
Towards Cross-Facility Workflows Orchestration through Distributed
Automation

TYLER J. SKLUZACEK, RENAN SOUZA, MARK COLETTI, FRÉDÉRIC SUTER, and RAFAEL

FERREIRA DA SILVA, Oak Ridge National Laboratory, USA

Modern science relies on end-to-end workflows that incorporate experimental instruments and utilize edge, cloud, or high-performance
computing and storage resources. These components are geographically dispersed across various user facilities and interconnected
through high-speed networks. In this paper, we present Zambeze, an automated distributed framework designed to facilitate this
new class of cross-facility workflows. Utilizing swarm intelligence principles, Zambeze orchestrates science campaigns by managing
distributed autonomous agents. These agents can offer a suite of services, including computing, storage, and data management. We
demonstrate the feasibility of Zambeze through a real-world application involving electron microscopy, enhanced with Artificial
Intelligence capabilities.

CCS Concepts: • Computing methodologies → Distributed computing methodologies; Parallel computing methodologies;
Artificial intelligence.

Additional Key Words and Phrases: workflows, distributed computing, heterogeneous computing

ACM Reference Format:
Tyler J. Skluzacek, Renan Souza, Mark Coletti, Frédéric Suter, and Rafael Ferreira da Silva. 2024. Towards Cross-Facility Workflows
Orchestration through Distributed Automation. In Practice and Experience in Advanced Research Computing (PEARC ’24), July 21–25,

2024, Providence, RI, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3626203.3670606

1 INTRODUCTION

Modern science has become increasingly complex, both experimentally and computationally. It relies on end-to-end
workflows that integrate experimental instruments with advanced computing and storage resources, including edge,
cloud, and high-performance systems [3]. Automated orchestration of cross-facility workflows simplifies resource
management, allowing practitioners to focus more on their research goals. However, the heterogeneity of research
capital presents significant challenges in achieving this level of automation [5]. For example, emerging AI-coupled HPC
workflows may require near real-time computing to manage large data volumes from instruments, stream them into an
HPC system for model training, and then use the model to steer experiments [6]. Given the dynamic nature of distributed
workflows, additional ad hoc procedures such as data transformation [8] or automated metadata extraction [7] may be
necessary, typically guided by model inference. Consequently, orchestrating these workflows demands fine-grained
coordinated resource management throughout their execution lifespan.

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The
publisher acknowledges the US government license to provide public access under the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).
Authors’ address: Tyler J. Skluzacek; Renan Souza; Mark Coletti; Frédéric Suter; Rafael Ferreira da Silva, Oak Ridge National Laboratory, Oak Ridge, TN,
USA.

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the
United States government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do
so, for Government purposes only. Request permissions from owner/author(s).
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/3626203.3670606
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan


2 Skluzacek, et al.

In this paper, we introduce Zambeze, an automated distributed framework that enables automated cross-facility
workflows. Leveraging swarm intelligence principles, Zambeze orchestrates science campaigns through the manage-
ment of distributed autonomous agents that deliver an ensemble of services, including computing, storage, and data
management. The effectiveness of Zambeze is demonstrated through its application in a real-world electron microscopy
use case, augmented by Artificial Intelligence, showcasing its capability to streamline complex scientific processes.

2 A DISTRIBUTED FRAMEWORK FOR CROSS-FACILITY WORKFLOWS

Fig. 1. Architecture of a distributed workflow or-
chestration system on two facilities using Zam-
beze. Each instrument and computational resource
has an agent. Agents can autonomously initiate direct
data movement between storage resources.

Developing a system that can effectively deliver the multitude of
advantages offered by flexible cross-facility workflow orchestration
presents significant challenges, particularly when faced with dynamic
resource constraints and a variety of heterogeneous and dispersed
computing environments. This section introduces Zambeze, our pio-
neering automated distributed workflow orchestration system, which
draws its name from Africa’s fourth-largest river, renowned for its
role in linking diverse biological ecosystems. The architecture of our
proposed system (illustrated in Fig. 1) supports these functionali-
ties by enabling seamless communication and data transfer between
various resources, thus facilitating a robust and adaptable research
environment. We next detail aspects of Zambeze.

