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Executive Summary KEY RECOMMENDATIONS
Time Sensitive: Develop standardized cross-facility au-
thentication and data protocols to enable secure, near
real-time data movement and analysis across distributed
research infrastructures.
AI-HPC: Invest in R&D of AI-driven workflow opti-
mization techniques to automate the design and execu-
tion of complex HPC workflows.
Multi-Facility: Implement distributed-by-design work-
flow models to create workflows that inherently account
for multi-facility execution, incorporating environment
descriptions and constraints.
Heterogeneous Environments: Develop a community-
driven suite of diverse workflow benchmarks to guide
system evaluation, procurement, and performance opti-
mization across heterogeneous HPC environments.
UX and Interfaces: Formulate and implement a set of
UX principles specifically tailored for scientific work-
flows to guide the design of more intuitive, user-friendly
interfaces across multiple workflow systems.
FAIR: Create a FAIR workflow maturity model and as-
sociated metrics to guide the implementation of FAIR
principles and provide a standardized way to assess and
improve workflow FAIRness.

The Workflows Community Summit con-
vened 111 participants from 18 countries to ex-
plore emerging trends and challenges in scien-
tific workflows. It focused on six key areas that
are shaping the future of computational research:
time-sensitive workflows, the convergence of
AI and HPC, multi-facility workflows, heteroge-
neous HPC environments, user experience and
interfaces, and FAIR computational workflows.

The integration of AI and exascale com-
puting has revolutionized scientific workflows,
enabling higher-fidelity models and more com-
plex, time-sensitive processes. However, this
advancement introduces significant challenges
in managing heterogeneous environments and
multi-facility data dependencies. To address
these issues, innovative approaches like trust
bundles and advanced data fabric solutions are
being developed. Simultaneously, the rise of
large language models is pushing computational
demands to zettaflop scales, driving the devel-
opment of modular, adaptable systems and cloud-service models. These new paradigms aim to optimize
resource utilization, enhance scalability, and ensure reproducibility across diverse computing infrastructures.

As data volumes and velocity continue to grow, there is an increasing demand for workflows that
span multiple facilities. This shift presents challenges in data movement, curation of large-scale data,
and overcoming institutional silos. The increasing prevalence of diverse hardware architectures, including
specialized AI accelerators, requires a focus on integrating workflow considerations into early system design
stages and developing standardized resource and data management tools. The summit also emphasized the
critical importance of user experience in workflow systems, with on-going efforts to simplify workflow usage,
improve graphical representations, and adapt concepts from commercial software development to scientific
applications. Additionally, ensuring Findable, Accessible, Interoperable, and Reusable (FAIR) workflows is
crucial for enhancing collaboration and accelerating scientific discovery, but challenges remain in balancing
standardization with innovation and applying FAIR principles to workflows with confidential components.

Key recommendations include developing standardized metrics for time-sensitive workflows, creating
frameworks for cloud-HPC integration, implementing distributed-by-design workflow modeling, establishing
multi-facility authentication protocols, and accelerating AI integration in HPC workflow management. The
summit also emphasized the need for comprehensive workflow benchmarks, formulating workflow-specific
UX principles, and creating a FAIR workflow maturity model. These recommendations underscore the
importance of continued collaboration and innovation in addressing the complex challenges posed by the
convergence of AI, HPC, and multi-facility research environments.
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1 Introduction
The landscape of scientific workflows is undergoing a profound transformation, driven by the convergence

of high performance computing (HPC) and artificial intelligence (AI) [1; 2]. Scientific workflows are
evolving from being mere tools to becoming the new applications that drive forward the frontiers of science.
This evolution is characterized by increasing complexity, data volume, and computational demands, thus
necessitating robust, adaptable, and flexible support systems. Key trends that shape the future of scientific
workflows include the deep integration of AI with HPC, the rise of multi-facility workflows spanning multiple
research institutions, the shift towards data-driven workflow dynamics, the challenges posed by heterogeneous
computing environments, and the pressing need for sustainable, energy-efficient practices [3; 4]. These
developments present both exciting opportunities and significant challenges for the community, requiring
innovative approaches to workflow design, management, and execution. As we enter the postexascale era,
the demand for processing scientific data continues to grow, alongside steady enhancements in large-scale
HPC capabilities. The integration of edge computing with traditional HPC resources is creating a more
fluid and efficient computing continuum [5], further complicating the workflow landscape. Additionally, the
need for near real-time analysis capabilities and improved workflow resilience is driving the development of
more dynamic and flexible data management solutions. The Workflows Community Summit aims to address
these emerging trends and challenges, fostering collaboration and knowledge exchange to shape the future of
scientific workflows in an era of unprecedented technological advancement and environmental awareness.

1.1 The Workflows Community Summit 2024

This document presents the outcomes and insights from the 2024 international edition of the “Workflows
Community Summit,” held from September 3–5, 2024 [6]. The three-day summit brought together a diverse
group of 111 participants (Figure 1), representing a global community of researchers, developers, and
industry professionals. The event expanded for the first time, adding an extra day with a timezone favorable
for Oceania and Asia. Attendees represented 18 countries across six continents, including Australia, Austria,
Brazil, France, Germany, India, Italy, Japan, Latvia, New Zealand, Puerto Rico, Singapore, Spain, Sweden,
Switzerland, The Netherlands, United Kingdom, and the United States. This international cohort comprised
experts from various workflow management systems (WMSs), end-users, and industry representatives,
fostering a rich environment for cross-cultural and interdisciplinary exchange. The summit’s increasing
global reach underscores the increasing importance of scientific workflows in addressing complex, large-scale
research challenges that transcend national boundaries. In future years, the event will seek to expand its reach
further, inviting contributions from workflow experts across domains and disciplines.

