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1 Introduction

Scientific workflows have become integral tools in broad scientific computing use cases [1]. Science
discovery is increasingly dependent on workflows to orchestrate large and complex scientific experiments
that range from the execution of a cloud-based data preprocessing pipeline to multi-facility instrument-to-
edge-to-HPC computational workflows [2, 3]. Given the changing landscape of scientific computing (often
referred to as a computing continuum [4]) and the evolving needs of emerging scientific applications, it is
paramount that the development of novel scientific workflows and system functionalities seek to increase the
efficiency, resilience, and pervasiveness of existing systems and applications. Specifically, the proliferation of
machine learning/artificial intelligence (ML/AI) workflows, need for processing large-scale datasets produced
by instruments at the edge, intensification of near real-time data processing, support for long-term experiment
campaigns, and emergence of quantum computing as an adjunct to HPC, have significantly changed the
functional and operational requirements of workflow systems. Workflow systems now need to, for example,
support data streams from the edge-to-cloud-to-HPC [5], enable the management of many small-sized
files [6], allow data reduction while ensuring high accuracy [7], orchestrate distributed services (workflows,
instruments, data movement, provenance, publication, etc.) across computing and user facilities [8], among
others. Further, to accelerate science, it is also necessary that these systems implement specifications/standards
and APIs for seamless (horizontal and vertical) integration between systems and applications [9, 10], as well
as enable the publication of workflows and their associated products according to the FAIR principles [11].

1.1 Summit Organization

This document reports on discussions and findings from the 2022 international edition of the “Workflows
Community Summit” that took place on November 29 and 30, 2022 [12]. The two-day summit included
106 participants (Figure 1), from a group of international researchers and developers (Australia, Austria,
Belgium, Brazil, Canada, Colombia, Egypt, France, Germany, Italy, Japan, Netherlands, Norway, Poland,
Spain, Switzerland, United Kingdom, United States) from distinct workflow management systems and users,
and representatives from funding agencies and industry.

The summit was organized by lead members of the Workflows Community Initiative (WCI) [13], a
volunteer effort that brings the workflows community together (users, developers, researchers, and facilities)
to provide community resources and capabilities to enable scientists and workflow systems developers to
discover software products, related efforts, events, technical reports, etc. and engage in community-wide
efforts to tackle workflows grand challenges. These members efforts have been supported by distinct research
projects that contributed to the organization of the event, including ExaWorks [10], WorkflowHub [14],
eFlows4HPC [15], and Covalent [16].

1.2 Summit Structure and Activities

Based on the outcomes of the 2021 summits [17–19], the community developed a roadmap for workflows
research and development [6] (summarized in Section 2). From this roadmap, we have identified six cross-
cutting research/technical topics for the 2022 edition of the summit, each of which was the object of a focused
discussion led by a volunteer community member (Table 1). (Note that the first three topics were discussed
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Figure 1: Screenshot of the 2022 edition of the Workflows Community Summit participants. (The event was
held virtually via Zoom on November 29 and 30, 2022.)
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Topic Discussion Co-Leaders

Topic 1: Specifications, standards, and APIs Daniel Laney (LLNL), Kyle Chard (UChicago/ANL)
Topic 2: AI workflows Shantenu Jha (BNL), Timo Bremer (LLNL)
Topic 3: High performance data management
and in situ workflows

Silvina Caino-Lores (UTK), Frédéric Suter (ORNL)

Topic 4: HPC and Quantum workflows Rosa M. Badia (BSC), Ian Buckley (Agnostiq), Venkat
Bala (Agnostiq)

Topic 5: FAIR computational workflows Carole Goble (UManchester), Daniel S. Katz (UIUC)
Topic 6: Workflows for continuum and cross-
facility computing

Debbie Bard (NERSC), Tom Uram (ANL), Nick Tyler
(NERSC)

Table 1: Workflows Community Summit topics and discussion co-leaders.

in the first day of the event, and the latter three topics in the second day.) For each of the technical topics
shown in Table 1, the co-leaders gave a plenary 10-minute lightning talk followed by focused discussions
in breakout sessions. The goal of these sessions was to (i) review the previous challenges and proposed
solutions; and (ii) identify crucial gaps and potential short- and long-term solutions for enabling emerging
and new workflow applications given the rapid evolution of the computing continuum paradigm. The lead
then reported on the outcome of the discussion in plenary sessions, after which final remarks were given
by the organizers and the summit was adjourned. Additionally, the summit included an invited talk from
Prof. Manish Parashar (University of Utah), a renowned researcher in the field of Scientific Computing,
entitled “A Translational Perspective on End-to-End Workflows.” The cross-cutting theme of Parashar’s talk
was discussed throughout all breakout sessions.

