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Abstract—Scientific data management is undergoing a fundamental transformation
driven by the convergence of AI/ML workflows, distributed computing and storage
environments, and exponential data growth. This paper examines eight key devel-
opments reshaping research data management: fluid data movement, user-centric
storage semantics, distributed storage solutions, integration into compute facility
infrastructure, active preservation systems, enhanced data protection and control
mechanisms, AI data readiness, and data and workflow provenance. We analyze
how these developments address current limitations while enabling new capabilities
for cross-facility collaboration and AI-driven research. Our analysis provides
insights for research facilities and funding agencies working to modernize scientific
data infrastructure while maintaining security, reproducibility, and accessibility.

The management of scientific data is undergoing
a fundamental transformation, driven by expo-
nential growth in data volumes and increasingly

distributed research environments. As highlighted in
recent federal frameworks such as the National Sci-
ence and Technology Council’s guidance on research
infrastructure [1], [2], organizations face mounting chal-
lenges in coordinating data infrastructure across fa-
cilities while allowing seamless access, analysis, and
preservation of research output. These challenges
are compounded by the emergence of new data-
intensive paradigms such as artificial intelligence (AI)
/ machine learning (ML) workflows, real-time analysis
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requirements, increased automation, and cross-facility
collaborations that generate unprecedented volumes
of experimental and observational data [3]. The con-
vergence of edge computing, cloud platforms, and
traditional research infrastructure adds additional com-
plexity to an already challenging landscape, requiring
new approaches to data management that can adapt
to rapidly evolving scientific needs while maintaining
security, reproducibility, and accessibility. This evolving
landscape requires a critical examination of current
data management approaches and their limitations.

Traditional data management paradigms, built on
linear progression through creation, analysis, and
archival stages, are becoming insufficient for modern
scientific workflows [4]. This insufficiency is due to
the emergence of multiscale workflows: from in situ
HPC simulations and data analysis; local data acquisi-
tion and steering; and distributed workflows for time-
critical analysis or distributed learning, for example.
Other sources of complexity include the increase in
automatization resulting in challenges for transparency
and trustworthy results; and the need for robustness
and sustainability across distributed infrastructures,
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FIGURE 1. Key components transforming scientific data management, organized into three fundamental domains: Move-
ment/Accessibility, Storage Infrastructure, and Governance Frameworks. Each component represents a critical area of develop-
ment in modern research data systems.

multiple organizational domains, and a wide range of
timescales [5], [6]. Traditional approaches that treat
data lifecycle stages as distinct phases with clear
boundaries are particularly challenged by the require-
ments of distributed computing environments, where
data may need to be accessible simultaneously for
multiple purposes across different locations and com-
puting platforms. Furthermore, the growing importance
of near real-time analysis, experimental steering, and
collaborative research demands data management
systems that can support more flexible and dynamic
data flows while maintaining the strict requirements for
data provenance, security, and long-term preservation
that are essential for scientific research.

To address these challenges, this paper examines
key developments transforming scientific data manage-
ment across the computing continuum. These devel-
opments span three main areas: data movement and
accessibility, storage infrastructure, and governance
frameworks. Drawing from recent literature and expert
insights, we identify eight transformative developments
reshaping how scientific communities handle data,
with a particular focus on the convergence of tradi-
tional approaches with emerging distributed computing
paradigms (Figure 1):

› Data Fluidity Across Lifecycle Stages: Moving
beyond the traditional three-stage lifecycle (cre-
ation, working, archival) to enable more dynamic
and flexible data progression across distributed
computing environments, especially for AI-driven
laboratories and cross-facility collaboration.

› User-centric Data Storage Semantics: Empha-
sizing access to data through semantics that are

aligned with user needs (e.g., data consistency,
granularity, and access control) instead of storage
system characteristics.

› Advanced Distributed Storage Solutions: De-
velopment of new storage paradigms to handle
datasets too large for local storage while maintain-
ing “keep-every-bit” requirements for ultra-high-
fidelity analysis and reproducibility across dis-
tributed facilities.

› Integration of Data Management with Com-
pute Facilities: Evolution of high-end computing
facilities to support seamless data organization,
management, and access across experimental,
observational, and computing facilities, minimizing
network latency and resource waste.

› Active Preservation Systems: Reimagining
“dead” archival storage to address accounting and
reproducibility challenges, suggesting a more dy-
namic approach to long-term data preservation
and access.

