, more sophisticated infrastructure development in-
volves creating standardized hardware abstraction layers and robust
security models for multi-institutional access through enhanced col-
laboration with instrument vendors to develop developer-friendly
interfaces. Advanced implementation phases require establishing
adaptive fault-tolerant coordination mechanisms that can handle
complex resource dependencies and dynamic network conditions,
along with governance frameworks that maintain institutional au-
tonomy while enabling seamless collaboration. Future research
needs include developing self-describing instruments with seman-
tic descriptors for capabilities, automated calibration protocols that
enable instruments to “plug in" without manual setup, and robust
human-in-the-loop safeguards that allow operators to override

MILESTONES:
M1. Establish common integration interfaces for scientific instruments
with vendor-agnostic hardware abstraction layers and API develop-
ment via an Instrument API Consortium.

M2. Demonstrate end-to-end autonomous workflows across institu-
tions for seamless experimental and computational resource orches-
tration through secure multi-domain cyberinfrastructure networks.

M3. Deploy federated cyberinfrastructure with standardized frame-
works, fault-tolerant coordination mechanisms, and adaptive resource
management with zero-trust security and physics-aware digital twins
for workflow validation.

M4. Scalable national framework supporting heterogeneous instru-
ments for near real-time data flows with self-describing instruments,
automated calibration, and human-in-the-loop override capabilities.

autonomous agents sending laboratory robots out-of-specification
commands. The most transformational aspects involve the deploy-
ment of self-configuring cyberinfrastructure that can automatically
adapt to new instrument types and evolving network topologies,
ultimately creating a resilient ecosystem capable of supporting
autonomous experimental workflows across diverse scientific do-
mains and institutional boundaries.

3.2 Agent-Driven Data Management
Agent-driven data management represents a paradigm shift from
traditional centralized data repositories to intelligent distributed
systems where autonomous agents actively curate, validate, and
orchestrate scientific data across institutional boundaries. Dataman-
agement agents act as intelligent intermediaries that understand
scientific context, enforce FAIR principles in near real time, and
make data AI-ready at the source by curating, annotating, and orga-
nizing it as it is being collected across heterogeneous experimental
facilities. These agents must handle the full data lifecycle, from
real-time capture during autonomous experiments to long-term
preservation and cross-institutional sharing, whilemaintaining data
quality, provenance, and compliance with diverse institutional poli-
cies. Unlike passive data storage systems, agent-driven approaches
actively monitor data streams, perform intelligent quality assess-
ment, and facilitate dynamic data federation that adapts to the
evolving needs of autonomous workflows.

Brief State-of-the-art. Current data management approaches in
scientific workflows rely mainly on centralized repositories and
domain-specific standards, with successful examples including Ma-
terials Commons and Protein Data Bank (PDB) [31]. The principles
of FAIR (Findable, Accessible, Interoperable, Reusable) data have
gained widespread adoption as a framework for scientific data man-
agement, although implementation remains inconsistent between
domains and institutions [34]. FAIR AI models and emerging FAIR
data meshes demonstrate advanced approaches to federated scien-
tific data management [21]. Globus employs cloud-hosted manage-
ment logic to coordinate activities across thousands of storage and
computing systems worldwide [6]. The National Science Data Fab-
ric (NSDF) [14] and the National Data Platform (NDP) [17] aim to
develop a federated approach to data management that coordinates
networking, storage, and computing services through distributed
entry points. Recent advances have demonstrated the potential of
AI-driven metadata extraction and automated data curation sys-
tems that can intelligently interpret experimental contexts and
integrate external information sources. Systems like ProxyStore
enable efficient data transfer through pass-by-reference semantics
in distributed computing environments, allowing large datasets to
be shared without duplicating storage [18].

Challenges. Agent-driven autonomous laboratories face funda-
mental data management challenges that extend far beyond tradi-
tional workflows. At the technical level, the variety of data formats
and file structures generated by different instruments makes it dif-
ficult to create vendor-agnostic abstract data interfaces that can
support autonomous workflows across institutional boundaries.
This technical heterogeneity consists of operational variations, as
experimental protocols vary between institutions, environmental
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conditions affect reproducibility, and equipment calibration differ-
ences introduce systematic variations that current systems cannot
automatically reconcile. A critical research gap involves dynamic
schema evolution: how autonomous agents can negotiate schema
changes when encountering new experiment types without man-
ual intervention. Beyond heterogeneity, autonomous systems must
also deal with unprecedented data volumes. Near real-time data
streams from modern instruments generate volumes that exceed
human processing capabilities, requiring intelligent filtering and
prioritization mechanisms that can distinguish between routine
measurements and anomalous conditions requiring immediate at-
tention. This volume challenge is closely linked to data quality
concerns, as “bad" or “imbalanced" data can propagate through
AI-driven decision chains, potentially compromising entire experi-
mental campaigns. Unlike traditional approaches that treat all data
equally, autonomous systems require qualification mechanisms
that can automatically assess data reliability based on experimen-
tal conditions, instrument status, and historical patterns. Privacy
and regulatory constraints (e.g., HIPAA compliance for biological
laboratories) create additional barriers that complicate federated
data sharing across institutional boundaries. These challenges are
further amplified by the distributed nature of autonomous labo-
ratories, which creates complex requirements to maintain data
provenance and ensure the traceability of decisions made by AI
agents on multiple facilities and time scales.

