
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp and	David	Kempe

2

Administrative	Issues
• Preparation

– Basic	if,	while,	for	constructs
– Arrays,	linked-lists
– Structs,	classes
– Dynamic	memory	allocation	and	pointers
– Recursion

• Syllabus
– http://bits.usc.edu/cs104

• Expectations
– I'll	give	you	my	best,	you	give	me	yours…

• Attendance,	participation,	asking	questions,	 academic	integrity,	take	an	
interest

– Treat	CS104	right!
– Let's	make	this	fun

3

More	Helpful	Links

• Remedial	modules
– http://ee.usc.edu/~redekopp/csmodules.html

• Class	website
– http://bits.usc.edu/cs104

4

An	Opening	Example
• Consider	a	paper	phonebook

– Stores	names	of	people	and	their	phone	numbers

• What	operations	do	we	perform	with	this	data
– You:		Lookup/search
– Phone	Company:		Add,	Remove

• How	is	the	data	stored	and	ordered	and	why?
– Sorted	by	name	to	make	lookup	faster…
– How	fast?		That's	for	you	to	figure	out…

• What	if	it	was	sorted	by	phone	number	or	just	random?		What	
is	the	worst	case	number	of	records	you'd	have	to	look	at	to	
find	a	particular	persons	phone	number?

5

Opening	Example	(cont.)
• Would	it	ever	be	reasonable	to	have	the	phonebook	in	a	

random	or	unsorted	order?
– What	if	the	phonebook	was	for	the	residence	of	a	town	with	only	a	

few	residents
– What	if	there	was	a	phonebook	for	Mayflies	(life	expectancy	of	1-24	

hours)
• Might	want	to	optimize	for	additions	and	removals
• Plus,	a	mayfly	doesn't	have	fingers	to	dial	their	phones	so	why	would	they	
even	be	trying	to	search	the	phonebook

• Main	Point:		The	best	way	to	organize	data	depends	on	how	
it	will	be	used.
– Frequent	search
– Frequent	addition/removals
– Addition/removal	patterns	(many	at	once	or	one	at	a	time)

6

Why	Data	Structures	Matter?
• Modern	applications	process	vast	amount	of	data
• Adding,	removing,	searching,	and	accessing	are	common	operations
• Various	data	structures	allow	these	operations	to	be	completed	with	

different	time	and	storage	requirements

Data	Structure Insert Search Get-Min

Unsorted List O(1) O(n) O(n)

Balanced	Binary	
Search	Tree O(lg n) O(lg n) O(lg n)

Heap O(lg n) O(n) O(1)

Recall O(n) indicates that the actual run-time is bounded by some
expression a*n for some n > n0 (where a and n0 are constants)

7

Importance	of	Complexity

N O(1) O(log2n) O(n) O(n*log2n) O(n2) O(2n)

2 1 1 2 2 4 4

20 1 4.3 20 86.4	 400	 1,048,576	

200 1 7.6 200 1,528.8	 40,000	 1.60694E+60

2000 1 11.0 2000 21,931.6	 4,000,000	 #NUM!

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

N

Ru
n-
tim

e

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

N

Ru
n-

tim
e

N
N2

N*log2(N)

8

Abstract	Data	Types
• Beginning	programmers	tend	to	focus	on	the	code	and	less	on	the	data	

and	its	organization
• More	seasoned	programmers	focus	first	on

– What	data	they	have
– How	it	should	be	organized	
– How	it	will	be	accessed

• An	abstract	data	type describes	what	data	is	stored	and	what	operations	
are	to	be	performed

• A	data	structure	is	a	specific	way	of	storing	the	data	implementing	the	
operations

• Example	ADT:		List
– Data:	items	of	the	same	type	in	a	particular	order
– Operations:	insert,	remove,	get	item	at	location,	set	item	at	location,	find

• Example	data	structures	implementing	a	List:
– Linked	list,	array,	etc.

9

Transition	to	Object-Oriented
• Object-oriented	paradigm	fits	nicely	with	idea	of	ADTs

– Just	as	ADTs	focus	on	data	and	operations	performed	on	it	so	objects	
combine	data	+	functions

• Objects	(C++	Classes)	allows	for	more	legible,	modular,	
maintainable	code	units

• Suppose	you	and	a	friend	are	doing	an	electronic	dictionary	
app.		Your	friend	codes	the	dictionary	internals	and	you	code	
the	user-interface.
– You	don't	care	how	they	implement	it	just	that	it	supports	the	desired	

operations	and	is	fast	enough
– Abstraction:		Provides	a	simplified	interface	allowing	you	to	reason	

about	the	higher	level	logic	and	not	the	low	level	dictionary	ops.
– Encapsulation:		Shields	inside	from	outside	so	that	internals	can	be	

changed	w/o	affecting	code	using	the	object

10

Course	Goals

• Learn	about	good	programming	practice	with	object-
oriented	design
– Learn	good	style	and	more	advanced	C++	topics	such	as	
templates,	inheritance,	polymorphism,	etc.

• Learn	basic	and	advanced	techniques	for	
implementing	data	structures	and	analyzing	their	
efficiency
– May	require	strong	fundamentals	including	mathematical	
analysis

– This	is	why	we	couple	CS	104	and	CS	170

11

MEMORY	ALLOCATION	REVIEW
VARIABLES	&	SCOPE

12

A	Program	View	of	Memory
• Code	usually	sits	at	low	addresses
• Global	variables	somewhere	after	code
• System	stack	(memory	for	each	function	instance	

that	is	alive)
– Local	variables
– Return	link	(where	to	return)
– etc.	