2.1 User Interface

The user interface is vital to any orchestration system, as it shapes
how users manage their scientific processes. An ideal interface pro-
vides a standard, intuitive means for scientists to define orchestration
at an abstract level, facilitating rapid development and improved experience. Conversely, it should also offer the flexibil-
ity to accommodate low-level configurations when needed. In our design, distributed workflows are conceptualized as a
science campaign consisting of various activities. These activities can range from executing broad, complex actions like
running an entire workflow to invoking simple, small-scale functions. Users can design and implement their campaigns
using standard Python, enabling straightforward integration into their existing workflows. For instance, a user might
set up a science campaign to train numerous machine learning (ML) models with data from two distinct resources,
A and B, select the top-performing models, and then transfer these models to a repository on resource B. Zambeze
simplifies the process by eliminating the need for users to specify absolute data paths, except where strictly necessary,
such as locating stored datasets or determining the final destination for research artifacts. Automatically, the system
identifies suitable computational resources and manages data transfers seamlessly in the background.

2.2 Compute Fabric

Once a user’s science campaign initiates its activities, a mechanism is needed to dispatch and execute each activity to a
suitable compute resource. To facilitate this level of processing in Zambeze, each eligible compute resource is equipped
with its own autonomous agent. These agents connect to a distributed swarm of other independent agents, allowing
them to receive task instructions, handle data transfers, capture and relay monitoring information, and ultimately
execute tasks on underlying resources.
Manuscript submitted to ACM



Towards Cross-Facility Workflows Orchestration through Distributed Automation 3

In Zambeze, agents come pre-configured with plugins that provide a standardized interface for accessing the
underlying software and hardware necessary for executing activities. For example, our proof-of-concept implementation
(Section 3) currently includes plugins to invoke a workflow management system (e.g., Dask and Parsl), execute shell
commands, and facilitate data transfers (e.g., rsync and Globus). Our plugin system follows a modular design, allowing
users to register and use custom plugins on their owned agents.

Each agent is assigned a unique address to make it accessible by every other agent in the swarm. Upon initialization,
an agent automatically connects to a site-local communication server, which then links to a network of communication
servers from other sites. An agent listens exclusively for activities that match the capabilities of the plugins installed on its
resource. Once an activity is identified, the agent executes it and communicates the results and control information—such
as execution status and file locations—to the rest of the swarm.

A significant challenge is the agent’s need to execute tasks across the heterogeneous resources. To address this, our
system design leverages previous advancements to abstract the complexities of machine-specific details from users.
The agent’s executor, which is responsible for deploying and monitoring activities on a compute resource, is built
atop an internally-constructed API that interfaces with various cluster schedulers, such as Slurm, LSF, or Flux. This
allows the executor, once started on a login node by the user, to autonomously manage the allocation, deallocation, and
monitoring of compute nodes for any activity.

2.3 Scheduling

When a user launches a science campaign through Zambeze, the locally-running agent constructs a Directed Acyclic
Graph (DAG) of the user-submitted activities, where each node is an activity and edges are dependencies between the
activities. Additionally, a dedicated ‘monitor’ node is placed onto the front of the DAG to track and broadcast progress
updates across the swarm. This storage structure allows us to leverage various optimizations, including topological
sorting, which optimizes parallelization and concurrency ordering throughout the distributed system [9].

Each agent in the swarm operates using an asynchronous ‘pull worker’ model that only pulls activities from its
communication server’s queue of activities that match the available plugins properties on that specific device. Upon
receiving an activity, the agent checks for any unmet data dependencies, such as an input file generated by an upstream
activity. If a dependency is missing, the activity is locally queued until a broadcast control message is received that
indicates that the data are available. During this awaiting period, the activity remains idle. Once the necessary data
are retrieved, the activity proceeds to execute. Subsequently, the resulting status and activity output information are
broadcast back to the control queue on its communication server.