All presentations and videos can be found in the summit website (https://workflows.community/
summits/2022), and videos can be watched from WCI’s YouTube channel (https://www.youtube.com/
playlist?list=PLAtmuqHExRvO-l-mACmlK_4mfmG6yLnpN).
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2 An Overview of the 2021 Community Roadmap for Scientific Workflows
Research and Development

The overarching goal of the 2021 Workflows Community Summits was to (i) develop a view of the state
of the art, (ii) identify key research challenges, (iii) articulate a vision for potential activities, and (iv) explore
technical approaches for realizing (part of) this vision. The summits gathered lead researchers and developers
from around the world, and spanning distinct workflow systems and user communities. We synthesized the
discussions and outcomes of the previous summits and findings into a community roadmap [6] that presents a
consolidated view of the state of the art, challenges, and potential activities. Table 2 presents, in the form of
top-level themes, a summary of those challenges and targeted community activities. Table 3 summarizes a

Theme Challenges Community Activities

FAIR
Computational
Workflows

• FAIR principles for computational workflows that consider
the complex lifecycle from specification to execution and data
products

• Metrics to measure the “FAIRness” of a workflow
• Principles, policies, and best practices

• Review prior and current efforts for FAIR data and software
with respect to workflows, and outline principles for FAIR
workflows

• Define recommendations for FAIR workflow developers and
systems

• Automate FAIRness in workflows by recording necessary
provenance data

AI
Workflows

• Support for heterogeneous compute resources and fine-grained
data management features, versioning, and data provenance
capabilities

• Capabilities for enabling workflow steering and dynamic work-
flows

• Integration of ML frameworks into the current HPC landscape

• Develop comprehensive use cases for sample problems with
representative workflow structures and data types

• Define a process for characterizing the challenges for enabling
AI workflows

• Develop AI workflows as a way to benchmark HPC systems

Exascale
Challenges
and Beyond

• Resource allocation policies and schedulers are not designed
for workflow-aware abstractions, thus users tend to use an ill-
fitted job abstraction

• Unfavorable design of resource descriptions and mechanisms
for workflow users/systems, and lack of fault-tolerance and
fault-recovery solutions

• Develop documentation in the form of workflow tem-
plates/recipes/miniapps for execution on high-end HPC sys-
tems

• Specify benchmark workflows for exascale execution
• Include workflow requirements as part of the machine procure-

ment process

APIs, Reuse,
Interoperability,
and Standards

• Workflow systems differ by design, thus interoperability at
some layers is likely to be more impactful than others

• Workflow standards are typically developed by a subset of the
community

• Quantifying the value of common representations of workflows
is not trivial

• Identify differences and commonalities between different sys-
tems

• Identify and characterize domain-specific efforts, identify
workflow patterns, and develop case-studies of business pro-
cess workflows and serverless workflow systems

Training
and Education

• Many workflow systems have high barriers to entry and lack
training materials

• Homegrown workflow solutions and constraints can prevent
users from reproducing their functionality on workflow sys-
tems developed by others

• Unawareness of the workflow technological and conceptual
landscape

• Identify basic sample workflow patterns, develop a community
workflow knowledge-base, and look at current research on
technology adoption

• Include workflow terminology and concepts in university cur-
ricula and software carpentry efforts

Building
a Workflows
Community

• Diverse definitions of a “workflows community”
• Remedy the inability to link developers and users to bridge

translational gaps
• Pathways for participation in a network of researchers, devel-

opers, and users

• Establish a common knowledge-base for workflow technology
• Establish a Workflow Guild: an organization focused on in-

teraction and relationships, providing self-support between
workflow developers and their systems

Table 2: Summary of workflows research and development challenges and proposed community activities
identified during the 2021 summits [6].
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Thrust Roadmap Milestones

Definition of common
workflow patterns and
benchmarks

• Define small sets of workflow patterns and benchmark deliverables, and implement them using a selected set of
workflow systems

• Investigate automatic generation of patterns and configurable benchmarks (e.g., to enable weak and strong
scaling experiments)

• Establish or leverage a centralized repository to host and curate patterns and benchmarks

Identifying paths toward
interoperability of workflow
systems

• Define interoperability for different roles, develop a horizontal interoperability (i.e., making interoperable
components), and establish a requirements document per abstraction layer

• Develop real-world workflow benchmarks, use cases for interoperability, and common APIs that represent
workflow library components

• Establish a workflow systems developer community

Improving workflow systems’
interface with legacy and
emerging HPC software and
hardware stacks

• Document a machine-readable description of key properties of widely used sites, and remote authentication
needs from the workflow perspective

• Identify new workflow patterns (e.g., motivated by AI workflows), attain portability across heterogeneous
hardware, and develop a registry of execution environment information

• Organize a community event involving workflow system developers, end users, authentication technology
providers, and facility operators

Table 3: Summary of technical roadmap milestones per research and development thrust proposed during the
2021 summits [6].

proposed community roadmap with technical approaches.

In the 2022 edition of the Workflows Community Summit, we revisited this roadmap, discussed the rele-
vance of the challenges and proposed milestones given the current landscape of workflow applications needs
and emerging infrastructures. In the following sections, we summarize the outcomes of these discussions.

3 Specifications, Standards, and APIs

Defining reference specifications, standards, and APIs is paramount to enable interoperability across the
workflow software stack; for capturing end-to-end workflow provenance to facilitate user understanding of the
scientific output; for enabling composability of underlying workflow system components to enable seamless
exchange of functional modules; among others. The workflows community has tackled this problem in many
ways ranging from solutions that provide reference implementations of standards and/or specifications [10,20]
to define common patterns/motifs [21, 22]. In this breakout session, participants focused on identifying the
challenges impeding adoption of current standards, specifications, best practices, and APIs developed by the
community. Below, we summarize the key outcomes of these discussions, highlighting exemplar efforts, and
outline proposed actionable solutions to be tackled by the community.