• Heap:	Area	of	memory	that	can	be	allocated	and	
de-allocated	during	program	execution	(i.e.	
dynamically	at	run-time)	based	on	the	needs	of	
the	program

• Heap	grows	downward,	stack	grows	upward…
– In	rare	cases	of	large	memory	usage,	they	could	

collide	and	cause	your	program	to	fail	or	generate	
an	exception/error

Memory

…

…

…

Code

Stack
(area for

data local to
a function)

Globals

0

…

Heap

fffffffc

13

Variables	and	Static	Allocation
• Every	variable/object	in	a	computer	has	

a:
– Name	(by	which	programmer references	it)

– Address	(by	which	computer references	it)

– Value
• Let's	draw	these	as	boxes
• Every	variable/object	has	scope (its	

lifetime	and	visibility	to	other	code)
• Automatic/Local	Scope

– {…}	of	a	function,	loop,	or	if
– Lives	on	the	stack
– Dies/Deallocated when	the	'}'	is	

reached

• Let's	draw	these	as	nested	
container	boxes

int x;

string s1("abc"); -154729832

x
0x1a0

3

s1
0x1a4 "abc"

Code Computer

int main()
{

int x;
if(x){

string s1("abc");
}

}

-154729832

x
0x1a0

3

s1
0x1a4 "abc"

main

if

14

Automatic/Local	Variables
• Variables	declared	inside	{…}	are	allocated	on	

the	stack
• This	includes	functions

// Computes rectangle area,
// prints it, & returns it
int area(int, int);
void print(int);

int main()
{

int wid = 8, len = 5, a;
a = area(wid,len);

}

int area(int w, int l)
{

int ans = w * l;
print(ans);
return ans;

}

void print(int area)
{

cout << “Area is “ << area;

cout << endl;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120 Return
link

0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0 Return
link

0xbec

40 area0xbd8

004001844 Return
link

0xbdc

40 ans0xbe0

print

cout

15

Memory (RAM)

…

main:
(a, x=8,y=3)

Scope	Example
• Globals live	as	long	as	

the	program	is	running
• Variables	declared	in	a	

block	{	…	}	live	as	long	as	
the	block	has	not	
completed

– {	…	}	of	a	function
– {	…	}	of	a	loop,	if	statement,	

etc.

• When	variables	share	the	
same	name	the	closest	
declaration	will	be	used	by	
default

…

Code

Globals
x = 5

0

…

Heap

fffffffc

Address#include <iostream>
using namespace std;

int x = 5;

int main()
{

int a, x = 8, y = 3;
cout << “x = “ << x << endl;
for(int i=0; i < 10; i++){

int j = 1;
j = 2*i + 1;
a += j;

}
a = doit(y);
cout << “a=“ << a ;
cout << “y=“ << y << endl;
cout << “glob. x” << ::x << endl;

}

int doit(int x)
{

x--;
return x;

}

…

main:
(a=, x=8,y=3)

((i, j))

…

main:
(a=121, x=8,y=3)

doit:
(x= 3=>2)

…

main:
(a=2, x=8,y=3)

16

POINTERS	&	REFERENCES

17

Pointers	in	C/C++
• Generally	speaking	a	"reference"	can	be	a	pointer	or	a	C++	Reference
• Pointer	(type	*)

– Really	just	the	memory	address	of	a	variable
– Pointer	to	a	data-type	is	specified	as	type	*	(e.g.	int *)
– Operators:	&	and	*

• &object	=>	address-of	object
• *ptr =>	object	located	at	address	given	by	ptr
• *(&object)	=>	object	[i.e.	*	and	&	are	inverse	operators	of	each	other]

• Example

int* p, *q;
int i, j;

i = 5; j = 10;
p = &i;
cout << p << endl;
cout << *p << endl;
*p = j;
*q = *p // Undefined
q = p;

q0xbe4

5 i0xbe8

10 j0xbec

p0xbe0 0xbe8 p0xbe0

0xbe8

5

10 i0xbe8

Undefined

0xbe8 q0xbe4

18

Pointer	Notes
• An	uninitialized	pointer	is	a	pointer	just	waiting	to	cause	a	SEGFAULT
• NULL (defined	in	<cstdlib>)	or	now	nullptr (in	C++11)	are	keywords	for	

values	you	can	assign	to	a	pointer	when	it	doesn't	point	to	anything
– NULL	is	effectively	the	value	0	so	you	can	write:

int* p = NULL;

if(p)
{ /* will never get to this code */ }

– To	use	nullptr compile	with	the	C++11	version:
$	g++	-std=c++11	–g	–o	test	test.cpp

• An	uninitialized	pointer	is	a	pointer	waiting	to	cause	a	SEGFAULT

19

Check	Yourself
• Consider	these	declarations:

– int k,	x[3]	=	{5,	7,	9};
– int *myptr =	x;
– int **ourptr =	&myptr;

• Indicate	the	formal	type	that	
each	expression	evaluates	to	
(i.e.	int,	int *,	int **)

Expression Type

x[0]

x

myptr

*myptr

(*ourptr)	+	1

myptr +	2

ourptr

To figure out the type of data a pointer expression will
yield…Take the type of pointer in the declaration and
let each * in the expression 'cancel' one of the *'s in

the declaration

Type Expr Yields

myptr =	int* *myptr int

ourptr =	int** **ourptr int

ourptr int

20

References	in	C/C++
• Reference	type	(type	&)
• “Syntactic	sugar”	to	make	it	so	you	don't	have	to	use	pointers

– Probably	really	using/passing	pointers	behind	the	scenes
• Declare	a	reference	to	an	object	as	type& (e.g.	int &)
• Must	be	initialized	at	declaration	time	(i.e.	can’t	declare	a	reference	

variable	if	without	indicating	what	object	you	want	to	reference)
– Logically,	C++	reference	types	DON'T	consume	memory…they	are	just	an	alias	

(another	name)	for	the	variable	they	reference
– Physically,	it	may	be	implemented	as	a	pointer	to	the	referenced	object	but	

that	is	NOT	your	concern
• Cannot	change	what	the	reference	variable	refers	to	once	initialized

21

Using	C++	References
• Can	use	it	within	the	same	function
• A	variable	declared	with	an	‘int &’	

doesn’t	store	an	int,	but	is	an	alias	for	
an	actual	variable

• MUST	assign	to	the	reference	variable	
when	you	declare	it.

int main()
{

int y = 3, *ptr;
ptr = &y; // address-of

// operator

int &z; // NO! must assign

int &x = y; // reference
// declaration

// we’ve not copied
// y into x
// we’ve created an alias
// Now x can never reference
// any other int…only y!

x++; // y just got incr.
cout << y << endl;
return 0;