› Data Protection and Control: Support collabo-
rative data environments with rich access control
semantics and shared governance models, with-
out which important problem areas will lag behind
and data sharing will be hindered.

› AI Data Readiness: Where once the problem was
finding enough data to make AI-driven processing
viable, the next challenge will be generalized ap-
proaches to making data ready to use in model
training and other tasks.

› Data and Workflow Provenance: Enabling repro-
ducible and trustworthy scientific results through
comprehensive tracking of data origins, trans-
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forms, and workflow execution details, while sup-
porting performance optimization through stan-
dardized provenance capture and organization.

FLUID DATA MOVEMENT
Scientific data management has traditionally pro-
ceeded linearly through distinct lifecycle stages: data
creation (from modeling, simulation codes, and scien-
tific instruments), working data (optimized for tasks like
AI training and visualization), and archival storage (in
write-once repositories). However, the emergence of
AI-driven laboratories, cross-facility collaborations, dis-
tributed computing environments, and multiscale work-
flows fundamentally challenges this linear model, as
modern scientific workflows require data to be accessi-
ble simultaneously across multiple locations and com-
puting platforms. The traditional segmented approach,
while historically effective, is proving insufficient for
modern scientific computing’s need for dynamic and
fluid data movement.

Several challenges are driving the need for more
fluid data-movement approaches. First, as data set
sizes grow, it’s increasingly likely that different logically
connected data items will exist in different parts of the
data lifecycle; preserving logical connections between
data items as they evolve will be difficult given the
current state of the art. Second, the sheer volume
of data being generated means that some datasets
are too large (or cannot be reduced effectively) to
copy to local storage, yet must still meet requirements
for high-fidelity analysis and reproducibility. Third, new
AI/ML workflow disrupts traditional assumptions about
data locality and access patterns. Fourth, cross-facility
collaborations require data to be accessible across
institutional boundaries while maintaining security and
performance. In addition, the convergence of edge
computing, cloud platforms, and traditional research
infrastructure adds complexity to data movement and
staging decisions.

Looking ahead, several new approaches show
promise for helping to address these challenges. Ad-
vanced data orchestration systems could automatically
optimize data placement and movement based on
workflow requirements and resource availability. New
distributed caching architectures could help bridge
performance gaps between facilities while minimizing
unnecessary data transfers. Furthermore, semantic-
aware data management systems could help abstract
away the complexities of physical data location and
movement while preserving essential properties such
as reproducibility and provenance tracking. New AI-
based approaches suggest the opportunity for seman-

tic indexing of large quantities of diverse, distributed
data, in ways that may greatly enhance scientists’
ability to discover, integrate, and exploit previously
unrelated data sources.

Predictions:
• Data management systems will evolve to

support continuous data progression across
lifecycle stages, automatically optimizing
placement and replication based on access
patterns and computational needs.

• New distributed caching and staging mecha-
nisms will emerge to efficiently handle data
too large for local storage while maintaining
reproducibility requirements.

• Cross-facility data orchestration systems will
automate the movement and positioning of
data to minimize latency and resource waste
while preserving security and access con-
trols.

RETHINKING STORAGE SEMANTICS
Semantics capture interaction and use of data storage
systems and thus can play a crucial role in the future
for how research data infrastructure systems serve
their users’ needs. Historically, data access patterns
and capabilities have been limited by the underlying
physical storage systems and their characteristics.
However, modern scientific applications and workflows
increasingly require more flexible and user-centric ap-
proaches that prioritize how researchers interact with
and utilize the data, rather than being constrained
by storage system limitations. Semantic systems also
present opportunities for alignment with FAIR princi-
ples for enhanced reusability of data and results.

Current state-of-the-art approaches are evolving
toward a more sophisticated model that separates
storage implementation from data access patterns
and semantic understanding. Modern data manage-
ment systems are implementing semantic layers that
enrich metadata, standardize data characterization,
and enable AI-ready accessibility while abstracting
away the underlying storage complexities. These sys-
tems emphasize pre-model explainability, ethical data
handling, and computability, enabling researchers to
focus on their analytical needs rather than storage
mechanics. Advanced semantic modeling approaches
are being developed that can handle heterogeneous
data sources through standardized metadata schemas,
provenance tracking, and machine-readable documen-
tation. This evolution reflects a broader shift toward
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semantic data management that prioritizes research
workflow needs while maintaining scientific rigor and
reproducibility.