Research Priorities. Developing agent-driven data management
requires establishing adaptive, domain-agnostic frameworks that
can evolve with scientific advances while maintaining interoperabil-
ity across diverse research environments. Priority should be given
to implementing data mesh architectures in which each laboratory
maintains a federated node with standardized interfaces, comple-
mented by global discovery indices [4]. Rather than enforcing strict
standardization, data schemas should support both explicit and
implicit structures to enable seamless integration of heterogeneous
scientific instruments and computing systems while preserving
institutional autonomy and data sovereignty. AI agents can lever-
age implicit data schemas by inferring structure and extracting
useful information directly from diverse data sources, formats, and
contexts. While early adoption of interoperable frameworks such
as HDF5 or JSON-LD can provide a useful foundation, advanced AI
systems for metadata collection must be able to interpret complex
scientific contexts, extract insights from laboratory notebooks and
equipment logs, and incorporate environmental data without rely-
ing solely on predefined annotation. Integration of data provenance
frameworks (e.g., PROV-O [13]) into instrument middleware will
ensure comprehensive traceability of autonomous decisions across

MILESTONES:
M5. Develop AI-driven metadata systems with automated annotation
of experimental data in multiple domains, achieving high accuracy
without human intervention.

M6. Deploy federated data mesh architecture with commonAPIs, cross-
institutional discovery capabilities, and autonomous FAIR data gover-
nance.

M7. Implement near real-time data processing infrastructure support-
ing high-velocity scientific streams with automated quality assess-
ment, provenance tracking, and regulatory compliance frameworks.

distributed facilities. Federated data management architectures
must be designed that enable cross-institutional collaboration while
respecting privacy constraints, intellectual property rights, and
regulatory compliance requirements. Near real-time data process-
ing pipelines should be developed that can handle high-velocity
scientific data streams, perform intelligent data reduction and com-
pression, and trigger appropriate responses to critical experimental
conditions. Community-driven approaches, including data annota-
tion sprints, should be promoted to accelerate the development of
high-quality training datasets for autonomous systems.

3.3 AI Agent-Driven Autonomous Orchestration
AI-driven autonomous orchestration represents the cognitive core
of interconnected autonomous laboratories, where intelligent
agents must navigate complex scientific decision spaces while main-
taining alignment with fundamental scientific principles. Modern
LLM-based agents emerge as orchestrators coordinating special-
ized techniques: Gaussian processes for uncertainty quantification,
Bayesian optimization for sample efficiency, and reinforcement
learning for dynamic control, enabled by natural language un-
derstanding of scientific goals. This autonomy must be deployed
as composable building blocks in the scientific ecosystem, rec-
ognizing both the capabilities and limitations of the underlying
models while integrating verification infrastructure throughout
autonomous workflows. These agents leverage instruments (Sec-
tion 3.1) as actuators for experimental execution and synthesize
real-time data streams (Section 3.2) with literature and cross-facility
insights to enable trustworthy autonomous discovery.