}
y

3

x

3

y

0x1a0

ptr

0x1a0

With Pointers With References
- Logically

0x1a0

22

Swap	Two	Variables
• Pass-by-value	=>	Passes	a	copy
• Pass-by-reference	=>

– Pass-by-pointer/address	=>	Passes	address	of	actual	variable
– Pass-by-reference	=>	Passes	an	alias	to	actual	variable	(likely	its	really	

passing	a	pointer	behind	the	scenes	but	now	you	don't	have	to	
dereference	everything)

int main()
{

int x=5,y=7;
swapit(x,y);
cout <<“x,y=“<< x<<“,”<< y;
cout << endl;

}

void swapit(int x, int y)
{

int temp;
temp = x;
x = y;
y = temp;

}

int main()
{

int x=5,y=7;
swapit(&x,&y);
cout <<“x,y=“<< x<<“,”<< y;
cout << endl;

}

void swapit(int *x, int *y)
{

int temp;
temp = *x;
*x = *y;
*y = temp;

}

program output: x=5,y=7 program output: x=7,y=5

int main()
{

int x=5,y=7;
swapit(x,y);

cout <<“x,y=“<< x<<“,”<< y;
cout << endl;

}

void swapit(int &x, int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}

program output: x=7,y=5

23

Correct	Usage	of	Pointers
• Can	use	a	pointer	to	have	a	function	

modify	the	variable	of	another

// Computes rectangle area,
// prints it, & returns it
void area(int, int, int*);

int main()
{

int wid = 8, len = 5, a;
area(wid,len,&a);

}

void area(int w, int l, int* p)
{

*p = w * l;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120 Return
link

0xbfc

area 5 l0xbe4

0xbf8 p0xbe8

004000ca0 Return
link

0xbec

8 w0xbe0

40

24

Misuse	of	Pointers
• Make	sure	you	don't	return	a	pointer	to	a	

dead	variable
• You	might	get	lucky	and	find	that	old	value	

still	there,	but	likely	you	won't

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);

int main()
{

int wid = 8, len = 5, *a;
a = area(wid,len);
cout << *a << endl;

}

int* area(int w, int l)
{

int ans = w * l;

return &ans;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120 Return
link

0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0 Return
link

0xbec

40 ans0xbe0

0xbe0

25

Use	of	C++	References
• We	can	pass	using	C++	reference
• The	reference	'ans'	is	just	an	alias	for	'a'	

back	in	main
– In	memory,	it	might	actually	be	a	pointer,	but	you	don't	

have	to	dereference	(the	kind	of	stuff	you	have	to	do	
with	pointers)

// Computes rectangle area,
// prints it, & returns it
void area(int, int, int&);

int main()
{

int wid = 8, len = 5, a;
area(wid,len,a);

}

void area(int w, int l, int& ans)
{

ans = w * l;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120 Return
link

0xbfc

area 5 l0xbe4

?0xbf8? ans0xbe8

004000ca0 Return
link

0xbec

8 w0xbe0

40 =ans

26

Pass-by-Value	vs.	-Reference

• Arguments	are	said	to	be:
– Passed-by-value:	A	copy	is	made	from	one	function	and	
given	to	the	other

– Passed-by-reference:		A	reference	(really	the	address)	to	
the	variable	is	passed	to	the	other	function

• Care	needs	to	be	taken	when	choosing	between	the	
options

Pass-by-Value	Benefits Pass-by-Reference	Benefits

+	Protects the	variable	in	the	caller	
since	a	copy	is	made	(any	
modification	doesn’t	affect	the	
original)

+	Allows	another function	to	modify	
the	value	of	variable	in	the	caller
+	Saves	time	vs.	copying

27

Pass	by	Reference
• Notice	no	copy	of	x	need	be	made	

since	we	pass	it	to	sum()	by	reference
– Notice	that	likely	the	computer	passes	the	address	

to	sum()	but	you	should	just	think	of	dat as	an	alias	
for	x

// Computes rectangle area,
// prints it, & returns it
int sum(const vector<int>&);

int main()
{

int result;
vector<int> x = {1,2,3,4};
result = sum(x);

}

int sum(const vector<int>& dat)
{

int s = 0;
for(int i=0; i < dat.size(); i++)
{

sum += dat[i];
}
return s;

}

Stack Area of RAM

1 x0xbf0

main 20xbf4

…0xbf8

00400120 Return
link

0xb??

sum 0 s0xbe0

?0xbf0? dat0xbe4

004000ca0 Return
link

0xbe8

0 sum0xbec

= dat

28

Pointers	vs.	References

• How	to	tell	references	and	pointers	apart
– Check	if	you	see	the	'&'	or	'*'	in	a	type	declaration	
or	expression

Type Expression
& C++	Reference	Var

(int &val,	vector<int>	&vec)
Address-of	(yields	a	pointer)
&val =>	int *,	&vec =	vector<int>*

* Pointer
(int *valptr =	&val,	vector<int>	
*vecptr =	&vec)

De-Reference (Value	@	address)
*valptr =>	val
*vecptr =>	vec

29

DYNAMIC	ALLOCATION

30

Dynamic	Memory	&	the	Heap
• Code	usually	sits	at	low	addresses
• Global	variables	somewhere	after	code
• System	stack	(memory	for	each	function	instance	

that	is	alive)
– Local	variables
– Return	link	(where	to	return)
– etc.	