The summit was organized by key members of the Workflows Community Initiative (WCI) [7], a
volunteer-driven organization dedicated to unifying the diverse workflows community. The WCI’s mission
is to provide valuable community resources and capabilities that empower scientists and workflow system
developers. The initiative serves as a catalyst for community-wide efforts to address the grand challenges
facing scientific workflows. By facilitating this summit, the WCI continues its commitment to advancing the
state-of-the-art in workflow technologies and methodologies, ultimately accelerating scientific discovery and
innovation across disciplines.

1.2 Summit Structure and Activities

Building on trends discussed in [3], the six cross-cutting summit’s topics reflect emerging challenges and
opportunities in the rapidly evolving landscape of scientific computing (Table 1): (i) “Convergence of AI and
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Figure 1: Participants of the 2024 Workflows Community Summit (virtual, Sept. 3–5, 2024).

HPC Workflows” addresses the increasing synergy between AI systems and traditional HPC simulations;
(ii) “Multi-Facility Workflows in Next-Generation Scientific Collaboration” explores the complexities of
orchestrating workflows across diverse research infrastructures; (iii) “Time-Sensitive Workflows” focuses on
near real-time data integration and processing challenges; (iv) “Heterogeneous HPC Environments” tackles
the need to navigate performance variability across diverse hardware configurations; (v) “User Experience and
Interfaces” recognizes the growing importance of accessibility and usability in complex scientific workflows;
and (vi) “FAIR Computational Workflows” emphasizes the need for findable, accessible, interoperable, and
reusable workflow practices. Collectively, these topics address critical trends and challenges identified in the
previous years’ summits, aiming to shape the future of scientific workflows in the context of rapidly evolving
HPC technologies and practices.

For each of the technical topics listed in Table 1, the co-leaders delivered concise 10-minute lightning
talks in plenary sessions, followed by in-depth discussions in targeted breakout groups. These sessions
had dual objectives: (i) to evaluate previously identified challenges and their proposed solutions, and (ii) to
pinpoint critical gaps and formulate potential short- and long-term strategies for supporting emerging and
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Topic Discussion Co-Leaders

Topic 1: Time-Sensitive Workflows Utz-Uwe Haus (HPE), Shaun DeWitt (UKAEA)
Topic 2: Convergence of AI and HPC Workflows Shantenu Jha (PPPL), Logan Ward (ANL)
Topic 3: Multi-Facility Workflows in Next-Generation
Scientific Collaboration

Tom Gibbs (NVIDIA), Debbie Bard (LBNL)

Topic 4: Heterogeneous HPC Environments William Godoy (ORNL), Stephen Hudson (ANL)
Topic 5: User Experience and Interfaces Drew Paine (LBNL), Laila Los (UFreiburg)
Topic 6: FAIR Computational Workflows Carole Goble (UManchester), Sean Wilkinson (ORNL)
Spotlight Discussion: What makes a workflow good? Johan Gustafsson (Australian BioCommons, University of Melbourne)

Table 1: Workflows Community Summit topics and discussion co-leaders.

novel workflow applications in light of the rapidly evolving computing continuum paradigm. Day 3 of the
event featured a session of lightning talks highlighting workflow-related activities from Oceania and Asia.

All presentations and videos can be found in the summit website (https://workflows.community/
summits/2024), and videos can be watched from WCI’s YouTube channel (https://www.youtube.com/
watch?v=STy5HwEVj8k&list=PLAtmuqHExRvOzPOvJfSH8PwjbVJFyulCy).

Keynote Speaker. The summit was further enriched by an invited keynote address from Ian T. Foster
(Argonne National Laboratory / University of Chicago), a distinguished leader in Scientific Computing,
who spoke on “AI-mediated Scientific Workflows.” Dr. Foster presented a vision of accelerated scientific
discovery through the integration of AI methods into various stages of the scientific process. He discussed
the development of AI-driven “embodied agents” capable of performing tasks such as literature review,
hypothesis generation, and experimental design. Foster highlighted a specific example in antimicrobial
peptide discovery, where AI agents can interact with databases, run simulations, and even control robotic
laboratories. He emphasized the need for specialized language models designed for scientific applications,
and the importance of creating persistent, self-improving AI systems. Foster also addressed the computational
challenges of these AI-mediated workflows, including the need for secure, reliable, and scalable infrastructure
to support long-running, stateful processes across diverse computing environments.

Spotlight Discussion. The spotlight discussion “What makes a workflow good?”, led by Johan Gustafsson
from Australian BioCommons [8], explored the intricacies of workflow quality in scientific computing.
Participants addressed the tension between research outcomes and the demand for accessible, reproducible
workflows. Key attributes of exemplary workflows include containerization for stability, rigorous validation,
comprehensive documentation, and ongoing support. Standard software practices, especially unit testing,
and the role of Research Software Engineers in developing and maintaining high-quality workflows were
emphasized for reliability. Challenges discussed included balancing user-friendliness with preventing misuse,
and managing diverse expertise across the workflow lifecycle. A “good” workflow was defined as robust,
purpose-driven, environment-agnostic, and well-documented. This holistic approach to workflow quality
reflects the evolving scientific computing landscape, demonstrating a shared commitment to sustainable,
reproducible methodologies that advance scientific discovery.