Brief State-of-the-art. Current AI-driven capabilities in au-
tonomous science demonstrate significant progress across multiple
domains. Recent comprehensive surveys highlight the integration
of robotics, AI, and automation in sustainable chemistry applica-
tions, demonstrating the maturation of autonomous laboratory
technologies [23]. Recent advances include hybrid AI architectures
that combine data-driven learning with fundamental physical and
chemical principles [1], and human-autonomy teaming frameworks
with adaptive trust calibration systems [9]. Specific AI techniques
showing promise include Gaussian processes for sample-efficient
Bayesian optimization in materials discovery, reinforcement learn-
ing for dynamic experimental scheduling, and active transfer learn-
ing approaches enabling knowledge sharing between laboratories.
Notable examples include Smart Dope, which navigates 1013 possi-
ble synthesis conditions to discover optimal quantum dot formu-
lations [23]. In nanomaterial synthesis and homogeneous cataly-
sis, autonomous frameworks leverage nested discrete-continuous
Bayesian optimization strategies that reflect real-world experimen-
tal constraints [24]. These approaches improve optimization effi-
ciency by structuring search spaces to reflect hardware constraints,
which have been successfully applied in reaction condition opti-
mization tasks. In recent years, the emergence of large language
model (LLM) based agents as general-purpose scientific actors im-
pose new opportunities in autonomous science. Such applications
of foundation models show natural language understanding of
scientific goals and the ability to orchestrate multiple specialized
AI tools, as demonstrated by efforts such as the LLNL HPC-LLM
agents [10] and DOE autonomous discovery initiatives [3]. Built
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on top of LLMs, augmenting their input context with various tools
interacting with the world, these agents show emergent capabilities
that include hypothesis generation, cross-domain knowledge trans-
fer, adaptive experimental strategies, and high-level orchestration
that can fundamentally transform scientific discovery.

Challenges. With the newly found opportunities in LLM-based
AI agents, autonomous decision making in scientific contexts faces
fundamental challenges in integration, orchestration, reliability,
and grounding. LLM agents require careful investigation of their
capability, limits, and requirements, identifying their place in the
scientific ecosystem and infrastructure. They are probabilistic in
nature, higher-latency, and resource intensive compared to tradi-
tional methods, and are difficult to verify. These agents are part
of the ecosystem as an orchestrator rather than a replacement for
existing techniques. Though, challenges lie in creating a robust,
well-integrated architecture that can support seamless transition
between techniques and stages potentially spread across scientific
domains, context, geographic locations, and long time horizons.
Also, while capable, the probabilistic nature is a key challenge in in-
tegrating LLM-based AI agents, especially in an ecosystem attuned
to determinism. It is unclear how one would guarantee reproducible
scientific outcomes with this new non-determinism in effect. Fur-
ther, there are no guarantees whether the solutions driven by these
systems would be grounded in scientific knowledge and physics.

Research Priorities. Three interconnected research thrusts are key
for advancing agent-driven autonomous orchestration in scientific
contexts: (1) design hierarchical architectures and infrastructure
for efficient orchestration, deploying AI agents in the ecosystem
of scientific methods abstracted as actuators, coordinating tasks
depending on the model capabilities and system requirements (e.g.,
compute usage, latency); (2) infrastructure for verification and vali-
dation for AI agents incorporating digital twin-based in-situ simu-
lations, formal methods, symbolic verification methods to enforce
logical, physics-based constraints as hard boundaries when agents
work towards optimal solutions or discovery; and (3) distributed,
real-time knowledge integration that helps the operations of AI
agents grounded to scientific knowledge beyond static information
retrieval or fine-tuning of models, especially considering scien-
tific campaigns distributed across facilities, instruments, and many
teams coordinating distributed, asynchronous, real-time evolution
of knowledge. Priority should be compositional scientific AI sys-
tems that focus on composing LLM reasoning with traditional ML
methods, verification tools, and dynamic knowledge bases.

MILESTONES:
M8. Demonstrate hierarchical architectures which LLM agents orches-
trate traditional methods through domain-specific scientific interfaces,
achieving 3x speedup over manual orchestration and >95% experi-
mental correctness versus agent usage without verification tools.

M9. Deploy a knowledge integration system with 3+ facilities, propa-
gating insights across sites in real-time to reduce required experiments
by >30% while achieving >90% scientist approval of reasoning traces.

3.4 Interoperable Agent Communication
Interoperable agent communication interfaces and standards form
the foundational infrastructure that enables diverse autonomous

systems to seamlessly exchange information, coordinate activi-
ties, and integrate capabilities across institutional and disciplinary
boundaries. Unlike traditional point-to-point communication ap-
proaches, autonomous scientific laboratories require sophisticated
agent communication frameworks that can handle asynchronous
interactions, manage complex state dependencies, and maintain
coherent coordination across distributed experimental and com-
putational resources. These interfaces must support various inter-
action patterns including peer-to-peer agent coordination, hierar-
chical command structures, and emergent collaborative behaviors
while ensuring reliability, security, and fault tolerance in multi-
institutional research environments.

