Secure API-Driven Research Automation to Accelerate Scientific Discovery
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The Secure Scientific Service Mesh (S3M) provides API-driven infrastructure to accelerate scientific discovery through automated
research workflows. By integrating near real-time streaming capabilities, intelligent workflow orchestration, and fine-grained au-
thorization within a service mesh architecture, S3M transforms programmatic access to high performance computing (HPC) while
maintaining uncompromising security. This framework allows intelligent agents and experimental facilities to dynamically provision
resources and execute complex workflows, accelerating experimental lifecycles, and unlocking the full potential of Al-augmented
autonomous science. S3M represents a paradigm shift in scientific computing infrastructure that eliminates traditional barriers between

researchers, computational resources, and experimental facilities.
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1 Introduction

Modern scientific research increasingly demands seamless integration between experimental and computational
facilities, their computing resources, and data management systems to enable autonomous discovery. The emerging
paradigm of “self-driving autonomous laboratories" requires programmatic research interfaces that can coordinate
complex workflows that span multiple facilities without (or with minimum) human intervention [8]. Researchers
have traditionally relied on manual methods—logging into compute clusters via SSH, submitting batch jobs, and
asynchronously retrieving data, but these approaches fundamentally limit the potential for near-real-time experiment
steering, active data analysis, and on-demand resource allocation; functionalities needed for next-generation science.

The rise of generative Al models and reinforcement learning agents capable of scientific reasoning has created new
imperatives for the experimental infrastructure. To create truly autonomous Al-based experimentation, researchers must
programmatically integrate their research capital—instruments, compute resources, and data repositories—with their
Al training, testing, and inference pipelines [4, 16]. Implementing such interfaces poses not only technical challenges

but also critical security and policy concerns [7]. Although HPC facilities employ strict authentication frameworks to
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protect resources and data, these same protections create barriers for automated systems, laboratory instruments, edge
devices, and Al agents that need to trigger computations in response to experimental results or predictive insights.
The absence of standardized, secure mechanisms to orchestrate workflows between experimental and computational
facilities results in fragmented solutions, communication inefficiencies, and missed opportunities for Al-accelerated
scientific discovery. Oak Ridge Leadership Computing Facility’s (OLCF) Secure Scientific Service Mesh (S3M) addresses
these challenges by providing a facility API—the first of its kind to leverage a flexible service mesh architecture—that
enables authenticated external systems and intelligent agents to securely provision resources, stream data, and trigger
compute jobs dynamically. This architecture ensures modularity, scalability, and policy-driven security enforcement
across computational services. In this paper, we present our work-in-progress architecture, API components, security
model, and user interfaces of S3M, demonstrating how this infrastructure enables a new generation of autonomous

scientific workflows at OLCF.

Concise Perspective on Related Scientific APIs. S3M extends previous work on scientific APIs. The Superfacility
API [6] provides RESTful interfaces to HPC resources, allowing experiments to transfer data to compute facilities and
trigger analysis jobs. FirecREST [5] offers a RESTful web API infrastructure that connects scientific gateways to HPC
systems. Globus Flows [4] provides automation of the research process through the cloud-hosted execution of flows
on heterogeneous resources. Tapis [15] is a platform for distributed computational research that offers fine-grained
authorization, data management, and code execution capabilities. SCEAPI [13] provides a unified RESTful API for
accessing HPC resources in multiple Chinese supercomputing centers, supporting authentication, file transfer, and job
management. S3M distinguishes itself through a service mesh architecture, allowing highly customizable services, fine-
grained policy enforcement, and dynamic routing, capabilities not possible in traditional API gateways. It introduces
advanced streaming for low-latency data exchange enabling near real-time decision making, seamless workflow
orchestration, and support for custom API extensions. These features are invaluable for high-security experimental and

computational facilities that need to quickly process and act on incoming data streams.

2 The Scientific Service Mesh for Automated Science

The Secure Scientific Service Mesh (S3M) provides programmatic access to OLCF’s HPC resources by integrating distinct
services, managed policies, and fine-grained authorization into a unified framework. Built on a flexible service mesh

architecture using OpenShift, deployed in OLCF’s Slate clusters [11], S3M enables scientific instruments, workflows,
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Fig. 1. S3M Architecture diagram. Automated and human clients can make requests to S3M if they have an S3M Access Token.
Authorized users have access to the various APls hosted in front of OLCF resources. S3M then handles the provisioning of streaming
nodes and communication with the compute resources’ schedulers.
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and intelligent agents to interact securely with HPC systems while maintaining strong security through layered policy-
as-code access controls and project-scoped authentication. A service mesh is an infrastructure layer that facilitates
secure and efficient communication between services in a distributed system, abstracting networking complexity
while enforcing authentication, authorization, and traffic management policies [10]. In S3M, this architecture ensures
modularity, scalability, and security, allowing independent management of core services, including advanced streaming
for near real-time data exchange, workflow orchestration across facility boundaries, status monitoring, and compute
scheduling. This design, visualized in Fig. 1, allows new capabilities to be explored without disrupting existing OLCF
infrastructure, which is particularly valuable for Al-driven experimental feedback loops that must operate within the
OLCF’s HPC environment.

