CSCI 104

Rafael Ferreira da Silva

rafsilva@isi.edu

Slides adapted from: Mark Redekopp and David Kempe

Administrative Issues

Preparation

— Basic if, while, for constructs

— Arrays, linked-lists

— Structs, classes

— Dynamic memory allocation and pointers
— Recursion

e Syllabus

— http://bits.usc.edu/cs104
Expectations

— I'll give you my best, you give me yours...

e Attendance, participation, asking questions, academic integrity, take an
interest

— Treat CS104 right!
— Let's make this fun

More Helpful Links

 Remedial modules
— http://ee.usc.edu/~redekopp/csmodules.html

* Class website
— http://bits.usc.edu/cs104

An Opening Example

* Consider a paper phonebook
— Stores names of people and their phone numbers

* What operations do we perform with this data
— You: Lookup/search
— Phone Company: Add, Remove

* How is the data stored and ordered and why?
— Sorted by name to make lookup faster...

— How fast? That's for you to figure out...

 What if it was sorted by phone number or just random? What
is the worst case number of records you'd have to look at to
find a particular persons phone number?

. ()5 Viterbi >
Opening Example (cont.)

* Would it ever be reasonable to have the phonebook in a
random or unsorted order?

— What if the phonebook was for the residence of a town with only a
few residents

— What if there was a phonebook for Mayflies (life expectancy of 1-24
hours)

* Might want to optimize for additions and removals

* Plus, a mayfly doesn't have fingers to dial their phones so why would they
even be trying to search the phonebook

 Main Point: The best way to organize data depends on how
it will be used.
— Frequent search
— Frequent addition/removals
— Addition/removal patterns (many at once or one at a time)

R, IS(Viterbi -

School of Engineering

Why Data Structures Matter?

 Modern applications process vast amount of data
 Adding, removing, searching, and accessing are common operations

e Various data structures allow these operations to be completed with
different time and storage requirements

Unsorted List O(1) O(n) O(n)

Balanced Binary
Search Tree

Heap O(lg n) O(n) O(1)

O(lg n) O(lg n) O(lg n)

Recall O(n) indicates that the actual run-time is bounded by some
expression a*n for some n > n, (where a and n, are constants)

50

USC Viterbi -

School of Engineering

Importance of Complexity

451

40 |-

35|

301

25(.

Run-time

20}~

151

10

Run-time

350

300

250

200

150

100

50

0

N2
N*log2(N)

,‘i:ciii*i

nmmmm

20

200

2000

1 4.3
1 7.6
1 11.0

20

200

2000

86.4

1,528.8

21,931.6

400

40,000

4,000,000

1,048,576

1.60694E+60

#NUM!

— 5 \iterbi
Abstract Data Types

* Beginning programmers tend to focus on the code and less on the data
and its organization
* More seasoned programmers focus first on
— What data they have
— How it should be organized
— How it will be accessed

* An abstract data type describes what data is stored and what operations
are to be performed

* A data structure is a specific way of storing the data implementing the
operations

 Example ADT: List
— Data: items of the same type in a particular order
— Operations: insert, remove, get item at location, set item at location, find

 Example data structures implementing a List:

— Linked list, array, etc.

i, IS(™Viterbi -

School of Engineering

Transition to Object-Oriented

* Object-oriented paradigm fits nicely with idea of ADTs
— Just as ADTs focus on data and operations performed on it so objects
combine data + functions
* Objects (C++ Classes) allows for more legible, modular,
maintainable code units

* Suppose you and a friend are doing an electronic dictionary
app. Your friend codes the dictionary internals and you code
the user-interface.

— You don't care how they implement it just that it supports the desired
operations and is fast enough

— Abstraction: Provides a simplified interface allowing you to reason
about the higher level logic and not the low level dictionary ops.

— Encapsulation: Shields inside from outside so that internals can be
changed w/o affecting code using the object

Course Goals

* Learn about good programming practice with object-
oriented design
— Learn good style and more advanced C++ topics such as
templates, inheritance, polymorphism, etc.
* Learn basic and advanced techniques for
implementing data structures and analyzing their
efficiency

— May require strong fundamentals including mathematical
analysis

— This is why we couple CS 104 and CS 170

School of Engineering

MEMORY ALLOCATION REVIEW
VARIABLES & SCOPE

i, IS(™Viterbi 2

School of Engineering

A Program View of Memory

* Code usually sits at low addresses

* Global variables somewhere after code 0
e System stack (memory for each function instance Code
that is alive)
— Local variables cleliels
— Return link (where to return)
— etc. Heap