• Heap:	Area	of	memory	that	can	be	allocated	and	
de-allocated	during	program	execution	(i.e.	
dynamically	at	run-time)	based	on	the	needs	of	
the	program

• Heap	grows	downward,	stack	grows	upward…
– In	rare	cases	of	large	memory	usage,	they	could	

collide	and	cause	your	program	to	fail	or	generate	
an	exception/error Memory

…

…

…

Code

Stack
(area for

data local to
a function)

Globals

0

…

Heap

fffffffc

31

Motivation
Automatic/Local	Variables
• Deallocated (die)	when	they	

go	out	of	scope
• As	a	general	rule	of	thumb,	

they	must	be	statically	sized	
(size	is	a	constant	known	at	
compile	time)
– int data[100];

Dynamic	Allocation
• Persist	until	explicitly	

deallocated by	the	program	
(via	‘delete’)

• Can	be	sized	at	run-time
– int size;

cin >>	size;
int *data	=	new	int[size];

32

C	Dynamic	Memory	Allocation
• void*	malloc(int num_bytes)	function	in	stdlib.h

– Allocates	the	number	of	bytes	requested	and	returns	a	pointer	to	the	block	of	
memory

– Use	sizeof(type)	macro	rather	than	hardcoding	4	since	the	size	of	an	int may	
change	in	the	future	or	on	another	system

• free(void	*	ptr) function
– Given	the	pointer	to	the	(starting	location	of	the)	block	of	memory,	free	returns	it	to	the	

system	for	re-use	by	subsequent	malloc calls

#include <iostream>
#include <cstdlib>

using namespace std;

int main(int argc, char *argv[])
{

int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = (int*) malloc(num*sizeof(int));
// can now access scores[0] .. scores[num-1];

free(scores);
return 0;

}

33

C++ new &	delete operators
• new allocates	memory	from	heap

– followed	with	the	type	of	the	variable	you	want	or	an	array	type	declaration
• double *dptr = new double;

• int *myarray = new int[100];

– can	obviously	use	a	variable	to	indicate	array	size
– returns	a	pointer	of	the	appropriate	type	

• if	you	ask	for	a	new	int,	you	get	an	int *	in	return
• if	you	ask	for	a	new		array	(new	int[10]),	you	get	an	int *	in	return]

• delete returns	memory	to	heap
– followed	by	the	pointer	to	the	data	you	want	to	de-allocate

• delete dptr;

– use	delete [] for	pointers	to	arrays
• delete [] myarray;

34

Dynamic	Memory	Allocation
int main(int argc, char *argv[])
{

int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = new int[num];
// can now access scores[0] .. scores[num-1];
return 0;

}

Memory

20bc4
20bc8
20bcc
20bd0

20bc0 00
00
00
00
00

…

…

…
Code

local vars

Globals

0

…

Heap

fffffffc

scores[0]

new
allocates:

scores[4]

scores[1]
scores[2]
scores[3]

int main(int argc, char *argv[])
{

int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = new int[num];
// can now access scores[0] .. scores[num-1];
delete [] scores
return 0;

}

35

Fill	in	the	Blanks
• ________		data	=	new	int;

• ________		data	=	new	char;

• ________		data	=	new	char[100];

• ________		data	=	new	char*[20];

• ________		data	=	new	vector<string>;

• ________	data	=	new	Student;

36

Fill	in	the	Blanks
• ________		data	=	new	int;

– int*

• ________		data	=	new	char;
– char*

• ________		data	=	new	char[100];
– char*

• ________		data	=	new	char*[20];
– char**

• ________		data	=	new	vector<string>;
– vector<string>*

• ________	data	=	new	Student;
– Student*

37

Dynamic	Allocation
• Dynamic	Allocation

– Lives	on	the	heap
• Doesn't	have	a	name,	only	pointer/address	to	it

– Lives	until	you	'delete'	it
• Doesn't	die	at	end	of	function	

(though	pointer	to	it	may)

• Let's	draw	these	as	boxes	in	the	heap	area

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);

int main()
{
int wid = 8, len = 5, *a;
a = area(wid,len);
cout << *a << endl;
delete a;

}

int* area(int w, int l)
{
int* ans = new int;
*ans = w * l;
return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120 Return
link

0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0 Return
link

0xbec

0x93c ans0xbe0

Heap Area of RAM

400x93c

38

Dynamic	Allocation
• Dynamic	Allocation

– Lives	on	the	heap
• Doesn't	have	a	name,	only	pointer/address	to	it

– Lives	until	you	'delete'	it
• Doesn't	die	at	end	of	function	

(though	pointer	to	it	may)

• Let's	draw	these	as	boxes	in	the	heap	area

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);

int main()
{
int wid = 8, len = 5, *a;
a = area(wid,len);
cout << *a << endl;
delete a;

}

int* area(int w, int l)
{
int* ans = new int;
*ans = w * l;
return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

0x93c a0xbf8

00400120 Return
link

0xbfc

Heap Area of RAM

400x93c

39

Dynamic	Allocation
• Dynamic	Allocation

– Lives	on	the	heap
• Doesn't	have	a	name,	only	pointer/address	to	it

– Lives	until	you	'delete'	it
• Doesn't	die	at	end	of	function	

(though	pointer	to	it	may)

• Let's	draw	these	as	boxes	in	the	heap	area

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);
void print(int);

int main()
{
int wid = 8, len = 5, a;
area(wid,len);

}

int* area(int w, int l)
{
int* ans = new int;
*ans = w * l;
return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120 Return
link

0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0 Return
link

0xbec

0x93c ans0xbe0

Heap Area of RAM

400x93c

40

Dynamic	Allocation
• Dynamic	Allocation

– Lives	on	the	heap
• Doesn't	have	a	name,	only	pointer/address	to	it

– Lives	until	you	'delete'	it
• Doesn't	die	at	end	of	function	

(though	pointer	to	it	may)

• Let's	draw	these	as	boxes	in	the	heap	area

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);
void print(int);

int main()
{
int wid = 8, len = 5, a;
area(wid,len);

}

int* area(int w, int l)
{
int* ans = new int;
*ans = w * l;
return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120 Return
link

0xbfc

Heap Area of RAM

400x93c

MEMORY	LEAK

No	one	saved	a	pointer	
to	this	data

41

Dynamic	Allocation
• Dynamic	Allocation

– Lives	on	the	heap
• Doesn't	have	a	name,	only	pointer/address	to	it

– Lives	until	you	'delete'	it
• Doesn't	die	at	end	of	function	

(though	pointer	to	it	may)

• Let's	draw	these	as	boxes	in	the	heap	area

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);

int main()
{
int wid = 8, len = 5, a;
area(wid,len);

}

int* area(int w, int l)
{
int* ans = new int;
ans = &w;
return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120 Return
link