Several key challenges remain in fully decoupling
data semantics from storage modality. First, legacy
scientific applications and workflows often have deep
dependencies on traditional filesystem interfaces, mak-
ing it difficult to transition to new data models. Sec-
ond, achieving consistent performance and access
patterns across heterogeneous storage systems while
maintaining security and access controls is technically
complex. Third, the diversity of research workflows and
access requirements makes it challenging to design
abstract interfaces that can efficiently support all use
cases while hiding storage complexity.

Looking ahead, several approaches show promise
for addressing these challenges. Developing standard-
ized APIs and interface protocols that abstract storage
details while preserving essential semantic capabilities
would enable broader interoperability. Implementing
intelligent data placement and caching strategies that
automatically optimize for different access patterns
could help bridge performance gaps. Furthermore,
fostering collaboration between operators of research
data infrastructure to establish common frameworks for
semantic data access could accelerate the adoption of
storage-independent approaches.

Predictions:
• Research infrastructure will widely adopt se-

mantic layers that abstract storage imple-
mentation details while preserving domain-
specific metadata and access patterns.

• Data management systems will implement
AI-ready semantic frameworks that automati-
cally enrich metadata, track provenance, and
enable explainable analysis across heteroge-
neous storage systems.

• Storage systems will evolve to decouple user-
facing data semantics from physical storage
characteristics through standardized APIs
and automated optimization of access pat-
terns.

NEXT-GEN DISTRIBUTED STORAGE
The landscape of scientific data storage is undergo-
ing a fundamental transformation, driven by the con-
vergence of traditional HPC workloads with emerg-
ing AI/ML applications. While solid-state storage has
largely replaced rotating disks in computational sci-
ence data centers, modern workflows spanning from

edge devices to leadership-class facilities present chal-
lenges beyond hardware transitions. Current storage
systems primarily optimize for either traditional scien-
tific workloads (with sustained write bandwidth and
sequential access patterns) or newer AI/ML workloads
(featuring small, random accesses with less data lo-
cality), leading to infrastructures that struggle to effi-
ciently serve both simultaneously. Additionally, existing
approaches to data movement and staging based on
copying entire datasets to local storage are becoming
impractical as dataset sizes grow exponentially.

Several critical challenges must be addressed in
next-generation storage systems. First, application de-
velopers face opaque trade-offs between different stor-
age hardware, protocols, and performance character-
istics, leading to suboptimal resource utilization. Sec-
ond, the need for distributed, shared storage facilities,
such as for the DOE High Performance Data Facility
(HPDF), introduces new complexities in data move-
ment and access patterns through its hub-and-spoke
model. Third, the traditional POSIX file system model,
originally designed for locally attached storage, has
become a limiting factor in distributed scientific envi-
ronments. These challenges are further complicated by
the need to maintain distinct handling of metadata and
data, which have fundamentally different consistency
requirements and update patterns.

Looking ahead, several approaches show promise
for addressing these challenges. Advanced storage
systems could leverage AI-driven profiling and infer-
ence to automatically optimize data placement and
access patterns. New storage abstractions could better
separate metadata operations from data operations,
allowing each to be optimized independently. Addition-
ally, the integration of previously “lookaside" services
(such as databases and indexing systems) directly into
the storage fabric could enable more efficient metadata
management and query capabilities.

Predictions:
• Storage systems will incorporate AI-driven

modeling to dynamically optimize data place-
ment across heterogeneous resources based
on application patterns and needs.

• New storage abstractions will separate meta-
data and data paths, enabling independent
optimization while maintaining consistency.

• Previously separate services (databases, col-
umn stores, graph stores) will integrate into
primary storage systems, enabling unified
data management.
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COMPUTE FACILITY INTEGRATION
The integration of computing facilities has evolved from
a focus primarily on computational performance to
addressing challenges of data management across
distributed scientific infrastructures. Modern research
increasingly requires coordinated data flows among
experimental facilities, observational platforms, anal-
ysis systems, and archive storage. Major research
facilities have moved beyond treating data storage as
simply an auxiliary service, developing comprehensive
data ecosystems spanning the entire data lifecycle.
The Department of Energy’s Integrated Research In-
frastructure (IRI) program exemplifies this evolution by
seeking to create seamless integration across exper-
imental, observational, and computational resources,
which requires coordinated data management across
distributed facilities while maintaining local autonomy.