2 A Look Back at Workflows Community Summits
The workflows community took a significant step forward with the publication of “A Community

Roadmap for Scientific Workflows Research and Development” [9] in 2021. This pioneering paper, resulting
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from the first series of Workflows Community Summits, presented a consolidated view of the state of the art,
challenges, and potential future directions in the field of scientific workflows. The roadmap identified six
key themes: FAIR computational workflows, AI workflows, exascale challenges, APIs and interoperability,
training and education, and building a workflows community. For each theme, the roadmap outlined specific
challenges and proposed community activities to address them. Additionally, it provided a set of technical
milestones across three main thrusts: defining common workflow patterns and benchmarks, identifying paths
toward interoperability, and improving workflow systems’ interface with HPC software and hardware stacks.

Building on this foundation, the Workflows Community Summit 2022 further advanced the discourse on
scientific workflows. The summit report [10] expanded on the previous themes and introduced new focus
areas: specifications, standards, and APIs; AI workflows; high-performance data management and in situ
workflows; HPC and quantum workflows; FAIR computational workflows; and workflows for continuum
and cross-facility computing. Each topic was thoroughly discussed, with participants identifying current
challenges and proposing both short- and long-term solutions. The summit highlighted the evolving landscape
of scientific computing and the need for WMSs to adapt to emerging paradigms such as edge-to-HPC
computational workflows and the integration of quantum computing with classical HPC systems.

Most recently, the paper “Frontiers in Scientific Workflows: Pervasive Integration with High-Performance
Computing” [3] provides a forward-looking perspective on the field by identifying five key trends shaping the
future of workflows: increased synergy between AI and HPC workflows, the rise of cross-facility workflows,
data-driven HPC workflow dynamics, managing performance variability in heterogeneous HPC environments,
and the push for sustainable practices in HPC workflow design. For each trend, the paper predicts future
developments: AI systems for science trained on HPC workflow data, global interoperability standards
for multi-facility collaboration, dynamic near real-time workflow control planes, software solutions for
consistent performance across heterogeneous hardware, and AI-driven optimization of HPC workflows for
energy efficiency and reduced environmental impact. It emphasizes the field’s rapid evolution and scientific
workflows’ key role in advancing cross-disciplinary research.

3 Time-Sensitive Workflows
Time-sensitive workflows have been integral to a diverse range of scientific and technological domains,

from autonomous vehicles and aircraft control systems to cutting-edge research in beamline-based materials
science, astronomy and astrophysics, observational science, and experimental fusion [11]. These workflows
are characterized by their urgent nature, requiring real-time or near real-time responses across multiple
facilities or resources to enable timely decision-making, experiment steering, and data analysis [12].

Emerging Paradigms and Challenges. Since the 2022 summit, significant changes have occurred in this
field, driven by advancements in AI, machine learning, and exascale computing. The rise of AI and machine
learning has led to the increased use of surrogate models, replacing traditional reduced-order models due to
their speed and efficiency in time-critical situations. This shift has been particularly noticeable in autonomous
vehicles and other systems requiring rapid decision-making. Exascale computing has enabled larger models
with higher fidelity and smaller time steps, pushing the boundaries of what is possible in computational
science. Additionally, the volume of data generated by exascale systems, such as the petabyte-per-day output
from projects like Destination Earth [13], poses significant data movement and management challenges.
The integration of digital twins, the need for federation across facilities, and the growing importance of
provenance in regulated environments have added new layers of complexity. These advancements have
brought forth challenges in managing heterogeneous computing environments, dealing with cross-facility
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data dependencies, and addressing on-demand access and authentication issues in time-critical scenarios.

Recent Advances and Emerging Solutions. To address these challenges, several state-of-the-art approaches
are being explored. For on-demand access, attested execution with trust bundles is being considered, along
with federated identity and access management to overcome multi-factor authentication hurdles in urgent
computing scenarios. Data movement solutions are being developed both for high-performance workflows
within systems and for efficient cross-site transfers. Provenance tracking for AI models and object stores is
becoming increasingly important, with potential solutions including the use of version control systems like
Git or frameworks such as the HDF5 Common Metadata Framework [14], and the adoption of standards like
RO-Crates [15] for workflow provenance in major life science platforms. The FAIR4ML [16] initiative is
proposing metadata schemas based on Schema.org and HuggingFace for capturing AI model descriptions.
For data access policies, research is ongoing to develop methods that can guarantee secure access to object
stores while complying with varying geographic regulations. The use of fabric-attached memory is being
explored for HPC, although it presents new security challenges beyond traditional POSIX-style models.

Discussion. Time-sensitive workflows are a key focus in scientific computing, driving efforts to refine
definitions and research priorities. Emphasis is on distinguishing between “time-critical” (real-time) and
“time-sensitive” (workflow triggering) processes, especially for near real-time control scenarios, such as
device output to input parameters with time window constraints. The US Department of Energy (DOE)
Office of Science’s definition of time-sensitive workflows as “low-latency workflows requiring real-time, or
near-real-time, response across more than one facility or resource for timely decision-making and experiment
steering” is recognized, emphasizing these workflows’ multi-facility nature. A meta-analysis of 74 DOE
Office of Science case studies found 45% of workflows to be time-sensitive [17].

Addressing time-sensitive workflow challenges involves key-value stores for smart applications, self-
describing datasets for partial reads, and access pattern-based data migration. The expanding computing
continuum (HPC, HTC, cloud, edge) necessitates advanced data movement and workflow management.
This has led to interest in hierarchical WMSs, with cloud orchestrators coordinating specialized workflow
managers for file-based, stream-focused, and other specialized tasks. Efforts focus on unifying WMSs
to improve interoperability and reduce custom middleware. Robust provenance checking is emphasized,
especially for long-term data and model tracking in regulated industries like fusion energy and life sciences.