S3M relies on Istio [1], an open-source service mesh platform that provides fine-grained traffic management,
security, and observability features, to enforce multilayered validation through authentication, authorization, and policy
compliance checks. The traceability features in Istio offer a comprehensive view of all requests and behavior within the
mesh, supporting compliance and security auditing. Users obtain project-scoped authentication tokens with strictly
defined permissions, and S3M validates every request against project allocations and resource policies before execution.
This approach enables dynamic resource provisioning and workflow automation, while preserving the integrity of

OLCF’s computing environment.

2.1 Secure APl Communications Framework

S3M provides an extensive set of APIs, accessible at both gRPC+Protobuf [2, 9] and RESTful JSON endpoints, that
enable researchers to interact with OLCF resources programmatically. Each endpoint serves a specific purpose within
the scientific workflow automation ecosystem, from monitoring resource availability to submitting large and complex
compute tasks. The core API components, summarized in Table 1, are designed to support diverse scientific needs while
maintaining strict access controls and tightly integrating a wide range of access policies. In the following, we describe

in more detail two of S3M’s unique APIs: Streaming and Workflows.

API Endpoint Description

/status Provides resource availability information, including overall system status, specific resource states, and scheduled downtimes.

/compute Supports job submission and management, allowing users to submit, track, and cancel compute jobs on available resources.

/streaming Manages data streaming resources, enabling provisioning, listing, and deallocation of Redis or RabbitMQ instances for low-latency
scientific workflows.

/environment Retrieves dependency and runtime environment information for computing workflows.

/tokens Manages secure API access tokens for authenticated service interactions.

/workflows Facilitates workflow automation by allowing submission, status retrieval, and cancellation of complex workflows across heteroge-

neous computing resources.

Table 1. Core S3M API Endpoints and Their Functionality.

The Streaming API is one of S3M’s most transformative capabilities [3]. While many facility APIs provide well-
defined interfaces for accessing individual resources, they typically lack capabilities to connect compute jobs with
experiment control applications. As a result, researchers must manually deploy and maintain external messaging
services to facilitate data exchange. The Streaming API enables researchers to provision RabbitMQ or Redis messaging
services on dedicated high-throughput streaming nodes near computational resources through simple API calls. This
feature is crucial for interactive science applications that require low-latency data exchange between experimental
facilities and compute resources, enabling near real-time decision-making and instrument feedback loops. By abstracting
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the complexity of message broker management behind a unified interface, the Streaming API simplifies the development
of these data-intensive scientific workflows.

Previously, OLCF users needing live interactions with compute jobs faced a tedious, multistep process: (1) securing
an allocation on one of our Kubernetes application clusters or finding their own hardware to host a message broker;
(2) installing and configuring their broker; (3) requesting firewall exceptions to enable communication between
instruments and facilities; and (4) maintaining the health and security of their broker. Furthermore, externally hosted
brokers were often physically distant from control applications or compute resources, leading to increased latency and
inconsistent throughput. The Streaming API eliminates these challenges by automating broker provisioning in secure,
OLCF-approved environments that are proximal to both OpenShift application clusters and computational resources.
Fig. 2 illustrates the interaction flow between the researcher, the S3M Streaming and Compute APIs, and the underlying

infrastructure that enables these capabilities.
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Fig. 2. S3M Streaming Service Interaction Flow. This diagram shows how researchers interact with S3M services to provision streaming
infrastructure and interface with a compute cluster. The Stream Manager creates Kubernetes objects while the Abstraction Service
deploys the RabbitMQ cluster. Researchers can then develop data pipelines with these resources.

The Workflow API extends S3M’s capabilities by integrating with Argo Workflows [12], enabling researchers to
orchestrate complex, multistep scientific processes with minimal manual intervention. By supporting the submission
of Argo Workflow Templates, this API allows users to define, reuse, and share sophisticated execution pipelines that
seamlessly incorporate custom endpoints and data management tools while handling parallel workflow invocations; data
dependencies and artifact management; and fault tolerance. This abstraction layer significantly reduces the developer
error and execution overhead, allowing scientists to focus on research objectives rather than managing computational
logistics. The Workflow API represents a critical component for autonomous science, where reproducible and efficient

processing chains across distributed resources are essential to discovery.