0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0 Return
link

0xbec

0x93c ans0xbe0

Heap Area of RAM

400x93c

42

Dynamic	Allocation
• Be	sure	you	keep	a	pointer	around	somewhere	

otherwise	you'll	have	a	memory	leak
// Computes rectangle area,
// prints it, & returns it
int* area(int, int);

int main()
{
int wid = 8, len = 5, a;
area(wid,len);

}

int* area(int w, int l)
{
int* ans = new int;
ans = &w;
return ans;

}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120 Return
link

0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0 Return
link

0xbec

0xbe4 ans0xbe0

Heap Area of RAM

400x93c

MEMORY	LEAK

Lost	pointer	to	this	data

43

Dynamic	Allocation
• The	LinkedList object	is	allocated	as	a	

static/local	variable
– But	each	element	is	allocated	on	the	heap

• When	y	goes	out	of	scope	only	the	data	
members	are	deallocated

– You	may	have	a	memory	leak

// Linked List example

struct Item {
int val;
Item* next;

};
class LinkedList {
public:
void push_back(int v);
private:
Item* head;

};
int main()
{
addData();

}

void addData()
{
LinkedList y;
y.push_back(3);
y.push_back(5);

}

Stack Area of RAM

main

00400120 Return
link

0xbfc

addData

0x93c y0xbe8

004000ca0 Return
link

0xbec

Heap Area of RAM

3
0x93c

0x748

50x748

0

MEMORY	LEAK

When	y	is	deallocated we	have	
no	pointer	to	the	data

44

Dynamic	Allocation
• The	LinkedList object	is	allocated	as	a	static/local	

variable
– But	each	element	is	allocated	on	the	heap

• When	x	goes	out	of	scope	only	the	data	members	
are	deallocated

– You	may	have	a	memory	leak

// LinkedList example

struct Item {
int val;
Item* next;

};
class LinkedList {
public:
void push_back(int v);
private:
Item* head;

};
int main()
{
addData();

}

void addData()
{
LinkedList y;
y.push_back(3);
y.push_back(5);

}

Stack Area of RAM

main

00400120 Return
link

0xbfc

Heap Area of RAM

3
0x93c

0x748

50x748

0

MEMORY	LEAK

When	y	is	deallocated we	have	
no	pointer	to	the	data

An Appropriate Destructor Will Help Solve This

45

PRACTICE	ACTIVITIES

46

Object	Assignment
• Assigning	one	struct or	class	object	to	another	will	
cause	an	element	by	element	copy	of	the	source	data	
destination	struct or	class

Memory

0x01
…

0x4F
0x50
0x54

0x00 ‘B’
‘i’
…
00
5
1

…

…

s1

…

#include<iostream>
using namespace std;

enum {CS, CECS };

struct student {
char name[80];
int id;
int major;

};

int main(int argc, char *argv[])
{
student s1;
strncpy(s1.name,”Bill”,80);
s1.id = 5; s1.major = CS;

student s2 = s1;

return 0;
}

name

id
major

‘B’
‘i’
…
00
5
1

name

id
major

s2

47

Memory	Allocation	Tips

• Take	care	when	returning	a	pointer	or	reference	that	
the	object	being	referenced	will	persist	beyond	the	
end	of	a	function

• Take	care	when	assigning	a	returned	referenced	
object	to	another	variable…you	are	making	a	copy

• Try	the	examples	yourself
– $	wget http://ee.usc.edu/~redekopp/cs104/memref.cpp

48

Understanding	Memory	Allocation

class Item
{ public:

Item(int w, string y);
};
Item buildItem()
{ Item x(4, “hi”);

return x;
}

int main()
{ Item i = buildItem();

// access i’s data.

}

class Item
{ public:

Item(int w, string y);
};
Item& buildItem()
{ Item x(4, “hi”);

return x;
}

int main()
{ Item& i = buildItem();

// access i’s data
}

class Item
{ public:

Item(int w, string y);

};
Item* buildItem()
{ Item* x = new Item(4,“hi”);

return x;
}

int main()
{ Item *i = buildItem();

// access i’s data

}

There are no syntax errors. Which of these can correctly build an Item and then
have main() safely access its data

ex1 ex2 ex3

main 4 i0xbf4

"hi"0xbf8

00400120 Return
link

0xbfc

Build
Item 4 x0xbe4

"hi"0xbe8

004000ca0 Return
link

0xbec

main

0xbe40xbf8

00400120 Return
link

0xbfc

Build
Item 4 x0xbe4

"hi"0xbe8

004000ca0 Return
link

0xbec

i
main

0x93c0xbf8

00400120 Return
link

0xbfc

Build
Item

0x93c0xbe8

004000ca0 Return
link

0xbec

i

x

Item
on

Heap

49

Understanding	Memory	Allocation
class Item
{ public:

Item(int w, string y);

};
Item* buildItem()
{ Item x(4, “hi”);

return &x;
}

int main()
{ Item *i = buildItem();

// access i’s data

}

class Item
{ public:

Item(int w, string y);

};
Item& buildItem()
{ Item* x = new Item(4,“hi”);

return *x;
}

int main()
{ Item& i = buildItem();
// access i’s data

}

There are no syntax errors. Which of these can correctly build an Item and then
have main() safely access its data

ex4 ex5

main …

i

0xbf4

0xbe40xbf8

00400120 Return
link

0xbfc

Build
Item … x0xbe4

"hi"0xbe8

004000ca0 Return
link

0xbec

main …

i

0xbf4

? 0x93c ?0xbf8

00400120 Return
link

0xbfc

Build
Item

x0x93c0xbe8

004000ca0 Return
link

0xbec

Item
on

Heap

50

Understanding	Memory	Allocation
class Item
{ public:

Item(int w, string y);
};
Item& buildItem()
{ Item* x = new Item(4,“hi”);

return *x;
}

int main()
{ Item i = buildItem();

// access i’s data.

}

class Item
{ public:

Item(int w, string y);

};
Item& buildItem()
{ Item* x = new Item(4,“hi”);

return *x;
}

int main()
{ Item &i = buildItem();
// access i’s data

}

class Item
{ public:

Item(int w, string y);
};
Item& buildItem()
{ Item* x = new Item(4,“hi”);

return *x;
}

int main()
{ Item *i = &(buildItem());

// access i’s data.