Data access policies in Trusted Research Environments (TREs) [18] in health data research are a key
focus, with emphasis on controlled code movement and frameworks such as GA4GH passports [19] and
the Five Safes model [20]—they ensure data security and regulatory compliance across diverse geographic
contexts. Trusted Execution Environments (TEEs), established by hardware extensions (e.g., Intel® SGX,
Intel® TDX, or AMD® SEV), are being explored for end-to-end distributed workflow confidentiality [21; 22].
Integrating AI and machine learning models into heavily regulated environments, such as power plant control
systems, raises concerns about model construction, validation, and metadata management.

The potential of serverless workflows in time-sensitive applications present both scalability advantages and
data locality challenges. The scientific community has increased its efforts to enhance workflow portability
across diverse computing environments, focusing on innovative solutions that leverage containerization
technologies, virtual machines, and advanced scheduler integration techniques. These approaches aim to
create more flexible, adaptable, and efficient WMSs capable of seamlessly operating across heterogeneous
infrastructures. Initiatives like Autosubmit [23], which demonstrates portability across diverse systems
including Fugaku, exemplify promising advances in workflow interoperability.

9



WORKFLOWS COMMUNITY SUMMIT 2024

Recommendations:
• Develop standardized definitions and metrics for time-sensitivity in workflows to facilitate

better communication and comparison across different domains and applications.
• Invest in middleware solutions that can efficiently manage data movement and access across

heterogeneous computing environments, focusing on both performance and security aspects.
• Establish best practices and frameworks for provenance tracking in AI and machine learning

workflows, with emphasis on regulated environments and long-term data retention requirements.
• Unite workflow system developers, cloud service providers, and HPC centers to create portable

solutions that can seamlessly operate across computing paradigms.

4 Convergence of AI and HPC Workflows
The integration of AI and HPC represents a paradigm shift in scientific and computational capabilities [4].

This convergence is multiplicative in its impact, enabling complex simulations and data-driven discoveries at
unprecedented scales. AI-powered HPC workflows are drastically booting research efficiency across diverse
scientific domains [24; 2]. While massive datasets generated by HPC simulations fuel the development and
training of next-generation models implemented in AI systems, these AI systems, in turn, dynamically steer
simulations for optimizing resource utilization and for maximizing scientific output.

Emerging Paradigms and Challenges. Large language models (LLMs) have become dominant, requiring
exascale resources and motivating the development of workflows can perform zettaflops-scale computation.
This shift has occurred alongside the continued growth of smaller-scale AI applications, including AI-driven
robotics integrated with HPC workflows. The diversification of AI applications has expanded beyond proof-
of-concept demonstrations to become integral components of larger frameworks and end-goals in themselves.
However, persistent challenges remain. These include optimizing resource utilization, managing workflow
performance and latency, and effectively routing data for inference tasks. Additionally, the community faces
new hurdles in environment management, with the fast-paced AI ecosystem often outstripping traditional
HPC build environments. Elasticity in compute and data capacity for AI training, along with reproducibility,
reusability, and explainability of AI workflows on HPC systems, have emerged as critical concerns.

Recent Advances and Emerging Solutions. To address these challenges, the community is enhancing existing
workflows and developing decoupled data fabrics [25], with implementations based on ADIOS2 [26] (e.g.,
INSTANT [27]), HDF5 [28] (e.g., Wilkins [29]), or pure POSIX semantics (e.g., CAPIO [30]). This approach
allows for greater flexibility in interchanging components to optimize workflows under varying conditions.
AI startups have contributed to this trend by offering solutions that treat AI as distinct, interchangeable
components within larger workflows. The focus has shifted towards creating modular, adaptable systems that
can leverage the rapid advancements in AI techniques while maintaining the robustness required for HPC
applications. Containerization in HPC is experiencing continued development, which promises to alleviate
some of the environmental management issues. Cloud-service-oriented models are also being explored for
their potential to mesh well with workflows, especially in multi-site scenarios. Despite the potential benefits,
the adoption of cloud services in academic and national laboratory settings is tempered by concerns over cost
structures, data governance, and the need to align with existing resource allocation models.

Discussion. The integration of AI into HPC workflows has gained increased attention within the scientific
community, centering on four key areas: cloud computing integration, provenance tracking, benchmark
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development, and AI-driven workflow optimization. While cloud services offer advantages such as elasticity
and access to specialized hardware, concerns persist regarding cost models, data locality, and the blurring of
boundaries between traditional HPC and cloud paradigms. The community recognizes the potential of cloud
integration, particularly for specific workflow phases like post-processing or components requiring dynamic
resource allocation, but acknowledges the need for careful consideration of implementation strategies in
academic and national laboratory settings.

Provenance tracking in AI workflows has emerged as another key area of discussion. As AI models grow
in complexity and are increasingly applied to critical decision-making processes, the ability to trace and
explain model predictions has become paramount [31]. This need for trustworthy AI models, i.e., models that
achieve a desirable balance between performance and principles like explainability, transparency, auditability,
accountability, and reproducibility extends beyond the training phase to encompass the entire lifecycle of AI
workflows, including the production and preparation of training data. The community faces the challenge of
implementing comprehensive provenance tracking without introducing significant computational overhead,
underscoring the need for efficient and standardized workflow provenance methodologies [32].

The development of benchmarks for AI-HPC workflows and the potential of AI-driven workflow optimiza-
tion have also garnered significant attention. While the community agrees on the importance of benchmarks
for understanding performance bottlenecks and guiding hardware decisions, the diversity and rapid evolution
of AI applications present challenges in establishing representative workflow patterns. Concurrently, the
concept of “AI for Workflows” is opening new avenues for automating the design and execution of complex
HPC workflows. This paradigm shift raises intriguing questions about the optimal modularization of workflow
components to facilitate AI-driven learning and composition.