However, significant challenges remain to achieve
truly integrated data management across facilities.
These include difficulties in maintaining consistent data
representations and metadata standards across dif-
ferent domains, complexities in tracking data prove-
nance through distributed multi-scale workflows, and
challenges in implementing unified data governance
policies across institutional boundaries. The dynamic
nature of modern scientific workflows also creates
tension between the need for flexible data access
and the requirements for secure and efficient resource
utilization. Furthermore, the exponential growth in data
volumes continues to stress existing infrastructure and
management approaches.

Several promising directions could advance the
integration of data management across computing fa-
cilities in the near term. At a technical level, develop-
ing standardized approaches to data organization and
cataloging would improve interoperability while reduc-
ing operational complexity. The adoption of container
technologies and standardized workflow descriptions
would improve portability, while automated data lifecy-
cle management capabilities could optimize resource
utilization and ensure appropriate long-term preser-
vation. Common reference architectures and integra-
tion patterns, developed through coordinated multi-
agency efforts, could significantly reduce implementa-
tion complexity. On the governance side, establishing
shared frameworks for data access control and man-
agement policies would enable more effective cross-
facility collaboration while maintaining security require-
ments. Additionally, implementing automated service
discovery and orchestration capabilities would allow for
more dynamic resource utilization, while coordinated
approaches to data placement and movement across

facilities could substantially improve efficiency.

Predictions:
• Automated orchestration systems that opti-

mize data placement and movement while
maintaining provenance across distributed
resources will be implemented at multiple
scales, including at Leadership Computing
Facilities.

• Facilities will adopt standardized interfaces
and protocols for seamless data flows, while
preserving local operational autonomy and
reducing infrastructure redundancy.

• AI-driven management systems will auto-
mate resource discovery and workflow opti-
mization across institutional boundaries while
enforcing security policies and governance
requirements.

DATA PRESERVATION SYSTEMS
Traditional approaches to data preservation have
treated archived data as dormant and infrequently ac-
cessed, a perspective reinforced by cloud storage tiers
that prioritize cost savings over accessibility. Current
systems primarily organize data around coarse-grain
storage and retrieval of large-data objects, with limited
support for rich metadata or sophisticated query capa-
bilities. However, the emergence of AI/ML workflows,
reproducibility requirements, and long-term preserva-
tion needs fundamentally challenge this paradigm,
as modern scientific computing demands preservation
systems that can support dynamic access patterns
while maintaining data integrity and provenance over
extended timeframes. These traditional approaches
are increasingly misaligned with modern scientific
workflows, particularly for AI model training and com-
putational reproducibility.

Modern data preservation systems face several
critical challenges. First, the reproducibility require-
ments of scientific workflows can require the indefinite
preservation of not just results, but also input data
and computational environments. Second, the frequent
coupling of funding for data preservation to time-limited
project grants creates sustainability challenges when
project funding ends. Third, the rise of cross-facility
collaborations and “born shared" data environments
requires either new approaches to cost recovery and
resource allocation for organic shared archival storage
and sustainability, or protocols through which these
environments can interoperate with a "bring-your-own"
data preservation approach. Additionally, AI/ML work-
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flows often need to access historical datasets in ways
that do not align with traditional archival storage opti-
mization strategies.

Looking ahead, several promising approaches
could help address these challenges. Advanced
preservation systems could incorporate richer meta-
data and indexing capabilities to support more sophis-
ticated query and retrieval patterns. New funding and
operational models could better align long-term data
preservation, curation, and sustainability practices with
institutional missions and resources. Furthermore, the
development of more flexible cost recovery mecha-
nisms could enable sustainable sharing of archived
data across institutional boundaries.

Predictions:
• Preservation systems will evolve from pas-

sive storage to active digital preservation
environments, incorporating automated ver-
ification, format migration, and accessibility
features to ensure long-term data usability
and scientific reproducibility.

• New organizational and funding models
will emerge to manage “perpetual stor-
age" requirements, including standardized
approaches to transition preservation respon-
sibilities as projects end and automated cost
recovery mechanisms for shared preserva-
tion resources.

DATA PROTECTION AND CONTROL
Much research into collaborative computational sci-
ence has assumed a relatively benign data protection
environment. That is, data sharing has been presumed
to be non-adversarial, with good intentions and good-
faith interactions the default. Placing concerns of data
protection and access control outside the scope of re-
search into scientific data management has permitted
significant advances in the state of the art. However,
these concerns can not be set aside indefinitely.