}ex6 ex7 ex8

main 4 i0xbf4

"hi"0xbf8

00400120 Return
link

0xbfc

Build
Item

x0x93c0xbe8

004000ca0 Return
link

0xbec

main …

i

0xbf4

0x93c0xbf8

00400120 Return
link

0xbfc

Build
Item

x0x93c0xbe8

004000ca0 Return
link

0xbec

main …

i

0xbf4

? 0x93c ?0xbf8

00400120 Return
link

0xbfc

Build
Item

x0x93c0xbe8

004000ca0 Return
link

0xbec

Item
on

Heap

Item
on

Heap

Item
on

Heap

51

C++	LIBRARY	REVIEW
(END	LECTURE	1	SLIDES)

You	are	responsible	for	this	on	your	own	since	its	covered	in	CS103

52

C++	Library

• String
• I/O	Streams
• Vector

53

C	Strings

• In	C,	strings	are:
– Character	arrays	(char	mystring[80])
– Terminated	with	a	NULL	character
– Passed	by	reference/pointer	(char	*)	to	functions
– Require	care	when	making	copies

• Shallow	(only	copying	the	pointer)	vs.	
Deep	(copying	the	entire	array	of	characters)

– Processed	using	C	String	library	(<cstring>)	

54

String	Function/Library	(cstring)
• int strlen(char	*dest)
• int strcmp(char	*str1,	char	*str2);

– Return	0	if	equal,	>0	if	first	non-equal	char	in	str1	is	alphanumerically	
larger,	<0	otherwise

• char	*strcpy(char	*dest,	char	*src);
– strncpy(char	*dest,	char	*src,	int n);	
– Maximum	of	n	characters	copied

• char	*strcat(char	*dest,	char	*src);
– strncat(char	*dest,	char	*src,	int n);
– Maximum	of	n	characters	concatenated	plus	a	NULL

• char	*strchr(char	*str,	char	c);
– Finds	first	occurrence	of	character	‘c’	in	str returning	a	pointer	to	that	

character	or	NULL	if	the	character	is	not	found

#include <cstring>
using namespace std;
int main() {

char temp_buf[5];
char str[] = "Too much";
strcpy(temp_buf, str);
strncpy(temp_buf, str, 4);
temp_buf[4] = '\0'
return 0;

}

In	C,	we	have	to	pass	the	C-String	
as	an	argument	for	the	function	

to	operate	on	it

55

C++	Strings

• So	you	don't	like	remembering	all	these	details?
– You	can	do	it!		Don't	give	up.

• C++	provides	a	'string'	class	that	abstracts all	
those	worrisome	details	and	encapsulates all	the	
code	to	actually	handle:
– Memory	allocation	and	sizing
– Deep	copy
– etc.

56

String	Examples
• Must:

– #include	<string>
– using	namespace	std;

• Initializations	/	Assignment
– Use	initialization	constructor
– Use	‘=‘	operator
– Can	reassign	and	all	memory	allocation	

will	be	handled

• Redefines	operators:
– +	(concatenate	/	append)
– +=	(append)
– ==,	!=,	>,	<,	<=,	>=	(comparison)
– []	(access	individual	character)

#include <iostream>
#include <string>
using namespace std;

int main(int argc, char *argv[]) {
int len;
string s1("CS is ");
string s2 = "fun";

s2 = "really fun";

cout << s1 << " is " << s2 << endl;
s2 = s2 + “!!!”;
cout << s2 << endl;
string s3 = s1;
if (s1 == s3){

cout << s1 << " same as " << s3;
cout << endl;

}
cout << “First letter is “ << s1[0];
cout << endl;

}

CS is really fun
really fun!!!
CS is same as CS is
First letter is C

Output:

http://www.cplusplus.com/reference/string/string/

57

More	String	Examples
• Size/Length	of	string
• Get	C	String	(char	*)	equiv.
• Find	a	substring

– Searches	for	occurrence	of	a	substring
– Returns	either	the	index	where	the	

substring	starts	or	string::npos
– std::npos is	a	constant	meaning	‘just	

beyond	the	end	of	the	string’…it’s	a	
way	of	saying	‘Not	found’

• Get	a	substring
– Pass	it	the	start	character	and	the	

number	of	characters	to	copy
– Returns	a	new	string

• Others:	replace,	rfind,	etc.

#include <iostream>
#include <string>
using namespace std;

int main(int argc, char *argv[]) {
string s1(“abc def”);
cout << "Len of s1: " << s1.size() << endl;

char my_c_str[80];
strcpy(my_c_str, s1.c_str());
cout << my_c_str << endl;

if(s1.find(“bc d”) != string::npos)
cout << “Found bc_d starting at pos=”:
cout << s1.find(“bc_d”) << endl;

found = s1.find(“def”);
if(found != string::npos){

string s2 = s1.substr(found,3)
cout << s2 << endl;

}
}

Len of s1: 7
abc def
The string is: abc def
Found bc_d starting at pos=1
def

Output:

http://www.cplusplus.com/reference/string/string/

58

C++	Strings

• Why	do	we	need	the	string	class?
– C	style	strings	are	character	arrays	(char[])

• See	previous	discussion	of	why	we	don't	like	arrays

– C	style	strings	need	a	null	terminator	('\0')
“abcd”	 is	actually	a	char[5]	…	Why?

– Stuff	like	this	won't	compile:
char	my_string[7]	=	“abc”	+	“def”;

• How	can	strings	help?
– Easier	to	use,	less	error	prone
– Has	overloaded	operators	like	+,	=,	[],	etc.
– Lots	of	built-in	functionality	(e.g.	find,	substr,	etc.)

59

C++	Streams
• What	is	a	“stream”?

– A	sequence	of	characters	or	bytes	(of	potentially	infinite	length)	used	for	input	
and	output.