3.1 Workflow Stack

Despite the vast efforts for providing reference standard implementations and identifying common pat-
terns, defining the levels of the workflow stack which are amenable to sharing technologies (and potentially
APIs) is still an open question and potentially one of the critical aspects hindering wide adoption of proposed
standards and specifications. For instance, there are several ways to define a workflow stack: (i) consider
different types of workflows based on their resource requirements (e.g., in situ, intra-site, inter-site); (ii) con-
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sider a vertical hierarchical stack starting from the workflow down to computational jobs and individual tasks;
(iii) consider the kind of stakeholder and their needs, etc.

Given the above, an overarching question is how do these different workflow stacks map to different types
of workflow systems? Examples of such aspects include resource authentication/authorization and allocation;
the granularity of jobs definition/submission: fine-grained (functions) vs. coarse-grained (long running jobs);
data management (from/to external data stores, within the workflow system, and within the tasks/serverless
functions); workflow specification, language, and framework; provenance and error reporting; visualization;
and application deployment (native installation vs. containerization).

The Global Alliance for Genomics & Health (GA4GH) [23] has targeted the development of API standards
(and implementations) that make it easier to “send the algorithms to the data” on a cloud-based environment.
Their workflow stack includes four definitions of standard APIs for interacting with a data repository, tool
registry, task execution, and workflow execution services [24]. The Pulsar-Network project [25] provides a
distributed, uniform job execution system across European data centers, in which the execution environment
is detached from the Galaxy framework. NERSC’s SuperFacility API [26] exposes characteristics of the
computational facility’s resources that could be leveraged by decision making systems. One limitation of these
approaches is the need for describing every single component of the stack. When considering heterogeneous
platforms (Cloud, HPC, Edge, or the emerging quantum computing environments) the definition of such
standards may become overly specialized to a specific platform or service [21]. The Common Workflow
Scheduler [27] API allows workflow systems to exchange scheduling information with resource managers,
making them “workflow-aware” and capable of scheduling tasks based on workflow dependencies and
optimization goals. This approach eliminates the need for workflow systems to implement resource manager-
specific logic and simplifies the separation of scheduling responsibilities between workflow systems and
resource managers. Currently, this API is available as a plugin for Nextflow and Kubernetes.

Recommendations. There is an imminent need for a description of a common workflow stack that might need
to be represented by different sets of characterizations depending on the execution environment, however each
described using common patterns identified across distinct environments. Once the fundamental workflow
stack is defined and understood, the community could focus on the development of standard APIs as the
result of a long-term objective.

3.2 Standardization

Attaining standardization is a foremost requirement to achieve interoperability, portability, and reuse of
workflow components and applications. However, full standardization must be accomplished at different
levels of the workflow stack. For instance, user-facing standards consider workflow descriptions and workflow
input objects, while resource/infrastructure standards target the description of services that can be leveraged
by, for example, workflow systems. In addition to standards, shared libraries and designs are also essential
for interchanging components and services at horizontal levels of the workflow stack.

One of the challenging aspects of defining standards is the lack of a common terminology that is widely
adopted by the community. Unfortunately, the workflows literature suffers from an absence of a common
vocabulary that defines terms and describes the components of a workflow. Recent efforts to provide
a consolidated view [28] or reuse [29] of specification languages for a subset of workflow systems has
underlined the discrepancy of term definitions. (Dissimilarities can be even identified at the simple definition
of tasks and jobs across workflow systems.) Additionally, it is also necessary to describe the semantics of the
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components and of the data, as well as the variety of systems on which workflows are executed.
Standardization is also required at the metadata level (user-defined metadata prior to data generation,

ad-hoc metadata to annotate a dataset [30], and workflow-based metadata) [31], which is key for enabling
provenance. The Workflow Run RO-Crate working group [32] is defining profiles for capturing the provenance
of an execution of a computational workflow based on different levels of granularity: process (execution of
one or more tools that contribute to the same computation), workflow (coordinated execution of the tools
driven by a workflow system), and provenance (internal details of each step of the workflow). These profiles
are based on the CWLProv profile [33], which are organized based on CWL’s workflow mode. Although
CWLProv is not a standard such as W3C PROV, it attempts to fill the gaps when translating the latter’s
definitions to workflow specifications (e.g., traditional standards are hard to adopt into HPC due to their
origins in other domains). A remaining open question is how to increase adoption of these standards to
other workflow systems, and how to capture specifics of heterogeneous systems without hiding the level of
provenance the user cares about?

Recommendations. There is a trade-off between sharing technologies vs. standards, within constraints that
come from computational facilities. As standards are often constraining and/or hard to implement across
facilities, one approach could be to focus on promoting standards of giving data from user to workflow
systems/operators, i.e. a standard format for describing workflow input objects. Another recommendation
is to develop a “marketplace” for workflow standards that would map them to parts of the workflow stack.
The community would then be able to identify relevant standards for their systems and infrastructures, as
well as identify gaps in current standards. Finally, there is a pressing need for defining a common vocabulary
forcomponents of the workflow stack and even the relationships between them.