The rapid development of data-driven techniques
such as AI/ML inference has generated significant
interest in applying state-of-the-art solutions to problem
areas where data protection and access control cannot
simply be ignored. Use cases spanning institutions
such as those envisioned by the National Science Data
Fabric (NSDF) [7] or the DOE High Performance Data
Facility (HPDF) [8] will need to address the challenges
of sharing across different administrative boundaries
and user identity providers. Additionally, significant
data handling occurs in environments where access

constraints driven by regulation (e.g. for human sub-
jects research), law (e.g HIPAA), or national security
concerns are paramount.

A variety of data access controls will be needed
to realize the full potential of wide-area infrastructure
such as NSDF, HPDF, and various Integrated Research
Infrastructure-style workflows. Variations include gran-
ularity of access; role-based and permissions-based
access; and functional access such as with data visi-
tation or the Five Safes framework [9]. Absent these
services, the current state of data protection tool-
ing provided by commonly available filesystems and
data storage infrastructure will be insufficient. Also,
scientific data management concerns also arise in
high-consequence computational environments such
as NNSA stockpile stewardship computing; it is unlikely
that computing in these environments will benefit from
the rapidly advancing state of the art in low-sensitivity
scientific data management without direct research into
verifiable data security mechanisms.

Looking ahead, several promising approaches
could help address these challenges. Harmonizing or
brokering authentication services through trusted net-
works is a first step toward interoperability in controlled
access environments [10]. Frameworks will need to be
flexible to facilitate a variety of access paradigms from
role-based, permissions-based, functional access, or
query-based access for a variety of data subsets.

Predictions:
• Given that data handling in both loosely and

tightly controlled data environments requires
similar scientific data management, innova-
tion in data protection approaches will make
it practical to apply similar techniques.

• Difficulties in implementing data manage-
ment across administrative boundaries will
result in convergence on single user iden-
tity providers or identity interoperability ap-
proaches.

• Data access controls will support a variety of
access models for coarse and fine-grained
objects, role-based and permissions-based
access, and function-based access.

AI DATA READINESS
The appetite for data displayed by current AI model
training approaches seems practically limitless. To
take advantage of the power of AI-driven computa-
tional science both sustainably and scalably, the enor-
mous amounts of scientific data currently generated,
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collected and stored must be made AI-ready [11].
Leadership-scale AI readiness implies data prepara-
tion, training protocol design, and conversion to stor-
age formats appropriate for use in high-performance
parallel I/O. Data preparation may involve cleaning
(for example, handling missing variables), automatic
or manual labeling, and some degree of feature en-
gineering to select and possibly alter a particular set
of features. Training, testing, and validation splits in a
data set are then determined according to the training
protocol and exported in formats appropriate to the
platform on which the training is to be performed.

Several challenges must be addressed in order to
fully leverage scientific data in AI processes. Much data
is generated by simulations or collectors without regard
to the quality needs of model training. Insufficient qual-
ity data can lead to overfitting and other issues which
can result in models poorly suited to their planned
tasks. Data sizes from multiple research domains are
growing, in some cases limiting the platform environ-
ments in which training can be performed. Different
domains have adopted different approaches to model
training workflows, complicating cross-cutting paths to
AI data readiness.

Predictions:
• Automated data quality assessment systems

will emerge to evaluate and score datasets
for AI readiness across multiple dimen-
sions including completeness, consistency,
and feature richness.

• New workflow frameworks will standard-
ize the preparation of scientific data for
AI, including automated cleaning, labeling,
and format conversion optimized for high-
performance training.

• Cross-domain data preparation patterns will
be established to enable transfer learning
and model reuse across scientific disciplines
while maintaining domain-specific context.

DATA & WORKFLOW PROVENANCE
The provenance of a data object is its overall history, in-
cluding both its origins and transformations applied to it
over time. Similarly, workflow provenance is the record
of the design, execution, and outputs of a workflow.
Together, data and workflow provenance can provide
sufficient context and transparency for reproducible,
trustworthy, and reusable scientific results. They can
also address performance questions such as sources
of latency, energy consumption, and self-consistency.

Provenance at a mid-point in a workflow can help
inform down stream data management and the ad-
vances outlined above, including abstracting data man-
agement to apply to semantic controls, automating
workflow decisions, and managing access. Leveraging
provenance information is currently challenged by a
lack of organization and standardization. Provenance
is currently captured, if at all, in a variety of platforms
such as task logs, lab notebooks, data management
plans, data sheets, and publications.