• C++	has	four	major	libraries	we	will	use	for	streams:
– <iostream>
– <fstream>
– <sstream>
– <iomanip>

• Stream	models	some	input	and/or	output	device
– fstream =>	a	file	on	the	hard	drive;	
– cin =>	keyboard	and	cout =>	monitor

• C++	has	two	operators	that	are	used	with	streams
– Insertion	Operator	“<<”
– Extraction	Operator	“>>”

60

C++	I/O	Manipulators
• The	<iomanip>	header	file	has	a	number	of	“manipulators”	to	

modify	how	I/O	behaves
– Alignment:	internal,	left,	right,	setw,	setfill
– Numeric:	setprecision,	fixed,	scientific,	showpoint
– Other:	endl,	ends,	flush,	etc.
– http://www.cplusplus.com/reference/iostream/manipulators/

• Use	these	inline	with	your	cout/cerr/cin statements
– double	pi	=	3.1415;
– cout <<	setprecision(2)	<<	fixed	<<	pi	<<	endl;

61

Understanding	Extraction

int x=0;

cout << “Enter X: “;

cin >> x;

int y = 0;

cout << “Enter Y: “;

cin >> y;

X =

cin =

X = cin =

X =

cin =

cin.fail() is false

Y = cin =

Y = cin =

Y = cin =

cin.fail() is false

● User enters value “512” at 1st prompt, enters “123” at 2nd prompt

0

0

512

5 1 2 \n

\n

0

0

123

\n 1 2 3 \n

\n

\n

62

int x=0;

cout << “Enter X: “;

cin >> x;

int y = 0;

cout << “Enter Y: “;

cin >> y;

● User enters value “23 99” at 1st prompt, 2nd prompt skipped

X =

cin =

X = cin =

X =

cin =

cin.fail() is false

Y = cin =

Y = cin =

Y = cin =
cin.fail() is false

0

0

23

2 3 9

0

0

99

9 \n

9 9 \n

9 9 \n

9 9 \n

\n

Understanding	Extraction

63

int x=0;

cout << “Enter X: “;

cin >> x;

int y = 0;

cout << “Enter Y: “;

cin >> y;

X =

cin =

X = cin =

X =

cin =

cin.fail() is false

Y = cin =

Y = cin =

Y = cin =

● User enters value “23abc” at 1st prompt, 2nd prompt fails

0

0

23

2 3 a b

0

0

xxx

c \n

a b c \n

a b c \n

a b c \n

a b c \n

cin.fail() is true

Understanding	Extraction

64

string x;

cout << “Enter X: “;

getline(cin,x);

● User enters value “23 99” at 1st prompt, everything read as string

X =

cin =

X = cin =

X =

cin =

cin.fail() is
false

NOTE: \n character is
discarded!

23 99

2 3 9 9 \n EOF

Understanding	Extraction

65

Understanding	cin
• Things	to	remember

– When	a	read	operation	on	cin goes	wrong,	the	fail	flag	is	set
– If	the	fail	flag	is	set,	all	reads	will	automatically	fail	right	away
– This	flag	stays	set	until	you	clear	it	using	the	cin.clear()	function
– cin.good()	returns	true	if	ALL	flags	are	false

• When	you're	done	with	a	read	operation	on	cin,	you	should	
wipe	the	input	stream
– Use	the	cin.ignore(...)	method	to	wipe	any	remaining	data	off	of	cin
– Example:		cin.ignore(1000,'\n');		cin.clear();

istream
(cin)

T/F

EOF BAD FAIL

T/F T/F

66

int y = 0;

cout << “Enter Y: “;

cin >> y;

cin.ignore(100, '\n');
// doing a cin >> here will
// still have the fail bit set

cin.clear();
// now safe to do cin >>

Y = cin =

Y = cin =

Y = cin =

● User enters value “23abc” at 1st prompt, 2nd prompt fails

0

0

xxx

a b c \n

a b c \n

a b c \n

cin.fail() is true

EOF

EOF

EOF

0

EOF BAD FAIL

0 1

0

EOF BAD FAIL

0 0

cin = EOF

cin = EOF

Understanding	Extraction

67

C++	File	I/O
• Use	<fstream>	library	for	reading/writing	files

– Use	the	open()	method	to	get	access	to	a	file
ofstream out;	//ofstream is	for	writing,	ifstream is	for	reading
out.open(“my_filename.txt”)	//must	be	a	C	style	string!

• Write	to	a	file	exactly	as	you	would	the	console!
– out	<<	“This	line	gets	written	to	the	file”	<<	endl;

• Make	sure	to	close	the	file	when	you're	done
– out.close();

• Use	fail()	to	check	if	the	file	opened	properly
– out.open(“my_filename.txt”)

– if(out.fail())	cerr <<	“Could	not	open	the	output	file!”;

68

Validating	User	Input
• Reading	user	input	is	easy,	validating	it	is	hard
• What	are	some	ways	to	track	whether	or	not	the	user	has	

entered	valid	input?
– Use	the	fail()	function	on	cin and	re-prompt	the	user	for	input
– Use	a	stringstream for	data	conversions	and	check	the	fail()	method	

on	the	stringstream
– Read	data	in	as	a	string	and	use	the	cctype header	to	validate	each	

character	(http://www.cplusplus.com/reference/clibrary/cctype/)
– for(int i=0;	i <	str.size();	i++)

if(!	isdigit(str[i]))		
cerr <<	“str is	not	a	number!”	<<	endl

69

C++	String	Stream

• If	streams	are	just	sequences	of	characters,	aren't	
strings	themselves	like	a	stream?
– The	<sstream>	library	lets	you	treat	C++	string	objects	like	
they	were	streams

• Why	would	you	want	to	treat	a	string	as	a	stream?
– Buffer	up	output	for	later	display
– Parse	out	the	pieces	of	a	string
– Data	type	conversions

• This	is	where	you'll	use	stringstream the	most!

• Very	useful	in	conjunction	with	string's	getline(...)