4 AI Workflows

Artificial intelligence (AI) and machine learning (ML) methods are now mainstream in modern science.
As computational power increases, including the recent achievement of exascale computing, AI/ML methods
can at present, for example, generate highly accurate models that accelerate the rate of scientific discovery of
complex problems running at very large scales. As a result, workflows increasingly integrate ML models
to guide analysis, couple simulation and data analysis codes, and exploit specialized computing hardware
(e.g., GPUs and neuromorphic chips) [34, 35]. These workflows inherently couple various types of tasks such
as short ML inference, multi-node simulations, and long-running ML model training [36]. They are also
often iterative and dynamic, with learning systems deciding in real time how to modify the workflow, e.g., by
adding new simulations or changing the workflow all together. In this breakout session, participants focused
on understanding the different characteristics of AI workflows, specifically the role of AI to create workflows
or when used within workflows.

4.1 AI Workflows Characteristics

In the previous roadmap [6], discussions focused on identifying challenges inherent to workflows in which
(most of) their tasks represent AI methods. The main challenges include the fine-grained data management
and versioning features, heterogeneity of resources, integration to widely used ML framework, the iterative
nature of ML processes, and the support of dynamic branching (Table 2). Although these challenges are still
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relevant to the current landscape of AI workflows, the community experience with this ever-increasing class of
workflows has identified novel characteristics that hinder the efficient execution of these workflow applications
at large scales. For instance, managing many small files (e.g., image training sets) may significantly impair
the performance of the shared filesystem. Although solutions such as NVMe (nonvolatile memory express)
have significantly improved I/O throughput, the data management aspect in the software component still lacks
optimized solutions to tackle the large volumes of data produced during workflow execution. Additionally,
the volume of metadata generated for provenance may also become intractable.

In addition to the data management issue above, pseudo-random access to datasets leads to another major
challenge in which optimizing access to microservices and performing data caching operations becomes
a fundamental scheduling and/or resource provisioning problem. This challenge is aggravated by the
unreliability of models, i.e., training processes often have a human-in-the-loop decision process that may
result in a dramatic change to the shape of the task graph as the workflow execution evolves. Furthermore,
coupling AI-coupled HPC workflows introduces additional challenges arising from the coupling of AI/ML
models to traditional HPC workflows.

Recommendations. There is a need for a better understanding of the requirements of AI workflows. Although
there exists a diverse set of AI workflow applications that could be leveraged as benchmarks or proxy/mini-
apps, the complex specialized deployment (and requirements) of these workflows may prevent their large
adoption that would enable comparative studies across computing facilities. Recently, the community has
developed workflow benchmarks [37–39] that help to understand the requirements of traditional workflow
applications; however, these benchmarks do not capture most of the characteristics intrinsic to AI workflows.
Thus, there is a pressing need for creating a benchmark suite for representative AI workflows.

4.2 AI Workflows Categories and Motifs

The increasing adoption of AI/ML in modern science has not only enabled the development of novel
applications using these methods [40] but also to improvements of systems and problem solving. In the
workflows domain, the terminology around ‘AI workflows’ has become overloaded; thus, it is necessary to
clearly and consistently define the different (sub)categories that encompass the distinct and unique use of
AI/ML methods in the different aspects of workflow applications and systems. One approach to define these
workflows into (sub)categories considering the role of AI would be: (i) Workflows for AI – the workflow is to
develop the AI; (ii) AI-enabled-workflows. The latter in turn encapsulates two different sub-classes, viz., the
AI-integrated workflows, where the workflow is about problem-solving with AI; and AI-enhanced-workflow
systems, where the workflow engine is empowered with intelligence using a form of AI.

Within each of the above categories there should be subdivisions that could, for example, consider
the dynamic nature of the workflow task graph (conditions, loops) or its adaptive response to events (task
prioritization or preemption due to dynamic sampling) that could lead to different design and communication
requirements. For the first two categories, the workflows could be classified into applications composed of
(i) inner, (ii) outer, or (iii) coupled loops. Examples of inner loops include ML replacement of subroutines,
adapting, and parallel training. Outer loops are characterized by reinforcement learning (RL) – there is a
central “controller” that defines how the different steps (e.g., rollout and training) interact; and active learning
– similar to RL in the sense that there are training, inference, and simulation components with a different class
of sampling. Coupled loops can be represented by digital twins, which are a component of the workflow
controlled by an AI method.
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A recent characterization used common motifs of AI-HPC workflows [41] that considers workflows using
AI and workflows. These motifs include: (i) AI models steering ensembles of simulations (e.g., advanced
sampling, swarm methods); (ii) multistage (and typically multiscale and multiphysics) pipelining (e.g.,
molecule selection, virtual screening); (iii) inverse design including from observations, or determine causal
factors (e.g., molecule or material design given properties such as structure to sequence); (iv) concurrent
duality (e.g., concurrent HPC simulation and AI based digital twins); (v) distributed models and dynamic data
(e.g., distributed AI based reduction/analysis coupled to HPC simulation, diverse models on edge-to-exascale
infrastructure); and (vi) adaptive execution for training (e.g., HPO, NAS, LLM).

Recommendations. For each of the above (sub)categories, it is necessary to refine the motifs that would
capture the unique requirements of each class; and develop benchmarks based on them that would then help
catalyze the development of tailored solutions or example problems. An immediate activity includes spear-
heading a community effort to formulate a technical/white paper that would provide common terminology
and definitions of categories of AI workflows and their unique requirements. As a long-term recommendation,
the community needs to determine ways to smooth the integration (along with the deployment) paths across
these categories and their associated components.