Looking ahead, we anticipate several promising
approaches helping to capitalize on the opportuni-
ties of provenance. Community-based efforts in repro-
ducibility and reusability can help to identify pieces
of provenance information that are essential for the
science goals. Standards for structuring provenance
information as metadata will enable it to be used within
workflows and for reuse. Instrumented workflows can
autonomously capture performance-level information,
while interactive tools can help to assimilate user
information into the provenance chain [12]. Research
methodologies need to evolve to capture provenance
at every research stage, not just at data publication
[13].

Predictions:
• Increasing provenance information will be-

come standardized and organized as meta-
data, as needed by the user communities.

• Workflows will be instrumented to collect
provenance information, and interactive tools
will be developed to capture user input as
provenance.

MATURITY AND EXPECTATIONS
We have identified several key areas where scientific
data management must evolve to address the chang-
ing requirements of computational science. These ar-
eas vary in maturity and face different challenges for
implementation and widespread adoption (Figure 2):

› Established. Distributed storage systems repre-
sent a highly developed area, backed by decades
of academic and industry research that has ad-
dressed the technical challenges of wide-area
data distribution and caching. Access seman-
tics similarly demonstrates significant maturity,
with object storage and key-value interfaces now
widely implemented across the industry (fre-
quently offered by vendors as complementary op-
tions alongside traditional POSIX-compliant paral-
lel filesystem interfaces).
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FIGURE 2. Our previously identified key components transforming scientific data management, with indications of the maturity
of research efforts in each area with respect to enabling the next generation of scientific data management.

› Emerging. Substantial research exists on pre-
serving provenance information in data-intensive
computing environments [14], [15], but the main
challenge lies in sustainably integrating this re-
search with existing data storage and movement
layers. These established systems often carry
significant technical debt, creating implementation
and interoperability issues. Regarding AI readi-
ness, while tools for data preparation are abundant
and generally well-integrated with common AI pro-
gramming frameworks (primarily Python-based),
the landscape remains fragmented. Almost ev-
ery researcher has developed unique solutions to
prepare data for AI processing. The key maturity
challenge is not in figuring out how to make data AI
ready, but rather extracting from the many existing
ad hoc processing pipelines the common patterns
and techniques for a number of different domain
science areas.

› Exploratory. The remaining prediction areas we
have identified are at a distinctly lower matu-
rity level. These areas face significant “external”
challenges including policy restrictions, regulatory
requirements, and funding limitations. Facility inte-
gration efforts struggle particularly with the funding
justification for infrastructure work aimed at deep
cross-facility integration. This integration requires
navigating the diverse administrative and oper-
ational structures that vary between facilities in
both subtle and profound ways. Current efforts
such as [16], [17] have proceeded incrementally
by defining APIs available outside the facility net-
work. Similarly, fine-grained access control faces
substantial impediments; local identity manage-
ment systems are typically deeply embedded, and
comprehensive solutions likely depend on the de-
velopment of more sophisticated federated identity
approaches. Data preservation initiatives face dual
challenges [18]: funding uncertainties (specifically,

who bears the cost of data storage after projects
are completed) and complex regulatory require-
ments (such as the 2022 Office of Science and
Technology Policy guidance memo [19], which
mandates specific retention and access protocols
for data generated using US government funding).

› Conceptual. Data fluidity represents the integra-
tion of currently siloed data access techniques
across the entire data lifecycle; it remains primarily
in the research domain, distinguishing it from the
more operationally-focused areas discussed else-
where in this paper.

CONCLUSION
The transformation of scientific data management is
driven by unprecedented challenges in data volume
and complexity, changes in science workloads, and
requirements for highly distributed computing. Our
analysis of key developments identifies critical paths
forward for the scientific computing community. These
developments point to the future of more dynamic,
intelligent, and integrated data management systems
that include support for AI-driven orchestration. Signif-
icant challenges remain in security, sustainability, in-
teroperability, and basic research topics, and progress
beyond the current state of the art in each of these
areas will be needed. Success will require coordinated
efforts across research facilities, funding agencies,
and technology providers. These efforts must balance
flexibility with security, accessibility with preservation,
and innovation with reproducibility to enable the next
generation of data-intensive research while maintain-
ing scientific rigor.
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