Recommendations:
• Develop frameworks for integrating cloud services with HPC workflows, addressing cost models,

data lifecycle, and resource allocation to enable seamless hybrid cloud-HPC environments.
• Establish comprehensive provenance tracking for AI workflows, balancing thoroughness with

efficiency to support explainability and reproducibility without sacrificing performance.
• Develop collaborative benchmarks representative of diverse AI-HPC workflow patterns across

scientific domains, partnering domain experts with computer scientists.
• Invest in R&D of AI-driven workflow optimization techniques, focusing on modular workflow

designs that facilitate automated composition and adaptation of complex HPC workflows.
• Examine key requirements for parallel/distributed workflow patterns and models suited to

large-scale AI/machine learning applications in science and engineering.

5 Multi-Facility Workflows in Next-Generation Scientific Collaboration
Advanced instruments now produce vast amounts of complex scientific data. As individual experiment

sites and computing facilities struggle to keep pace with unprecedented data rates and volumes, there is a
growing recognition of the need for multi-facility (or federated) workflows [5]. AI-enhanced multi-facility
workflows integrate capabilities across HPC and experimental and observational facilities [1; 4], offering
near real-time data analysis, improved experimental resilience, and better resource utilization.

Emerging Paradigms and Challenges. The potential of multi-facility integrations has been recognized
at the highest levels, with multiple finalists and winners of the Gordon Bell Special Prize showcasing
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composite workflows with downstream connections to user facilities. However, this emerging paradigm
faces numerous challenges. These include multi-facility data movement, the need for curated large-scale
data, and the persistent silos between science facilities. The heterogeneous hardware and software across
HPC systems necessitate sophisticated, AI-enhanced middleware solutions for seamless workflow execution.
Efficient data management across distributed environments requires robust transfer, storage, and security
strategies. Additional hurdles include network constraints, batch-oriented HPC facilities with limited
interactive capabilities, and project-based funding models that may not align with multi-facility collaborative
efforts. Moreover, scheduling and resource allocation across independent facilities pose significant challenges.

Recent Advances and Emerging Solutions. The DOE’s Integrated Research Infrastructure (IRI) program [12]
leads these efforts with domain-specific pathfinder projects, while the field sees the emergence of both
single-vendor ecosystems and cooperative system software stacks. The Superfacility [33] project integrates
experimental and computational resources across diverse scientific domains, enabling near real-time data
analysis. In astronomy, the Dark Energy Camera (DECam) Alliance leverages AI algorithms to manage data
across supercomputers and remote databases for identifying transient objects [34]. Despite these successes,
there is a growing need for more fundamental, systemic solutions to support complex workflows across
multiple facilities. Future research directions include exploring new scientific challenges suited to multi-
facility resources, understanding AI workflow requirements, addressing AI at the edge, integrating quantum
computing, and developing function-as-a-service capabilities.

Discussion. Multi-facility workflows present a complex array of challenges and opportunities, mirroring
the evolving landscape of large-scale scientific research. A key issue is the preparation of data for AI
applications. Participants emphasized that much experimental data is “dirty” – unlabeled and noisy – creating
significant hurdles beyond conventional HPC and workflow concerns. This challenge is compounded by the
complexities of cross-facility data transfer and user interaction, especially when navigating the varied internal
policies and infrastructures of different facilities. The transition from individual user accounts to service
accounts introduces additional layers of complexity in operational and security aspects. This shift underscores
the urgent need for a standardized, robust authentication method that surpasses the security of current
solutions like SSH, while maintaining ease of use, performance, and interoperability across diverse systems.
Furthermore, workflow management across facilities presents its own set of unique challenges, including
the non-trivial task of migrating workflows between machines with different architectures and policies (see
Section 6). Participants emphasized the critical importance of identifying and categorizing various interaction
types and coupling modes within multi-facility hybrid workflows. A key step forward in addressing these
challenges is enabling users to model distributed-by-design workflows. Such workflows would incorporate
detailed descriptions of execution environments, required capabilities, and data movement restrictions directly
into their representation, fostering more efficient and flexible multi-facility collaborations [35].

Data movement across facilities remains a significant challenge. While some institutions use Globus [36]
for data transfer and workflow automation, others rely on alternatives like Rsync or custom solutions due to
access limitations or security concerns. There is then a need for more universal and secure data movement
solutions, especially for sensitive data that cannot leave certain jurisdictions (e.g., health and defense data).

To address these multifaceted challenges, participants proposed a strategic, multi-tiered approach. The
immediate focus is on developing and showcasing demonstrable use cases, such as JAWS [34] and Stream-
Flow [37], supported by sustained funding for common solution development. Implementing multi-facility
federated AI enables private, high-performance LLM training, inspired by projects like EuroHPC [38].
Concurrently, the development of multi-facility-aware workflow provenance standards was identified as a

12



WORKFLOWS COMMUNITY SUMMIT 2024

major step towards enhancing reproducibility, performance portability, and debugging capabilities across
diverse environments [39]. Cross-Facility Federated Learning (XFFL) [40] integrates workflow abstractions
with Federated Learning, enabling cross-facility deep learning without large data transfers between sites.
Multi-facility workflows face significant challenges, particularly in coordinating availability across multiple
HPCs and managing job failures due to maintenance. These issues can invalidate federated training efforts.
Developing robust fault tolerance mechanisms within new frameworks is crucial for ensuring successful
execution of cross-facility collaborations and advancing scientific research [41].