2.4 Data Fabric

In Zambeze, we have adopted a lazy-transfer model where data objects (e.g., files) are only retrieved when activities are
initialized on their executing agent. When a transfer is needed, the system sends a control message to its communication
server, broadcasting the need for a specific data object. The appropriate agent hosting the data object responds with
its available transfer information (e.g., location, authorization headers, and available transfer software). Finally, the
requesting agent will identify a common transfer software from this information and ultimately execute the transfer.

We designed the data fabric to accommodate both absolute and relative object paths in the distributed system.
Absolute paths are necessary when targeting specific data objects that are created outside the context of a science
campaign. However, if data are generated as a result of previous workflow steps, users can refer to directories within the
campaign definition. These directories include the agent’s default working directory, a user-updated working directory,

Manuscript submitted to ACM



4 Skluzacek, et al.

and the output directories of the current activity. To refer to these directories, users can employ file URIs with specific
escape sequences when notating their activities in the original science campaign (e.g., ‘@agentdir’, ‘@workingdir’ and
‘@outputdir’, respectively).

3 PRELIMINARY EVALUATION

In this section, we evaluate Zambeze’s efficacy in facilitating user convenience throughout the various stages of a
science campaign. To illustrate its practical application, we implemented Zambeze as an open source proof-of-concept
framework [10] and applied it to a real-world use case involving electron microscopy. Here, we define the campaign,
discuss the steps taken by users to launch the campaign, and illuminate what a user sees as the campaign executes.

3.1 Use case: Electron Microscopy and AtomAI

Fig. 2. Electron microscopy use case, where the scientists tune the next
position of the microscope based on results generated by a Deep Learning model,
showing a human-in-the-loop aspect.

Electron microscopy techniques play a vi-
tal role in various scientific fields, includ-
ing condensed matter physics, biology, mate-
rials science, chemistry, catalysis, and nan-
otechnology. The integration of AI mod-
els, such as deep convolutional neural net-
works, has the potential to revolutionize elec-
tron microscopy by enabling scientists to
rapidly identify atomic species, defects in ma-
terials, and track their evolution over time.
AtomAI [11] is an open source software suite
designed specifically for this purpose. It com-
bines instrument-specific Python libraries, deep learning capabilities, and simulation tools, simplifying the application
of deep convolutional neural networks for semantic segmentation of atomic and mesoscopic images. AtomAI accurately
predicts atomic species and positions in atomically-resolved imaging.

The overall use case is depicted in Fig. 2, illustrating a distributed workflow comprising three separate environments:
the Edge, a leadership-class HPC system, and a commodity cluster.

Workflow 1 (Edge). A Python script, simulating use of the microscope driver API, controls the electron
microscope and captures raw imagery data, on the order of gigabytes.
Workflow 2 (leadership-class HPC). The raw image files are then transferred to a leadership-class HPC system
(e.g., OLCF’s Frontier). Here, users define hyperparameter ranges, such as model layers, optimizers, learning
rates, number of epochs, and batch sizes, along with data sets for training and testing. The combination of
tools, including Dask, AtomAI, and PyTorch, parallelizes hyperparameter search by training multiple deep
convolutional neural networks for image segmentation. A subset of these models, selected based on accuracy
and loss metrics, is further analyzed and validated on a commodity cluster.
Workflow 3 (HPC). In this workflow, the scientist performs an in-depth analysis of the models generated in
Workflow 2. They create evaluation metric plots, compute additional evaluation metrics (e.g., mean squared error)
against a validation dataset, and record these steps using the MLFlow data tracking API. Based on the model
results, scientists can deploy the models on an actual microscope for real-time atom identification or use them to

Manuscript submitted to ACM



Towards Cross-Facility Workflows Orchestration through Distributed Automation 5

guide the selection of the next measurement point in a problem-specific parameter space (e.g., determining the
next (𝑥,𝑦) coordinates on a sample).

In a conventional setup that relies on state-of-the-art workflow management systems and data management frame-
works, the execution of the three above workflows, as well as the coordination of data transfers across facilities (e.g.,
experimental to computing facilities), often requires manual orchestration. This entails significant effort from users,
who either have to manually manage these processes or rely on scripts to partially automate certain aspects.

