
A Roadmap to Robust Science for High-throughput
Applications: The Developers’ Perspective

M. Taufer∗, E. Deelman†, R. Ferreira da Silva†, T. Estrada‡, M. Hall§, and M. Livny¶
∗U. Tennessee Knoxville, †U. Southern California,
‡ U. New Mexico, §U. Utah, ¶U. Wisconsin–Madison

Abstract—Scientists using the high-throughput computing
(HTC) paradigm for scientific discovery rely on complex software
systems and heterogeneous architectures that must deliver robust
science (i.e., ensuring performance scalability in space and time;
trust in technology, people, and infrastructures; and reproducible
or confirmable research). Developers must overcome a variety
of obstacles to pursue workflow interoperability, identify tools
and libraries for robust science, port codes across different
architectures, and establish trust in non-deterministic results.
This poster presents recommendations to build a roadmap to
overcome these challenges and enable robust science for HTC
applications and workflows. The findings were collected from an
international community of software developers during a Virtual
World Café in May 2021.

Index Terms—Performance Scalability, Trustworthiness, Re-
producibility

I. PROBLEM AND CONTRIBUTIONS

High-throughput applications, in which application work-
load consists of a large ensemble of self-contained tasks
and application performance is measured by the number of
tasks completed per unit of time, are vital for scientific
discovery. These applications combine multiple components
into increasingly complex multi-modal workflows (i.e., data
generation; data collection and merging; data pre-processing
and feature extraction; data analysis and modelling; and data
verification, validation, and visualization) that are executed
in concert on large-scale heterogeneous systems including
high performance computing (HPC), distributed systems, and
cloud platforms. Managing an HTC workload is not an easy
task: it requires automation services that include workflow
capabilities for managing all the tasks and all the input/output
files across different runs of an HTC ensemble. These increas-
ing complexities hinder the ability of scientists to generate
robust science, which we define as the capacity of high-
throughput applications to scale in performance (i.e., meeting
both hardware and software performance expectations when
executed on heterogeneous resources and large scale systems);
to exhibit trustworthiness (i.e., depend upon hardware and
software technology, collaborators across scientific domains,
and platform providers to behave as specified or expected);
and to assure reproducibility (i.e., drawing the same scientific
conclusions using the knowledge encapsulated in the original
computational experiment). This poster presents recommenda-
tions for designing and implementing software systems for ro-

The work in this poster is funded by the National Science Foundation (NSF)
under grants #2028881, #2028923, #2028930, #2028955, and #2028956.

bust science across critical high-throughput applications. The
findings were collected through one virtual mini-workshop
in May 2021 [2] called a Virtual World Café (VWC). In
the VWC, we engaged communities of software developers
to share state of the art recommendations through structured
conversational processes: participants were distributed across
several breakout sessions in an online meeting, with partici-
pants switching sessions periodically and getting introduced
to the previous discussion at their new session by a session
lead.

II. FINDINGS AND RECOMMENDATIONS

We sort findings and recommendations from the VWC into
four categories:

1. Interoperability through Application Programming
Interfaces (APIs). Findings: HTC workflows are becoming
more and more complex. Software systems supporting those
workflows are multilayered, expanding both vertically (e.g.,
multiple software layers) and horizontally (e.g., multiple al-
ternative platforms and software systems for each specific
platform). Interoperability is thus a multilayer challenge. Gen-
eral APIs can serve as interoperability solutions, but scientists
tend to prefer bespoke software and hardware fixes rather
than deploying more general solutions. The needs of different
domains can complicate the definition of any general APIs.

Recommendations: (a) Study what level of abstraction is
suitable for users across a broad range of domains (i.e., what
parts of a system should be made transparent to the user and
what should be hidden by an API). (b) Identify the proper
location of APIs, determining if APIs should be located at
specific layers (e.g., SLURM, HTCondor, and EC2) or should
globally wrap multiple layers.

2. Cataloging tools and libraries. Findings: Relevant
tools and libraries are available to support robust sciences
for workflows orchestration (e.g., Airflow, Kuberflow); for
workflows performance monitoring (e.g., Hatchet); for work-
flows annotations and reproducibility (e.g., Popper, Reprozip.
Verificarlo); and for workflows management (e.g., Pegasus,
DASK, MOCHI, Galaxy, binder.org, Ray), including commer-
cial workflow management platforms (e.g., Amundsen and
Databook). When selecting available tools, users often face
applicability challenges. Very few tools work across domains;
tools popular and effective in one domain may not be so in
other domains. When using different tools or different tool
versions, users face interoperability challenges; even when



using Spack and containers, installations and deployments are
not always easy across platforms and architectures. Ultimately,
users may not be able to identify the most suitable ecosystem
for their application.