5 High Performance Data Management and In Situ Workflows

In situ workflows aim to overcome I/O limitations in HPC by sharing data between simulation, analysis,
visualization and orchestration tasks as data are produced. The term “in situ” has become an umbrella covering
approaches well beyond the seminal idea to distribute the load of the traditional post hoc analysis associated
with a numerical simulation throughout the execution of that simulation [42]. Nowadays, in situ workflows
facilitate data reduction, annotation, and transformation in different stages (e.g., data acquisition, simulation,
analysis, visualization). These workflows can rely on multiple components, execution environments, and
data transport methods to bypass the file system while delivering data between components. Additionally,
modern in situ workflows exhibit different data production and consumption patterns (i.e., volume, frequency,
structure) that need to co-exist in a coordinated and efficient manner. This leads to a need for high-performance
management of the input, output, intermediate data, and metadata produced and consumed during the
workflow execution. In this breakout session, participants focused on identifying challenges related to data
management for in situ workflows, including how data abstractions may provide fine data management
detached from the computing platform, and challenges related to the broader range of in situ workflows today
(e.g., streaming and event-based workflows).

In situ workflows have evolved from the traditional simulation and analysis approach. In large-scale
science, heavy computations are typically offloaded from the edge where data are produced (e.g., from
a large scale scientific instrument such as a particle detector) to HPC infrastructures and cloud resources
during burst conditions, leading to complex geographically distributed platforms with diverse performance
characteristics. A major challenge in this scenario consists in transferring all this generated data from the
edge to the processing facility. An approach to lower the pressure put on network resources is to employ in
situ data reduction, an optimization technique in which the size of data is reduced without compromising
the quality of the information it carries. This implies that this approach has to control and bound the loss
of precision to ensure that end users will still have trust in the data. Approaches leveraging self-descriptive
data and metadata could thus be used to define the relevance of pieces of data thanks to a tolerable error
bound [43–45] Adaptive compression by regions of interest can also be used to reduce the size of data,
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using techniques similar to those underlying Adaptive Mesh Refinement: regions where information is more
important are compressed less than those where information has little scientific significance.

The need for high performance data management has significantly increased as modern science applica-
tions leverage heterogeneous resources for scaling their computations. The emergence of AI/ML workflows
is intertwined with the imminent need for efficiency in situ data management, as these workflows increasingly
produce and consume large volumes of data and have new motifs that profoundly differ from traditional
workflows (Section 4). Differences in data formats, acquisition and pre-processing methods, training ap-
proaches, and provenance needs further exacerbate the complexity of enabling ML/AI for in situ analysis.
Additionally, a key element in modern in situ workflows is the need to integrate them into the edge-to-cloud
continuum. In this environment, data exchanges are typically performed through data objects in which the
storage stack and data location are hidden from the application. Consequently, individual tasks create and
work with objects, not files, and are not concerned with where those objects live. This enables storage-centric
optimizations transparent to the end user to improve application performance. A potential solution to address
the challenges and requirements of geographically distributed in situ workflows is to develop a data manage-
ment layer abstraction for providing transparent data operations optimization and intelligent decisions for the
workflow application. Ideally, workflow tasks would interact with this data management layer responsible for
tracking the location of all these objects and performing intelligent data movements to place the necessary
objects physically close to the computations using them. However, providing a single abstraction layer can
be challenging when dealing with the requirements of a diverse community (e.g., different types of data,
performance requisites, latency, consumption rates, availability needs, etc.). Thus, it is necessary to separate
the data management paradigm from the workflow orchestration paradigm and move towards a data-centric
event-driven data plane for workflows. Note that it is also necessary to detach data from its structure (e.g.,
file) and associated implementation (e.g., HDF5). Frameworks such as ADIOS2 [46] and Maestro [47],
combined with self-descriptive data (metadata) capabilities and the publish/subscribe model, can be used to
expose the data interaction mechanisms available to applications when building workflows.

Emerging in situ workflows involve streaming and event-based elements. Event-driven workflows have a
strong need for tightly-coupled and high performing components that integrate HPC and streaming (especially
for urgent computing) [48]. In these workflows, in situ computations are initiated based on events (e.g.,
changes to a variable or data, or access in a data repository). This class of workflows has been largely
adapted to Cloud computing environments based on a service-oriented approach that uses streams of data for
composing the workflows. In the HPC environment, streaming workflows are typically limited by policies
that restrict connectivity to external data sources or long-running services. One approach to address these
limitations is to couple a container-based platform (e.g., NERSC’s Spin, OLCF’s Slate) to HPC systems, in
which services running on these platforms would act as a bridge between the outside world and the HPC
ecosystem. Another limitation for enabling urgent computing on HPC is the need for specialized queues that
can swiftly allocate resources for these types of jobs.

Recommendations. There is a need for determining what are the requirements for upcoming workflow
applications, especially those integrating data or moving data across facilities. Dataflow and I/O contention
benchmarks are needed to assist in the quantification of performance for workflow and data management
solutions in upcoming scenarios. Current efforts [37, 49] mostly target traditional workflow motifs, and must
be expanded to cover new applications (e.g., AI/ML workflows) and infrastructures (e.g., edge-to-cloud
workflows). There is also a need for defining community-driven schemas to describe data and metadata, and
to further provide an integrated view of the different views of the data associated to a workflow execution.