Future goals include developing domain-agnostic workflows and distributed runtime systems, moving
beyond centralized control/data plane orchestrators for greater flexibility and scalability. A key aspect of this
strategy is the compilation of workflow models into distributed execution plans, leveraging multi-facility-
aware, low-level intermediate representations. Looking at this direction, the SWIRL language [42] shifts
the focus from high-level workflow languages, designed either for direct human interaction or for encoding
complex, product-specific features, towards a low-level minimalistic representation of a workflow execution
plan, making it more manageable for formalization methods and compiler toolchains. Last, discussions
explored integrating AI and quantum computing into multi-facility workflows, addressing AI’s unique
requirements (e.g., AI-at-the-edge workflows) and quantum computing’s need for classical fallback options
due to current device unreliability [43].

Recommendations:
• Develop standardized cross-facility protocols for secure data movement, surpassing current

solutions while ensuring interoperability and maintaining strict security standards.
• Implement distributed-by-design workflow modeling to create workflows inherently suited for

multi-facility execution, incorporating environment details and constraints.
• Develop multi-facility-aware provenance standards and runtimes to compile workflows into

facility-specific plans, improving reproducibility and performance across diverse environments.
• Explore and develop AI-ready data preparation solutions across facilities, addressing “dirty”

experimental data challenges and multi-facility AI workflow requirements.
• Investigate quantum computing integration in multi-facility workflows, developing classical

simulation fallbacks for continuity and testing.

6 Heterogeneous HPC Environments
HPC is experiencing a radical shift towards increasingly heterogeneous environments. This transformation

is clearly reflected in the latest Top500 list [44], where eight of the top ten systems heavily rely on GPUs for
peak performance, and approximately 35% of all listed machines incorporate hardware accelerators. The trend
extends beyond traditional computing centers to encompass edge computing, creating a diverse computational
continuum from edge devices to HPC systems and potentially cloud environments. As scientific workflows
grow more sophisticated, often combining traditional HPC simulations with AI models and spanning multiple
facilities, ensuring performance portability across these diverse systems has become a critical challenge.

Emerging Paradigms and Challenges. Heterogeneous environments in HPC have become increasingly
prevalent and complex in the past years. The introduction of exascale systems like Frontier at Oak Ridge
National Laboratory and Aurora at Argonne National Laboratory, coupled with the pervasive influence of AI
and LLMs, the emergence of specialized AI hardware, and the integration of dedicated AI partitions in large
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supercomputers, have fundamentally reshaped the HPC ecosystem. These advancements have intensified
challenges in achieving performance portability across diverse hardware architectures, including CPUs,
GPUs from various vendors, and specialized AI accelerators. Users now face a daunting array of tools and
programming models, making it difficult to navigate the heterogeneous landscape efficiently. The integration
of AI workflows with traditional HPC applications has created a convergence of two distinct computing
paradigms, each with unique resource requirements and optimization strategies. Moreover, energy costs and
system reliability have emerged as critical concerns in managing these intricate environments, adding further
complexity to workflow design and execution.

Recent Advances and Emerging Solutions. The HPC community is developing solutions for increasingly
heterogeneous computing environments. A key focus is integrating workflow considerations into early HPC
system design and deployment (e.g., including workflow benchmarks in the procurement process), creating
more workflow-friendly architectures. Efforts to standardize resource management and workflow tools are
ongoing, with projects like Flux [45] and libEnsemble [46] gaining prominence. These initiatives aim to
simplify user experience across systems and reduce the learning curve for heterogeneous resources. Research
into high-productivity, high-performance programming models is progressing, with languages like Julia
and Python-based solutions offering accessible interfaces while leveraging low-level optimizations. There
is also growing interest in harnessing AI and LLMs to assist with HPC programming and optimization
tasks. The community is exploring regular virtual meetings and standardized workflow test suites to foster
collaboration. These efforts aim to enhance portability, improve user training, and ensure effective utilization
of heterogeneous HPC environments across scientific domains.

Discussion. Heterogeneity in HPC environments encompasses a broad spectrum of contexts, including
hardware diversity (CPUs, GPUs, and specialized accelerators), federated systems (multi-cluster, multi-site,
facility-cloud integrations), varied applications and workflow tools, and data/storage heterogeneity. This
multifaceted nature of heterogeneity underscores the complexity of challenges facing the HPC community
and necessitates comprehensive solutions that address all aspects of heterogeneity in computing environments.

The proliferation of HPC workflow tools like Parsl [47], RADICAL Cybertools [48], libEnsemble,
PSI/J [49], Merlin [50], SmartSim [51], Dragon [52], AFCL [53], and StreamFlow [37], alongside numerous
homegrown solutions, underscores the need for better interoperability and common interfaces. These are
key for developing and executing portable workflows across heterogeneous resources. There is then growing
interest in developing a registry of execution environment information and standardizing resource description
formats to improve resource discovery and allocation.

Scheduling and resource allocation in heterogeneous environments remain critical challenges. The com-
plexities of both online (runtime) and offline (compile-time) scheduling underscore the need for sophisticated
algorithms capable of handling the diverse constraints and optimization metrics inherent in heterogeneous
systems [54]. AI and LLMs show promise in addressing these challenges, particularly in areas like automated
resource discovery, performance prediction, workflow optimization, and scheduling [55].

To accelerate progress in managing and leveraging heterogeneous HPC environments, several initiatives
are being considered. These include regular knowledge-sharing sessions, the development of comprehensive
documentation on heterogeneous packages, and the creation of standardized workflow test suites [56; 57].
Such test suites could serve as benchmarks for evaluating different solutions and potentially aid in procurement
decisions and system testing. These efforts aim to foster collaboration and innovation, ultimately enabling
more efficient and effective scientific workflows across diverse computing resources.
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Recommendations:
• Create a central registry of execution environment information with standardized resource

descriptions to enable discovery, allocation, and portability across heterogeneous HPC systems.
• Develop adaptive scheduling algorithms for efficient online and offline management in hetero-

geneous environments across diverse hardware, considering varied constraints and metrics.
• Create community-driven workflow benchmarks and test cases spanning diverse scientific

domains and computational patterns to guide system evaluation, procurement, and optimization.
• Integrate AI and machine learning techniques, especially LLMs, into HPC workflow systems to

automate resource discovery and optimization across heterogeneous computing environments.