Recommendations: (a) List tools and libraries that are
available and used in different domains or for specific goals.
(b) Define a searchable taxonomy of the tools and libraries,
including platform and type of support (e.g., reproducibility
and trustworthiness) within a domain and across domains.

3. Code portability and algorithm correctness. Findings:
Scientists desire codes to be written once and then run on
different architectures. Portability frameworks such as Kokkos
and Raja fit into this vision but support limited data layouts.
For example, Kokkos allows the execution of codes such as
VPIC on both GPUs and CPUs but lacks the capability to
handle vectors effectively. Consequently, VPIC on Kokkos can
no longer match historical performance observed with opti-
mized vectorization tailored for specific architectures. In gen-
eral, data layouts impact data movement, and data movement
impacts performance. For example, a domain-specific frame-
work targeting stencil computations can offer a broad set of
data layout abstractions, data layout transformation, and code
generations. Such frameworks use higher level descriptions of
the computation, generate specific data layout optimizations
targeting different platforms, and combine different software
components, some provided by the application programmer
and some by manually tuning specifications. In both cases,
when porting codes across platforms, scientists value correct
algorithms over numerical reproducibility. Tools for assessing
correctness by comparing results across platforms, architec-
tures, compilers, or compiler upgrades are missing.

Recommendations: (a) Define tolerable result differences
when moving a code from one platform to another, or from one
architecture to another (e.g., from CPU and GPU). (b) Build
the infrastructures so that algorithms can be trusted to deliver
results across platforms within the defined error tolerances.

4. Trust in data, software, infrastructures, and people.
Findings: When it comes to trustworthiness, HPC and HTC
have orthogonal views. HPC runs on centrally controlled re-
sources that allow system administrators to capture immediate
states during the execution. While log files exist capturing the
history of jobs, HPC centers and national labs are reluctant
to pursue trace or system logs sharing. HTC, on the other
hand, runs on resources that are locally controlled by different
autonomous entities and thus create a different trust model
based on blockchain and crypto techniques (with all logs of
every transaction made and jobs signed by every participant)
or, more simply, job passports and credentials attached to a job.
Scientists trust the resource’s access point but do not trust the
different execution points. Under these circumstances, tracing
data provenance is essential for establishing trustworthiness.
Annotating workflows and containerizing their executions can
automatically capture data, software, and infrastructure infor-
mation, but it may be difficult to identify appropriate granu-
larity of annotations and containerizations. System conditions
(such as file systems, networking, and resource usage) play

a key role when addressing aspects of result reproducibility,
performance reproducibility, result explainability, and data
provenance, but these system conditions are often neglected.
Furthermore, there is the danger of metadata explosions (in
size) when metadata can become larger than the data itself
and annotations can substantially complicate the workflows.
There are also potential security risks when sharing metadata:
the metadata may reveal potential vulnerability of an annotated
system and facilitate system attacks. Last, collected metadata
needs to be readable, parsable, and useful for both human
and ML tools with their different format requirements, and
it is necessary to co-design the metadata collection with the
support of both scientists and software developers. Workflow
annotations, metadata curation, metadata management, and
scientific outreach must all be directly connected to what the
scientific community needs; scientists must be equal partners
in the annotation process.

Recommendations: (a) Provide users (both scientists and
software developers) with different levels to capture metadata
(e.g., a systems developer is more interested in capturing
metadata related to the network storage while a scientist may
be more interested in the execution of the workflow). (b) Talk
with different communities and define what types of metadata
are relevant for each of them before systematically building
abstractions to collect and coordinate metadata. The collection
and coordination process should be automated; best practices
for packaging and sharing metadata should prevent security
breaches. (c) Create a marketplace of reusable annotated
artifacts (including metadata), and identify the business model
for the management of the marketplace (e.g., where to store
the content, how to provide access, what is the lifespan of an
artifact and its data, who is in charge for the validation and
security of the artifact and its data).

III. CONCLUSIONS AND RELEVANCE OF THE WORK

The findings presented in this poster can support commu-
nities of software developers that work together to define,
design, implement, and use general system software solutions
for robust science. Any solution should span five critical areas:
architecture; systems; high performance computing; program-
ming models and compilers; and algorithms and theory. In our
future work, we aim to combine these areas into an integrated
continuum through AI-orchestrations, policies, and practices.

ACKNOWLEDGMENT

The authors thank the participants in the May 2021 VWC
for the vibrant discussions. Findings and recommendations in
this poster are the results of those discussions.

REFERENCES

[1] M. Livny, J. Basney, R. Raman, and T. Tannenbaum, Todd ”Mechanisms
for High Throughput Computing” In SPEEDUP Journal, 11(1), 36–40,
1997.

[2] M. Taufer, E. Deelman, R. Ferreira da Silva, T. Estrda, and M. Hall
”Performance Scalability, Trust, and Reproducibility: A Community
Roadmap to Robust Science in High-throughput Applications,” In
https://robustscience.org/