Brief State-of-the-art. Current agent communication in au-
tonomous science is based primarily on domain-specific solutions
and proprietary interfaces, with limited standardization between
platforms. Several orchestration architectures have emerged, includ-
ing ChemOS 2.0 for coordinating communication and data exchange
among chemical synthesis instruments [26], Globus automation
services [32], and the Academy middleware, which enables the
deployment of federated agents across experimental and compu-
tational resources while managing inter-agent coordination [18].
Modern implementations increasingly leverage containerization
technologies, with agent microservices communicating through
high-performance protocols such as gRPC for synchronous opera-
tions and AMQP for asynchronous message queueing in distributed
workflows. Human-autonomy teaming frameworks have demon-
strated the importance of bidirectional communication approaches
that transform automation from tools to collaborative teammates,
enabling dynamic information exchange and joint decision-making
processes [9]. The INTERSECT initiative developed a federated
architecture to coordinate autonomous processes across distributed
scientific infrastructure [16]. Recent advances in large language
models have shown the potential for natural language interfaces
that could serve as universal communication bridges between hu-
man operators and diverse autonomous systems [11].

Challenges. The heterogeneous nature of scientific instruments
creates fundamental complications in the development of stan-
dardized interfaces, particularly when instruments use proprietary
control systems with limited API access or vendor-specific proto-
cols. Multi-domain network architectures with complex firewalls
and access controls further complicate efforts to orchestrate dis-
tributed experiments, as autonomous agents must navigate diverse
institutional security policies, authentication systems, and network
topologies while maintaining secure and reliable communication
channels. Zero-trust network architectures present additional com-
plexity, requiring continuous authentication and authorization of
agent interactions while maintaining low-latency communication
necessary for near real-time experimental control. The asynchro-
nous nature of scientific workflows introduces additional complex-
ity, as agents must coordinate across different timescales, from near
real-time instrument control that requires millisecond responses
to long-term experimental campaigns that span weeks or months,
while managing state consistency and gracefully handling com-
munication failures. Semantic interoperability presents ongoing
challenges, as different scientific domains use varying data for-
mats, measurement units, and conceptual frameworks that must
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be harmonized for effective cross-disciplinary agent collaboration.
The distributed and federated nature of autonomous laboratory
networks creates scalability concerns, as communication protocols
must efficiently handle coordination among potentially hundreds
of agents while avoiding bottlenecks and ensuring fault tolerance
when individual nodes or communication links fail.

Research Priorities. Robust interoperable communication requires
developing layered protocol architectures that separate concerns
across physical networking, message formatting, semantic inter-
pretation, and coordination logic levels. Priority should be given
to creating vendor-agnostic hardware abstraction layers with stan-
dardized APIs that can interface with instruments from multiple
manufacturers while providing consistent communication inter-
faces for autonomous agents. Advanced message-oriented mid-
dleware solutions must be developed that support asynchronous
communication patterns, reliable message delivery, and automatic
failover mechanisms essential for distributed scientific workflows
operating across institutional boundaries. Semantic interoperability
frameworks should incorporate domain ontologies and knowledge
graphs that enable agents to automatically translate between differ-
ent scientific vocabularies and data representations while preserv-
ing meaning and context. Security and authentication protocols
specifically designed for multi-institutional scientific collaboration
must balance access control requirements with the need for seam-
less agent interaction, incorporating technologies such as federated
identity management and attribute-based access control. Finally,
self-organizing communication protocols should be explored that
allow agent networks to automatically discover capabilities, nego-
tiate communication parameters, and adapt to changing network
topologies without requiring centralized configuration manage-
ment. Testbed environments should demonstrate autonomous agent
ecosystems where containerized services can dynamically discover
and interact with heterogeneous scientific instruments through
standardized protocols, validating both technical performance and
security frameworks under realistic multi-institutional conditions.

MILESTONES:
M10. Deploy containerized agent microservices with standardized
gRPC/AMQP communication protocols across multiple DOE labo-
ratory facilities, demonstrating cross-vendor instrument control and
federated identity integration.

M11. Develop zero-trust communication infrastructure supporting au-
tonomous agent coordination with sub-second latency, automatic
failover, and continuous authentication across institutional bound-
aries.

M12. Demonstrate self-discovering agent networks using DNS-SD and
distributed service registries, enabling dynamic reconfiguration and
capability negotiation in geographically distributed research facilities.

3.5 Education and Workforce Development
The successful deployment of interconnected autonomous science
laboratories requires fundamental transformations in scientific ed-
ucation to prepare researchers for environments increasingly domi-
nated by AI-driven systems. Unlike traditional education focused on
domain-specific knowledge and manual techniques, autonomous
science demands interdisciplinary competencies spanning AI/ML
methods, computational and workflow thinking, human-machine

collaboration, and ethical reasoning. Educational programs must
evolve to prepare scientists who can collaborate effectively with
autonomous agents, understand AI decision-making processes, and
maintain scientific rigor while leveraging computational tools that
augment human creativity.