3.2 Distributed Workflow Orchestration
1 # Create empty science campaign

2 campaign = Campaign("My Science Campaign!")

3

4 # Activity 1: Microscope simulation

5 act_1 = ShellActivity(

6 name="create micrscope images",

7 script_uri="B:// mscope_sim.sh",

8 cmd="./ microscope_sim.sh"

9 output_dir="@agentdir/images")

10

11 # Activity 2: Train machine learning models

12 act_2 = WFActivity(

13 name="train ml models",

14 wf_manager="dask",

15 wf_config = ...,

16 wf_uri="A:// train_script.py",

17 # Data from machines A and B

18 data_uris =[act1.outputdir ,

19 "B:// file_2"],

20 working_dir="@agentdir/tmp",

21 output_dir="@workingdir/models")

22

23 # Activity 3: Select best -performing models

24 act_3 = PythonActivity(

25 name="Model validation",

26 data_uris =[act_2.output_dir],

27 script_uri="A:// mod_select.py",

28 args=["-metric", "loss_2"],

29 output_dir="@agentdir/models")

30

31 # Activity 4: Transfer best models

32 act_4 = TransferActivity(

33 source=act_2.outputdir ,

34 dest="C:// user/repository")

35

36 # Load the activities into the campaign

37 campaign.add_activities ([act_1 , act_2 , act_3])

38

39 # Dispatch the campaign and poll!

40 campaign.dispatch ()

41 campaign.poll(blocking=True)

Fig. 3. Example campaign and activity definitions for a simple
ML distributed workflow orchestration that trains and validates
ML models.

Users simply need to install (pip install zambeze) and
start an agent (zambeze agent start) on their local ma-
chine to enable communication with Zambeze’s larger
distributed agent swarm. They next create a science cam-
paign in a Python script, with one activity for each of
Workflows 1–3 as well as a fourth final data transfer ac-
tivity, illustrated in Fig. 3.

Observe that different activities have both unique and
shared parameters. Unique parameters are those spe-
cific to an activity type; for instance, a ShellActivity
requires a “cmd" to be executed in the shell, while a
PythonActivity requires a path to a Python script.
Shared parameters are those useful to any type of ac-
tivity, such as URIs to data, a human-readable name, or
working/output paths.

Once users dispatch their activities to the distributed
system for execution, they may poll for the status of all
individual activities. In doing so, the originating agent
finds and queries the agent responsible for monitoring
campaign execution, which provides a stream of status
events back to the originating agent, such as the the ini-
tiation and completion of activity execution, requests for
data dependencies, and finally, whether the distributed
workflow has successfully completed.

Note that the distributed workflow orchestration sys-
tem allocates resources non-deterministically. That is, the
components of a science campaign can be executed on
a distinct set of machines, which enhances the flexibility
and scalability of the system, accommodating varying
workloads, and optimizing resource utilization.

Once the client application receives a status message indicating completion of the science campaign, the user can
navigate to the destination directory specified in their final transfer activity. There, they will discover the selected
models along with the corresponding validation files, readily available for further analysis and evaluation.

Manuscript submitted to ACM



6 Skluzacek, et al.

4 RELATEDWORK

Numerous tools have been developed to enhance cross-facility workflow orchestration. For instance, Globus automation
services [4] provide a platform for streamlined workflow management across multiple facilities. This platform supports
semi-automation of tasks, efficient resource management, and enhanced collaboration, adapting to diverse operational
requirements. Our architecture extends the functionalities of Globus Flows to automate further and integrate these
workflows into a cohesive framework that abstracts the complexities of underlying infrastructure. Regarding data
interoperability, the Superfacility API by NERSC [2] enhances the seamless transfer of machine-readable data and
services between facilities, thereby simplifying complex procedures and boosting operational efficiency.