2.2 Layered Authentication and Authorization Framework

S3M enforces a multi-tiered security architecture to validate all remote client interactions with OLCF resources. Each
API request must include an authorization token generated by a valid user through our trusted web portal. This ensures
that only users with appropriate project access and a sufficient account status can generate credentials. All network
traffic is encrypted at the gateway, mitigating risks from credential interception or adversary-in-the-middle attacks.
Manuscript submitted to ACM
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Once a request reaches S3M, the system validates the user’s identity, project affiliations, and resource access against
the OLCF infrastructure. Requests that fail these checks are immediately rejected, preventing unauthorized access before
reaching internal services. If a request passes the authentication and authorization layers, it is routed to the relevant
service, such as compute job submissions to Slurm schedulers [14]. To manage security across internal communications,
all S3M services communicate over mutual TLS (mTLS), reducing unauthorized access risks within the system. Extensive
logging captures details for all requests in addition to internal communication throughout the service mesh, ensuring
full traceability for compliance and anomaly detection. This model minimizes implicit trust and strengthens access

controls, supporting broader efforts to adopt zero-trust principles across OLCF infrastructure.

3 Programmatic Research Interface

The Software Development Kit (SDK) provides a simple Python interface for both human researchers and automated
systems to interact with OLCF. By encapsulating complex API interactions into intuitive service classes, the SDK
eliminates common implementation challenges around authentication, request formatting, or error handling, allowing
scientists to focus on research objectives rather than infrastructure mechanics. The package is installed via pip and
securely manages the authentication token using an environment variable to prevent credential exposure.

The streaming service example in Listing 1 illustrates the dynamic provisioning of a dedicated messaging infras-
tructure for the exchange of near real-time data between scientific instruments and computational resources. With
just a few lines of code, researchers can orchestrate the entire messaging infrastructure lifecycle: from dynamically a
fully configured RabbitMQ cluster with precise CPU and memory allocations, to seamlessly transmitting experimental
data through established channels, to automatically decommissioning resources upon completion. This capability is
particularly valuable for automated scientific workflows that require low-latency communication for experimental
steering and adaptive decision-making based on emerging computational results. Listing 2 illustrates the description of
a multitask directed acyclic graph (DAG) workflow in Argo. This workflow reuses predefined templates (e.g., Listing 1)
to deploy the streaming service, submit the compute job, and check the job status. Such workflow automation and

template reusability help to lower the barrier for reproducing complex experiments.

1 kind: Workflow
from olcf_s3m_api.client import OLCFAPIClient 2 spec:
from olcf_s3m_api.streaming import StreamingService 3 templates:
4 dag:
client = OLCFAPIClient(token=os.environ['S3M_TOKEN']) 5 tasks:
service = StreamingService(service_name="rabbitmq", 6 - name: deploy-streaming-service
api_client=client) 7 templateRef:
8 template: deploy-streaming
status = service.start_cluster( 9 - name: submit-job
cluster_name = "my-rmq-cluster”, 10 dependencies: [deploy-streaming-service]
node_count =1, 1 templateRef:
cpu_count = 4 12 template: submit-job
ram_gib =4 13 - name: check-job-status
) 14 dependencies: [submit-job]
15 templateRef:
# calls to RabbitMQ cluster using Pika library 16 template: check-job-status
L 17 arguments:
service.stop_cluster(cluster_name="man-cluster") 18 parameters:
19 - name: JOB_ID

Listing 1. Data Streaming Cluster Provisioning and

Management Through S3M Streaming Service.

value: "{{tasks.submit-job.outputs.parameters.JOB_ID}}"

Listing 2. Argo Workflow Executed Through S3M Workflow API.
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4 Future Directions for Scientific Automation

S3M represents a transformative approach to autonomous API-driven scientific workflows by using a service mesh
architecture to enable secure and scalable interactions between researchers, Al agents, and HPC resources. By unifying
fine-grained authorization, dynamic resource provisioning, and low-latency data streaming under a cohesive framework,
S3M establishes the foundation for next-generation scientific automation. Although currently available to internal
users on select clusters, our roadmap includes refining authentication policies with input from diverse science projects,
integrating advanced workflow management systems, publishing comprehensive SDK documentation, and expanding
to external user access. As S3M evolves toward deployment on the OLCF’s exascale Frontier supercomputer, this
framework will dramatically accelerate experimental lifecycles, enable adaptive research workflows in near real-time,
and ultimately transform how Al-augmented science operates by eliminating traditional barriers between instruments,

computational resources, and researchers.
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