7 User Experience and Interfaces
As scientific workflows continue to evolve in complexity and scale, the importance of User Experience

(UX) [58] and intuitive interfaces has become increasingly critical. Well-designed UX can significantly
impact the adoption, efficiency, and overall success of workflow systems, empowering researchers to focus
on their scientific inquiries rather than grappling with technical intricacies. The interfaces (whether command
line, graphical, API, or documentation) between scientists and workflow systems serve as a key bridge,
determining how effectively researchers can harness the power of these tools.

Emerging Paradigms and Challenges. UX in scientific workflows has gained increased recognition in recent
years, with a broader understanding that UX encompasses more than just graphical user interfaces. The
concept now includes the entire user journey, from product discovery to adoption, and extends to the policies
and procedures governing services and facilities. This broadened perspective comes at a time of increasing
complexity in the workflow landscape, characterized by a proliferation of systems and interfaces that reflect
the growing heterogeneity of facilities and systems across national and global research infrastructures. This
expanding ecosystem presents significant challenges for usability and interoperability among workflow
systems. The integration of AI and machine learning into scientific workflows has also introduced new data
curation challenges, affecting the adoption and integration of these tools. Current challenges include the need
for seamless interactivity in heterogeneous environments, reducing barriers to entry for workflow adoption,
and addressing the “closed box” issue where workflow processes remain opaque to end-users, hindering
troubleshooting and adaptability.

Recent Advances and Emerging Solutions. Workflow system developers and UX researchers are actively
working to simplify workflow usage, aiming to make it as intuitive as operating individual tools. Their efforts
focus on easing the transition for scientists from manual tool chaining to the adoption of comprehensive
workflow systems. Significant progress has been made in developing improved graphical representations of
workflow steps and data flow, enhancing transparency and user comprehension. The scientific community
is also adapting concepts from commercial software development, such as Design Systems, to the unique
needs of scientific applications. Initiatives like the Chan Zuckerberg Initiative’s open-source science design
system [59] and the STRUDEL project [60] are creating templates, code, and guidelines that enable teams
to craft consistent and user-friendly interfaces across different scientific domains. On the other hand, the
Jupyter Workflow [61] framework builds on the well-known Jupyter Notebook interface to let users design
and run interactive large-scale distributed workflows with sequential equivalence guarantees. These efforts
aim to improve the overall user experience of scientific workflows, from setup and configuration to execution
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and troubleshooting, ultimately fostering better collaboration between humans, machines, and research
infrastructure systems.

Discussion. UX in scientific workflows encompasses a wide spectrum of perspectives and implementations.
Notable advancements in UX design have emerged, with some systems successfully integrating human
participation within their graphical user interfaces for tasks such as quality control and experiment tuning.
Industry-standard workflow platforms in bioinformatics, AI/ML, and cloud computing offer sophisticated UX
features that serve as benchmarks for the field. However, replicating such interfaces in HPC environments
presents unique challenges due to the inherent complexity of these ecosystems and their specialized technical
and social requirements.

A central tension in workflow UX design lies between simplicity and complexity. There is a clear
need to make workflows more accessible to newcomers, yet many researchers value the ability to engage
with sophisticated tools as part of their learning and research processes. This dichotomy underscores the
importance of developing flexible interfaces that can accommodate users with varying levels of expertise and
diverse workflow requirements, allowing for both ease of use and depth of functionality [62].

The potential role of AI, particularly LLMs, in enhancing workflow UX is a subject of ongoing debate
within the scientific community. While there is potential for AI to assist in generating workflow templates and
improving documentation, concerns persist regarding the interpretability and maintainability of AI-generated
workflows. These discussions highlight the need for thoughtful integration of AI technologies in scientific
workflow systems, ensuring that they enhance rather than complicate the user experience.

Heterogeneity and portability remain critical challenges in workflow UX. The scientific community
desires the flexibility to run workflows across different systems while still accessing specialized features of
specific platforms. Successful approaches in addressing this challenge include developing systems that can
automatically identify their execution environment and apply appropriate configurations. However, this raises
fundamental questions about the optimal level of abstraction for workflows and how to balance the competing
demands of portability and platform-specific optimization.

Recommendations:
• Formulate UX principles for scientific workflows, addressing common issues and guiding the

design of intuitive, user-friendly interfaces (CLIs, APIs, GUIs) across various workflow systems.
• Create tailored onboarding and training for new workflow system users, offering hands-on

experience with real scientific problems and teaching core workflow management concepts.
• Develop adaptive interfaces for workflow systems that accommodate users of varying expertise,

balancing simplicity for beginners with advanced features for experts.
• Explore responsible AI integration (LLMs) in workflow systems for assisted generation, docu-

mentation, and troubleshooting, while preserving human interpretability and maintainability.

8 FAIR Computational Workflows
As scientific workflows become increasingly integral to data-intensive research across disciplines, ensur-

ing their findability, accessibility, interoperability, and reusability (FAIR) has emerged as a critical challenge
in the scientific community. The FAIR principles [63], originally developed for research data, and later
software [64] are now being adapted to computational workflows to enhance their discoverability, repro-
ducibility, and reuse. This shift is decisive as workflows embody not just data, but also scientific methods,
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analysis processes, and computational environments. By making workflows FAIR, researchers aim to improve
collaboration, accelerate scientific discovery, and increase the overall efficiency of computational research.