Our earlier work [1] established a foundational framework for managing cross-facility workflows in distributed
settings. This framework improves resource allocation, task scheduling, and data management, and incorporates fault
tolerance mechanisms to enhance the reliability of workflows. Building on this groundwork, this paper leverages swarm
intelligence principles for building an automated distributed orchestration framework that expands these capabilities.

5 CONCLUSION

Workflow execution is crucial in many scientific fields, leading to a growing library of scientific workflows and
workflow management systems. Scientists are increasingly collaborating on a wide range of these workflows and
research infrastructures, with the aim of achieving FAIRness in their data and workflows. This trend makes manual
execution of research tasks more complex, necessitating simplified and automated methods. This paper underscores
the need for institutions to adopt distributed workflow orchestration techniques. We demonstrated the benefits of
such techniques through a proof-of-concept framework, Zambeze, that improved scientific throughput in a real-world
electron microscopy example (AtomAI). Although these benefits are achievable, considerable research and development
work in cross-facility networking and security; workflow co-scheduling on heterogeneous architectures; and human-
and machine-in-the-loop workflow patterns is needed to make distributed workflow orchestration ubiquitous.

REFERENCES
[1] Katerina B. Antypas, Deborah Bard, Johannes P. Blaschke, et al. 2021. Enabling Discovery Data Science through Cross-Facility Workflows. In 2021

IEEE International Conference on Big Data. IEEE.
[2] Deborah J. Bard, Mark R. Day, Bjoern Enders, et al. 2021. Automation for Data-Driven Research with the NERSC Superfacility API. In High

Performance Computing: ISC High Performance Digital 2021 International Workshops. Springer.
[3] Benjamin L Brown, William L Miller, et al. 2023. Integrated Research Infrastructure Architecture Blueprint Activity. Technical Report. US Department

of Energy (USDOE), Washington, DC (United States). Office of Science.
[4] Ryan Chard, Jim Pruyne, Kurt McKee, Josh Bryan, Brigitte Raumann, Rachana Ananthakrishnan, Kyle Chard, and Ian T. Foster. 2023. Globus

Automation Services: Research Process Automation across the Space-Time Continuum. Future Generation Computer Systems (2023).
[5] Rafael Ferreira da Silva, Rosa M. Badia, Venkat Bala, Debbie Bard, et al. 2023. Workflows Community Summit 2022: A Roadmap Revolution. Technical

Report. Oak Ridge National Laboratory. https://doi.org/10.5281/zenodo.7750670
[6] Shantenu Jha, Vincent R. Pascuzzi, and Matteo Turilli. 2022. AI-coupled HPC workflows. arXiv preprint arXiv:2208.11745 (2022).
[7] Tyler J. Skluzacek. 2022. Automated Metadata Extraction Can Make Data Swamps More Navigable. Ph. D. Dissertation. The University of Chicago.
[8] Renan Souza, Leonardo Azevedo, et al. 2019. Efficient Runtime Capture of Multiworkflow Data Using Provenance. In 2019 15th International

Conference on eScience. IEEE, 359–368.
[9] Min-You Wu, Wei Shu, and Jun Gu. 2001. Efficient Local Search for DAG Scheduling. IEEE Transactions on Parallel and Distributed Systems 12, 6

(2001), 617–627.
[10] Zambeze 2024. Zambeze Framework. https://github.com/ornl/zambeze.
[11] Maxim Ziatdinov, Ayana Ghosh, et al. 2022. AtomAI Framework for Deep Learning Analysis of Image and Spectroscopy Data in Electron and

Scanning Probe Microscopy. Nature Machine Intelligence (2022).

Manuscript submitted to ACM

https://doi.org/10.5281/zenodo.7750670
https://github.com/ornl/zambeze

	Abstract
	1 Introduction
	2 A Distributed Framework for Cross-Facility Workflows
	2.1 User Interface
	2.2 Compute Fabric
	2.3 Scheduling
	2.4 Data Fabric

	3 Preliminary Evaluation
	3.1 Use case: Electron Microscopy and AtomAI
	3.2 Distributed Workflow Orchestration

	4 Related Work
	5 Conclusion
	References