Brief State-of-the-art. Current scientific education largely treats
AI/ML as supplementary rather than integral to scientific method-
ology, leading to competency gaps in preparing researchers for
autonomous laboratory environments [7]. While national initia-
tives such as the NSF’s AI Institutes and DOE’s SciDAC programs
are beginning to address these gaps through dedicated education
pillars, a broader and more integrated approach is needed. Effective
workforce development for autonomous science must encompass
not only AI/ML but also robotics, software engineering, network-
ing, and laboratory safety. Emerging cross-disciplinary training
programs, virtual lab environments, and AI-enhanced computa-
tional tools offer promising foundations. Human-autonomy team-
ing frameworks from operational domains emphasize the impor-
tance of understanding AI capabilities and limitations while main-
taining human oversight [9]. However, comprehensive curriculum
redesign remains limited across institutions, and must evolve to
include hands-on, experiential learning that mirrors the complexity
and interdisciplinarity of real-world autonomous research settings.

Challenges. Fundamental challenges include balancing automation
capabilities with core scientific understanding, as excessive AI/ML
reliance risks creating scientists lacking foundational knowledge to
critically evaluate automated results. A critical assessment gap has
emerged: current evaluation methods cannot effectively measure
students’ ability to “collaborate with AI," requiring new frameworks
adapted from fields such as medical simulation training where
human-technology interaction is rigorously assessed. Rapid ad-
vancement in AI/ML creates challenges in curriculum development,
while faculty development presents barriers as many educators
lack the necessary AI/ML expertise. The interdisciplinary nature of
autonomous science research requires institutional restructuring
across traditional departmental boundaries, and hands-on training
presents logistical obstacles due to limited access to sophisticated
autonomous laboratory infrastructures. Furthermore, traditional
assessment methods do not adequately capture human-AI collabo-
ration competencies, and ensuring equitable access becomes critical
to preventing workforce disparities.

Research Priorities. Curriculum redesign must integrate AI/ML
competencies with fundamental scientific principles through ac-
tive learning and authentic research experiences that demonstrate
human-machine synergy. Priority areas include creating modular
educational frameworks adaptable across disciplines, developing
virtual training environments for immersive autonomous labora-
tory experiences, and establishing faculty development programs
that maintain the emphasis on critical thinking and scientific rea-
soning. Industry-academic partnerships should provide authentic
experiences, while assessment methodologies must assess human-
AI collaboration competencies including AI decision interpretation
and appropriate trust calibration. Ethical reasoning frameworks
must be integrated throughout, ensuring that future scientists un-
derstand the societal implications of AI-driven research.
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MILESTONES:
M13. Launch a national autonomous science education consortium
that integrates NSF AI Institutes and DOE SciDAC programs, with
standardized autonomous laboratory collaboration curricula.

M14. Deploy educational infrastructure including immersive virtual
laboratory environments that simulate autonomous systems in multi-
ple scientific domains, industry-academic partnership programs, and
assessment methodologies for human-AI collaboration competencies
with measurable learning outcomes.

4 Conclusion
The AISLE network represents a transformative vision for scientific
discovery, where interconnected autonomous laboratories tran-
scend institutional and disciplinary boundaries to create a uni-
fied system capable of accelerating breakthroughs from decades to
months. By addressing the five critical dimensions of instruments
integration, agent-driven data management, AI-agent driven or-
chestration, interoperable communication protocols, and workforce
development, AISLE will unlock research spaces previously inac-
cessible to traditional human-centered approaches while democra-
tizing access to cutting-edge scientific technologies. The successful
implementation of this grassroots network promises revolutionary
advances in science through collaborative autonomous agents that
augment human creativity and scientific insight. AISLE is uniquely
positioned to catalyze progress across national initiatives such as
the Materials Genome Initiative and the CHIPS and Science Act
by enabling testbeds for co-design of materials and devices via au-
tonomous experimentation. The federation of domain-specific SDLs
through AISLE’s proposed agent fabric offers a practical blueprint
for large-scale coordination of AI, robotics, and data infrastructures
across the U.S. science enterprise. Importantly, these efforts should
also prioritize inclusion of resource-constrained institutions by sup-
porting portable, low-footprint SDL modules that contribute to the
broader network while enabling equitable access to advanced au-
tomation technologies. Future work will focus on establishing pilot
testbeds that demonstrate cross-institutional autonomous work-
flows, developing standardized protocols for multi-vendor instru-
ment integration, and creating educational frameworks that pre-
pare the next generation of scientists for this new paradigm of
AI-augmented discovery.
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