Emerging Paradigms and Challenges. The application of FAIR principles to computational workflows has
emerged as a critical focus in the scientific community [65]. As workflows become increasingly central
to data-intensive research across disciplines, ensuring their FAIRness presents unique challenges. Unlike
static datasets, workflows encompass both declarative descriptions and executable components, necessitating
a nuanced approach to FAIR implementation. The complexity is further compounded by the diversity of
workflow languages, execution environments, and domain-specific requirements. Emerging paradigms
in workflow design, such as modular and composable workflows, raise questions about how to maintain
FAIRness at various levels of granularity. Additionally, the integration of workflows with HPC environments
and cloud infrastructures introduces new considerations for accessibility and portability. Balancing the need
for standardization with the flexibility required for innovation remains a key challenge.

Recent Advances and Emerging Solutions. Recent advances in making workflows FAIR have seen significant
progress, with the development of FAIR principles specifically tailored to computational workflows [66].
These principles treat workflows as both data and software, addressing their unique dual nature. To support
practical implementation, the community has developed infrastructure and tools such as DockStore [67]
and WorkflowHub [68; 69], which facilitate the registration and sharing of workflow metadata, thereby
enhancing findability and accessibility. Guidelines like “Ten quick tips for building FAIR workflows” [70]
provide researchers with actionable steps towards FAIRness. Efforts to improve interoperability between
workflow management systems are ongoing, with a focus on rich metadata descriptions and standardized
APIs. Emerging solutions also explore the potential of AI technologies in workflow programming and
automated metadata generation. However, challenges remain in effectively embedding FAIR practices into
workflow creation interfaces and extending the FAIR framework to encompass additional crucial aspects such
as portability, reproducibility, and quality assurance [71].

Within the Workflows Community Initiative, a working group has now established a set of principles
for FAIR Computational Workflows [66]. These built on the FAIR principles for data and for research
software [64], observed best practices, and considered workflows as an explainable composition of workflow
components, which themselves may be data sources, research software, or other workflows.

Discussion. The application of the FAIR principles to computational workflows has sparked significant
discussions within the scientific community, revealing several key challenges and potential directions for
future development. A central topic is the definition and implementation of FAIR workflow components,
which necessitates engagement with the broader ecosystem surrounding workflows, including dependencies,
codes, and data. The challenge lies in striking a balance between comprehensive FAIRness and practicality,
while avoiding the risk of overcomplicating the process by attempting to make every aspect FAIR.

Implementing FAIR principles in practice remains a significant hurdle in the workflow domain [72].
Poor annotation of workflows and difficulties in sharing workflows across different languages are common
issues. Proposed solutions include leveraging LLMs for workflow annotation, encouraging WMSs to adopt
shared models for workflow description (such as the Bioschemas Computational Workflow profile [73]),
and promoting best practices among developers. The role of tools and services in encouraging FAIR
practices is crucial, with efforts to engage tool developers in implementing FAIR-supporting features, such
as the integration of Research Object Crate (RO-Crate) [15] specifications in WMSs. This integration is
demonstrated at [74], where six of these systems integrate the Workflow Run RO-Crate Profile.

There is growing interest in developing a FAIR workflow maturity model, drawing parallels with software
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maturity models and certification badges. Such a model could provide guidance for implementing FAIR
principles and offer a framework for assessing the FAIRness of workflows. The development of FAIR metrics
specifically tailored for workflows is seen as a key next step. Tools for FAIR assessment could automatically
provide a FAIRness score or grade, presenting which principles are being evaluated within the tests [75].
Tools like F-UJI [76] are being assessed for workflow applicability, with possible adaptations or new tools in
development. The community is also exploring the relationship between FAIR metrics and maturity models,
considering how they can complement each other in assessing and improving workflow FAIRness.

The application of FAIR principles to workflows containing export-controlled or confidential components
presents unique challenges. This has highlighted the need for flexible approaches to FAIRness that can
accommodate varying levels of openness and access restrictions. The concept of “Inner FAIR” within
organizations has emerged as a potential solution, allowing for the application of FAIR principles even in
contexts where full public sharing is not feasible. In areas in which sensitive data need to be managed, such as
human genomics, users need to go through data access request procedures that are often manually managed
by data access committees. This hinders the automation potential provided by computational workflow
technologies. Initiatives such as the Data Use Ontology (DUO) [77], that allows for formally expressing
the authorized uses for a dataset, could help to streamline tasks related to data discovery and retrieval
in computational workflows that need to process controlled-access data. Additionally, the community is
grappling with the distinction between reusability and reproducibility in the context of workflows, recognizing
that a workflow can be FAIR without necessarily being portable or reproducible across all environments.

Recommendations:
• Promote standardized metadata schemas for workflows (Bioschemas ComputationalWorkflow

profile, RO-Crate specifications) across WMSs to enhance interoperability and FAIR practices.
• Develop a FAIR workflow maturity model and metrics to guide FAIR implementation, offering

standardized and automated assessment of workflow FAIRness, considering unique challenges
of components and execution environments.

• Collaborate with tool developers to integrate FAIR-supporting features into workflow develop-
ment tools, including automatic rich metadata generation, annotation support (leveraging AI
technologies), and facilitation of workflow sharing across different languages and platforms.

• Develop guidelines and tools for implementing “Inner FAIR” practices within organizations to
address the challenges of applying FAIR principles to workflows with confidential or export-
controlled components, enabling FAIR practices even when full public sharing is not possible.
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