There is also a need to define a service-oriented composability approach for enabling urgent computing

14



Workflows Community Summit 2022

workflows in the HPC ecosystem. To explore this, the community should conduct a comprehensive study
to understand the specific needs for this class of applications for HPC, derive lessons learned from the
service-oriented Cloud computing solutions, and engage with HPC computing facility operators to design a
potential solution that would satisfy both the application’s performance requirements as well as guarantee
that facilities’ security policies are still enforced.

6 HPC and Quantum Workflows

Most current workflow tools can operate over classical HPC, providing automated orchestration of tasks
and data management. With the emergence of quantum computing (QC) there is a need to bridge these
two computing models to improve the efficiency and potential impact of applications that could leverage
the capabilities of each model. The need for a hybrid QC-HPC/Cloud approach is motivated for modern
applications. In the quantum chemistry domain, for instance,researchers seek to understand and harness the
quantum properties of atoms and systems around us. QC has also been increasingly used for ML processing
and optimization – conversely, ML has been leveraged for the calibration of quantum processors.

In the current state of quantum computing, a.k.a. noisy intermediate-scale quantum (NISQ) era, there is a
limited number of noisy physical qubits, thus it is paramount that quantum algorithms be efficient. Recently,
variational quantum algorithms (VQAs) [50] have shown modest success in ML and optimization tasks.
The approach requires a constant exchange of data between classical and quantum devices, which leads
to a model in which quantum devices act as accelerators for classical computing. As a result, managing
these sets of distributed, heterogeneous devices motivates the need for workflow solutions that can provide a
common abstraction layer to interface with the multitude of specialized APIs and components provided by
each platform.

Due to the novelty of the topic, this breakout session was structured with a series of short talks that
underlined different aspects of quantum computing in workflows research, and identified a list of challenges
associated to each of these aspects. Table 4 shows the list of topics. All presentation videos can be found
at the WCI YouTube channel (https://www.youtube.com/playlist?list=PLAtmuqHExRvO-l-mACmlK_
4mfmG6yLnpN).

Topic Presenter

Tensor Networks for Quantum Simulation Artur Garcia Saez (BSC)
Advances in Hybrid Quantum-Classical High-
Performance Computing

Stefan Andersson (ParTec AG), Mathias Pütz
(ParTec AG)

Workflow Scheduling Using Quantum Devices Justyna Zawalska (CYFRONET AGH)
Mechanisms for Enhancing Reliability/Recovery and
Performance of Future Workloads

Ryan E. Grant (Queen’s University)

HPCQC System Workflows Martin Ruefenacht (LRZ)
Multi-core Quantum Computing Aharon Brodutch (Entangled Networks)

Table 4: HPC and quantum workflows breakout topics.
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6.1 State-of-the-art and Challenges

Recent efforts target the definition of languages for modeling computations between classical and
quantum computing [51]. The open-source Covalent framework [16] provides mechanisms to manage
experiments (expressed as workflows) and facilitate access to quantum devices, bridging them to HPC and
cloud platforms. RosneT is a library for distributed, out-of-core block tensor algebra [52] built on top of the
PyCOMPSs [53] programming model to transform tensor operations into a collection of tasks to be executed
on HPC resources. QC has also been leveraged to solve well-known scheduling problems for traditional
workflow applications [54].

Despite the above efforts, there are still several challenges that need to be addressed. For instance, (i) the
reproducibility aspect in quantum computing requires domain expertise to understand the circuits and qubit
topologies; (ii) the scheduling timescales significantly differ between classical and quantum computing – the
latter is performed in the order of microseconds; (iii) there is a limited number of available resources, thus
waiting time in queues can attain hours and costs to perform substantial computations may become excessive;
(iv) programming each quantum device requires expert knowledge for each vendor API; (v) there are no
standard representations for intermediate representations (IRs) for quantum programs, which are described as
circuits; (vi) although some approaches bridge quantum devices to HPC and cloud systems, there is no tight
integration between them (e.g., as between GPUs and CPUs).

Recommendations. The community is actively working in multiple objectives to make progress in the
different topics of research. The foremost research directions include (i) the optimization of classical
simulators based on tensor networks in classical HPC systems; (ii) the need to develop quantum systems with
a component-based architecture to facilitate the integration with HPC and cloud environments; (iii) moving
the hardware-aware software from the Quantum to the HPC system; (iv) reaching a consensus between QC as
accelerators for classical computing (e.g., QPUs as accelerators to combine traditional HPC-QC workflows)
or vice versa; (v) predicting optimizability of workflow decisions (e.g., how long will it take to optimize a
QC workflow? Should a circuit be optimized?).