70

C++	String	Stream

• Convert	numbers	into	strings	(i.e.	12345	=>	"12345")
#include<sstream>

using namespace std;

int main()
{

stringstream ss;

int number = 12345;

ss << number;

string strNumber;

ss >> strNumber;

return 0;

}

sstream_test1.cpp

71

C++	String	Stream

• Convert	string	into	numbers	[same	as	atoi()]
#include<sstream>

using namespace std;

int main()
{

stringstream ss;

string numStr = “12345”;

ss << numStr;

int num;

ss >> num;

return 0;

}

sstream_test2.cpp

72

C++	String	Stream

• Beware	of	re-using	the	same	stringstream object	for	
multiple	conversions.		It	can	be	weird.
– Make	sure	you	clear	it	out	between	uses	and	re-init with	
an	empty	string

• Or	just	make	a	new	stringstream each	time
stringstream ss;

//do something with ss

ss.clear();

ss.str("");

// now you can reuse ss

// or just declare another stream
stringstream ss2;

73

C++	Arrays

• What	are	arrays	good	for?
– Keeping	collections	of	many	pieces	of	the	same	data	type	
(e.g.	I	want	to	store	100	integers)

– int n[100];

• Each	value	is	called	out	explicitly	by	its	index
– Indexes	start	at	0:

• Read	an	array	value:
– cout <<	“5th	value	=	“	<<	n[4]	<<	endl;

• Write	an	array	value
– n[2]	=	255;

74

C++	Arrays

• Unfortunately	C++	arrays	can	be	tricky...
– Arrays	need	a	contiguous	block	of	memory
– Arrays	are	difficult/costly	to	resize
– Arrays	don't	know	their	own	size
– You	must	pass	the	size	around	with	the	array
– Arrays	don't	do	bounds	checking
– Potential	for	buffer	overflow	security	holes

• e.g.	Twilight	Hack:	http://wiibrew.org/wiki/Twilight_Hack

– Arrays	are	not	automatically	initialized
– Arrays	can't	be	directly	returned	from	a	function
– You	have	to	decay	them	to	pointers

75

C++	Vectors

• Why	do	we	need	the	vector	class?
– Arrays	are	a	fixed	size.		Resizing	is	a	pain.
– Arrays	don't	know	their	size	(no	bounds	checking)
– This	compiles:

• int stuff[5];
• cout <<	stuff[-1]	<<	“	and	“	<<	stuff[100];

• How	can	vectors	help?
– Automatic	resizing	to	fit	data
– Sanity	checking	on	bounds
– They	do	everything	arrays	can	do,	but	more	safely	

• Sometimes	at	the	cost	of	performance

– See	http://www.cplusplus.com/reference/stl/

76

Vector	Class
• Container	class	(what	it	contains	

is	up	to	you	via	a	template)
• Mimics	an	array	where	we	have	

an	indexed	set	of	homogenous	
objects

• Resizes	automatically

#include <iostream>
#include <vector>

using namespace std;

int main()
{

vector<int> my_vec(5); // init. size of 5
for(unsigned int i=0; i < 5; i++){

my_vec[i] = i+50;
}
my_vec.push_back(10); my_vec.push_back(8);
my_vec[0] = 30;
unsigned int i;
for(i=0; i < my_vec.size(); i++){

cout << my_vec[i] << “ “;
}
cout << endl;

int x = my_vec.back(); // gets back val.
x += my_vec.front(); // gets front val.
// x is now 38;
cout << “x is “ << x << endl;
my_vec.pop_back();

my_vec.erase(my_vec.begin() + 2);
my_vec.insert(my_vec.begin() + 1, 43);
return 0;

}

my_vec 30

1
51 52 53 54 10 8

0 1 2 3 4

my_vec 50 51 52 53 54

0 1 2 3 4

5 6

my_vec 30 51 52 53 54

0 1 2 3 4 5

10

my_vec 43 51 53 54

0 1 2 3 4

10

2
3
4

1

2

3

4
5

30

77

Vector	Class
• constructor

– Can	pass	an	initial	number	of	items	or	leave	blank

• operator[]
– Allows	array	style	indexed	access	(e.g.	myvec[1]	+	myvec[2])

• push_back(T	new_val)
– Adds	a	copy of	new_val to	the	end	of	the	array	allocating	

more	memory	if	necessary

• size(),	empty()
– Size	returns	the	current	number	of	items	stored	as	an	

unsigned	int
– Empty	returns	True	if	no	items	in	the	vector

• pop_back()
– Removes	the	item	at	the	back	of	the	vector	(does	not	return	

it)

• front(),	back()
– Return	item	at	front	or	back

• erase(iterator)
– Removes	item	at	specified	index	

(use	begin()	+	index)

• insert(iterator,	T	new_val)
– Adds	new_val at	specified	index	(use	begin()	+	index)

#include <iostream>
#include <vector>

using namespace std;

int main()
{

vector<int> my_vec(5); // 5= init. size
for(unsigned int i=0; i < 5; i++){

my_vec[i] = i+50;
}
my_vec.push_back(10); my_vec.push_back(8);
my_vec[0] = 30;
for(int i=0; i < my_vec.size(); i++){

cout << my_vec[i] << “ “;
}
cout << endl;

int x = my_vec.back(); // gets back val.
x += my_vec.front(); // gets front val.
// x is now 38;
cout << “x is “ << x << endl;
my_vec.pop_back();

my_vec.erase(my_vec.begin() + 2);
my_vec.insert(my_vec.begin() + 1, 43);
return 0;

}

78

Vector	Suggestions
• If	you	don’t	provide	an	initial	size	to	the	

vector,	you	must	add	items	using	
push_back()

• When	iterating	over	the	items	with	a	
for	loop,	used	an	‘unsigned	int’

• When	adding	an	item,	a	copy	will	be	
made	to	add	to	the	vector

• []	or	at()	return	a	reference	to	an	
element,	not	a	copy	of	the	element

• Usually	pass-by-reference	if	an	
argument	to	avoid	the	wasted	time	of	
making	a	copy

#include <iostream>
#include <vector>

using namespace std;

int main()
{

vector<int> my_vec;
for(int i=0; i < 5; i++){

// my_vec[i] = i+50; // doesn’t work
my_vec.push_back(i+50);

}
for(unsigned int i=0;

i < my_vec.size();
i++)

{ cout << my_vec[i] << " "; }
cout << endl;

my_vec[1] = 5; my_vec.at(2) = 6;

do_something(myvec);

return 0;
}

void do_something(vector<int> &v)
{

// process v;

}