7 FAIR Computational Workflows

The original FAIR principles [55] laid a foundation for sharing and publishing data assets, emphasizing
machine accessibility in that data and all other assets should be: (i) Findable – user of persistent identifies,
cataloguing and indexing of data; (ii) Interoperable – machine processable metadata using standards; (iii) Ac-
cessible – clear access protocols to access (meta)data; (iv) Reusable – metadata standards, machine accessible
usage license and provenance. When considering FAIR computational workflows, both data and software
aspects need to be considered. FAIR data principles can be applied to, for example, workflow descriptions
and specifications (typically via a domain specific language or API) that can be associated to metadata with
Digital Object Identifiers (DOIs) or objects such as test data and parameter files. Workflow software objects,
on the other hand, bring additional challenges such as reproducibility, usability, quality, maturity, etc. The
recently published FAIR for research software principles [56] can then be applied to both workflows and
workflow management systems. In this breakout session, participants focused on the software aspect of
workflows and discussed best practices for research software registries and repositories, as well as approaches
to build FAIR into workflow systems.
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7.1 FAIR Workflow Repositories and Registries

The current state of the art for finding and accessing workflows consists of community repositories (e.g.,
nf-core [57], snakemake workflow catalog [58]), community platforms (e.g., nextflow tower [59]), data
repositories (e.g., Zenodo [60], Dataverse [61]), registries (e.g., WorkflowHub [14], Dockstore [62]), and
metadata frameworks (e.g., CWL [20], Workflow RO-Crate [63], Bioschemas profiles [64]). Registries and
repositories provide curation and best practices for recording workflows, while metadata frameworks capture
workflows description and their associated metadata (e.g., via canonical descriptions).

The notion that workflows can encompass both data and software brings several challenges when building
FAIR workflow repositories and registries. In addition to capturing the workflow descriptions and (reference
to) their input data, it is also necessary to capture metadata, containers, execution information, configurations,
etc. The current approach adopted by the community is to separate the workflow definition from its
execution – e.g., WorkflowHub records the workflow description and refers to Workflow-RO-Crates objects
for execution information; Workflow-Run-RO-Crates collect the actual execution provenance. Although this
approach has demonstrated success for traditional DAG- and cloud-based workflows, capturing workflow
executions in the edge-to-HPC computing continuum is still an open question – mostly due to their intrinsic
configurations, specialized architectures, and unique scientific instruments. The dynamic nature of emerging
AI/ML workflows poses an additional challenge to capture executions that match the canonical description of
the workflow.

An additional feature for registries would be to provide mechanisms to characterize workflows in terms
of structures so that a user could explore similar solutions to their problem. Recent approaches on extracting
metadata from software and research data repositories [30, 65, 66] or automated extraction of workflow
patterns [67] could be leveraged to measure similarities across workflows. Past work [68] should be revisited.
For instance, workflows could be compared by tags or labels, by the workflow structure (i.e., task graph), or
by a stored relationship (e.g., sub-workflow, forked variant, etc.). There is also a need for defining persistent
identifiers (PIDs) for workflows. DOIs are appropriate for workflows that are “completed and published”, i.e.,
as a snapshot of the workflow – similar to the publication process of research articles. There is a need for
defining persistent identifiers (PIDs) for workflows that capture their complex nature.

Recommendations. Given the above, an imminent need is to define standards for capturing the metadata for
workflows. This is critical for enabling automatic FAIR (unit/end-to-end) testing of workflows to support
reuse and composability. There is also a need to expand the first set of recommendations for research software
registries and repositories [69] for scientific workflows, especially attempting to address the need for workflow
PIDs. A long-term activity is to consider new paradigms for workflow descriptions that could capture the
emerging class of dynamic workflows.

7.2 Building FAIR into Workflow Management Systems

In addition to providing repositories and registries to store workflows and their associated metadata/in-
formation, it is crucial to empower workflow systems with capabilities to enable support to FAIR data and
software throughout the workflow execution. To attain this objective, the community argues that two key
features are needed: standards and metadata. Specifically, there is a need for a standard for expressing the
inputs of the workflow and how to set them. Unfortunately, this issue is not novel and has not received much
attention from the community. In fact, this issue is more a people problem than a technical problem, as is

17



Workflows Community Summit 2022

frequently also the case when attempts to implement FAIR practices fall short [70]. Ideally, in terms of
FAIRness, documentation is the most important asset for a workflow. It is very difficult to maintain software,
but documentation lives on. On the description of the workflow itself, there are system agnostic languages
(e.g., CWL and OpenWDL [71]) that have been adopted by several workflow systems to foster workflow
portability, though these may be limited in the workflows that they can describe. The goal is to provide a
mechanism to describe workflows so that they can be compared. Portability at the system level remains an
open question, especially in edge and HPC environments.

The availability of metadata is another key feature necessary to enable FAIR within workflow systems.
To this end, FAIR registration needs to be automatic and cannot introduce overhead in recording provenance
information (i.e., the facts that link the inputs and outputs of the workflow) when running the workflow
– recording of provenance information needs to be transparent and scalable [72]. Thus, FAIR data and
FAIR workflows are intertwined. A solution would be to leverage Workflow-Run RO-Crate profiles, where
the workflow system would export these profiles that would capture the provenance of an execution of a
computational workflow. As a result, a coupling between the workflow and its associated data and metadata
would be properly documented.

Recommendations. An immediate action is to continue the efforts to define methods for fostering portability
across workflow systems, instead of defining the “standard” language for expressing workflows. Another key
direction is to invest into people and communities rather than specific tools. The community strongly believes
that the development of people’s and communities’ skills will outlast workflow systems, thus the incentive
for FAIRness will be built intrinsically into these systems. Last, there is a need to assess the limitation of
FAIR for different kinds of workflow types such as streaming and IoT workflows, or HPC workflows that are
monolithic and tied to a particular architecture.

8 Workflows for Continuum and Cross-Facility Computing

Continuum and cross-facilities workflows are becoming more prevalent in the computational sciences. As
these workflow paradigms have recently emerged, their definitions are evolving. The current understanding
is that continuum workflows represent analysis pipelines that require continuous access to computing (e.g.,
urgent computing). Examples of workflows that fall under this category include in situ workflows, components
that talk to each other within the same system (Section 5); geographical computing, i.e., edge-to-cloud-to-HPC
computing; and high throughput computing, e.g., long-running computing campaigns over long periods of
time. Cross-facility workflows represent analysis pipelines that hit more than a single site, which may include
an experiment and a computing site, multiple experiment sites, or multiple computing facilities [8] – a site
can be defined as a local compute, HPC, cloud, edge, campus cluster, and sensors at the edge. Cross-facility
workflows can be seen as a solution for the needs of a continuum workflow (e.g., commercial cloud providers
can be considered effectively cross-facility) offering resiliency for the computing needs of real time workflows.
Another view is to consider continuum and cross-facility computing by the data plane, i.e., workflow systems
should be able to tolerate different representations and underlying storage systems. In this breakout session,
participants focused on identifying challenges to enable these categories of workflows and potential actions
for the community.
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8.1 Characteristics and Challenges

Data management is a major challenge in modern science, which involves operating data streams (e.g.,
from an instrument to a computing resource), data staging (e.g., processing fragments of data from different
locations), or data movement (e.g., wide area transfers). The need for running workflows on multiple
computing sites has increased as, for example, nowadays instruments can generate an ever-growing volume
of data (in the order of TB/s) [73]. These workflows are characterized by their unique requirements to access
and operate over computing resources regardless of the time or location sensitivity. For instance, existing
computing facilities provide no mechanisms for scheduling and/or provisioning I/O capacity. Enabling a
data-centric approach (i.e., doing computation on data quanta) may make the problem more tractable. To
this end, it is necessary that tools to measure system contention/resource utilization and capture I/O and
data movement performance are made available for measuring this end-to-end performance at multiple
levels: computing system, across the network (local and wide area), and across the multiple compute and
user facilities (e.g., node memory at one site to a file system at another site). Current systems perform
matchmaking of task requirements (CPU/GPU/RAM) across multiple HPC platforms (e.g., RADICAL-
Cybertools [74], HTCondor [75], etc.), however I/O requirements are neglected due to the lack of control
over the I/O performance of an HPC machine at a given point in time.

A precondition to attain the envisaged level of fine-grained workflow orchestration described above is
to define the requirements of a workflow task. Specifically, what metadata does the workflow task need to
have to request resources (computing, storage, network) from the appropriate site? To answer this question,
it is necessary to convey that tasks are less portable than commonly assumed (including containers). The
process for labelling every single resource a task needs is still an open question, and requirements may
significantly diverge considering the targeted computing environment (e.g., compiler optimization for a
determined architecture, data location and network and I/O bandwidths, policies, etc.).

In addition to the above challenges, cross-facility workflows also face challenges associated to autonomous
administration domains, i.e., different policies and security models at different sites (authorization, access
control), different software stacks, etc. Approaches for providing resource information in a machine-readable
format (e.g., NERSC’s superfacility project [26]) or enabling federated identification (e.g., DOE’s OneID [76])
are a first step for enabling distributed workflow orchestration and intelligent decisions at the workflow
management system level. A collaboration between the Computational Science Initiative (CSI), the Center for
Functional Nanomaterials (CFN), and the National Synchrotron Light Source (NSLS-II) attempt to facilitate
using larger institutional compute resources to support the beamlines. The idea is to go from giving users
access to beamlines and sending them home with their data, to giving users access to experiments and sending
them home with answers to their science questions. Multi-site workflows are a mainstream component to this
effort.

A different approach is letting users embrace and exploit heterogeneity from the design phase through
hybrid workflows [77]. Traditional workflow models, which describe steps and data dependencies, can be
flanked by a topology of execution locations, encoding execution environments, available resources, and
communication channels. Users can then explicitly map the different steps of the workflow onto different
locations of the topology in an N-to-M relationship. Hybrid workflows are heterogeneous by design and
do not require a homogeneous representation of locations’ capabilities. As a result, site-specific plugins
can be used to handle orchestration aspects such as authentication, scheduling, data transfers, and task
offloading. Hybrid workflows have already successfully orchestrated cloud-HPC and cross-HPC distributed
workflows using batched [77] and interactive [78] execution paradigms. The main drawback is that the
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additional complexity introduced in the design phase steepens the learning curve for domain experts with
little knowledge of distributed execution environments.

Recommendations. Continuum and cross-facility workflows are becoming mainstream in modern science.
These new classes of workflows present, in addition to the typical challenges inherent to computing on a
single site, new challenges that require coordination and cooperation among computing and experimental
facilities. An immediate action is to enable tracking the metadata associated with tasks in workflow across
different sites. To this end, it is necessary to define a standard/specification for task descriptions, including a
way to represent the overall I/O requirements of an entire workflow. There is also a need for a community
effort to define what a computing site needs to provide to enable a workflow orchestrator to make intelligent
decisions about where to place tasks in a workflow. Another recommendation is to factor in the need for
cross-facility computing from the conceptualization/design phase of computer systems and experimental
facilities – typically, personnel involved in the design of experiment facilities are not necessarily computing
experts.
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