 Heap: Area of memory that can be allocated and
de-allocated during program execution (i.e. 1
dynamically at run-time) based on the needs of

the program
 Heap grows downward, stack grows upward... '
— In rare cases of large memory usage, they could (aSr(ta:chZr
collide and cause your program to fail or generate data local to
a function)

an exception/error fffffffc

Memory

i, IS(™Viterbi)

School of Engineering

Variables and Static Allocation

* Every variable/object in a computer has Code Computer
d.
— Name (by which programmer references it) int x: X
— Address (by which computer references it) string sl ("abc"); 0x1a0 | -154729832
— Value
s1
* Let's draw these as boxes 0x1a4 [3 | "ape"
* Every variable/object has scope (its
lifetime and visibility to other code) PR L main —
e Automatic/Local Scope { int x; 0x1a0 | .154729832
_ . . if(x){ .
{...} of a function, loop, or if ot el (el if
. s1
— Lives on the stack }
H n } Ox1a4 3 | "abc"
— Dies/Deallocated when the '} is

reached

e Let's draw these as nested
container boxes

——(()5 CVitcrbi
Automatic/Local Variables

* Variables declared inside {...} are allocated on /] Computes rectangle area,
the StaCk // prints it, & returns it
int area (int, int);
* This includes functions void print(int);
int main ()
Stack Area of RAM {
int wid = 8, len = 5, a;
cout a = area(wid, len);
}
Oxbd8
print 40 area int area(int w, int 1)
Oxbdc | 004001844 | Retum {
link .
int ans = w * 1;
print (ans) ;
0xbe0 40 ans return ans;
area | Oxbe4 8 w }
0Oxbe8 5 |
Ret void print (int area)
Oxbec | 004000ca0 | ~74" {
cout << “Area is “ << area;
0xbf0 8 wid cout << endl;
main | Oxbf4 5 len }
0xbf8 | .73249515 a

Oxbfc | oos00120 | Retum

i, IS(™Viterbi 9

Scope Example

Globals live as long as
the program is running

Variables declared in a
block { ... } live as long as
the block has not
completed

— {...} of afunction

— {..}ofaloop, if statement,
etc.

When variables share the
same name the closest
declaration will be used by
default

School of Engineering

#include <iostream>
using namespace std;

int x = 5;

int main ()

{
int a, x = 8, y = 3;
cout << “x = Y << x << endl;
for(int 1i=0; i < 10; i++){

int J = 1;
J o= 2*i + 1;
a += j;

}

a = doit(y);

cout << Z“a=“ << a ;

<< y << endl;

1ix << endl;

cout << “Wy=“
cout << “glob. x” <<

int doit (int x)
{

X==;

return x;

Address

0

Code

Globals
xX=5

Heap

Il

fffffffc

main:
(a=2, x=8,y=3)

Memory (RAM)

School of Engineering

POINTERS & REFERENCES

- USCViterbi @
Pointers in C/C++

* Generally speaking a "reference" can be a pointer or a C++ Reference
* Pointer (type *)
— Really just the memory address of a variable
— Pointer to a data-type is specified as type * (e.g. int *)
— Operators: & and *
* &object => address-of object

* *ptr => object located at address given by ptr
* *(&object) => object [i.e. * and & are inverse operators of each other]

* Example
int* p, *q; 0xbe0 p Oxbe0 0Oxbe8 p
int i, Jj;

Oxbe4

p = &1y
cout << p << endl; Oxbec 10 j 5
cout << *p << endl; .
*p o= 5; Oxbe8 10 |
*q = *p // Undefined -
g = p; Undefined

Oxbe4 Oxbe$8 q

] USCViterbi .
Pointer Notes

* An uninitialized pointer is a pointer just waiting to cause a SEGFAULT
* NULL (defined in <cstdlib>) or now nullptr (in C++11) are keywords for
values you can assign to a pointer when it doesn't point to anything
— NULL is effectively the value 0 so you can write:
int* p = NULL;
if(p)
{ /* will never get to this code */ }

— To use nullptr compile with the C++11 version:
S g++ -std=c++11 —g —o test test.cpp

* Anuninitialized pointer is a pointer waiting to cause a SEGFAULT

- USC\ﬁt)grbi ‘
Check Yourself

P 1 1 . To figure out the type of data a pointer expression will
CO nsi d er t h ese d ec I d rat 10NS: yield...Take the type of pointer in the declaration and
— intk, x[3] ={5, 7, 9}; let each * in the expression 'cancel' one of the *'s in

the declaration

— int *myptr =x;

— int **ourptr = &myptr; Type EXpr Yields
) myptr = int* *myptr int
* Indicate the formal type that — .
] ourptr = Int ourptr Int
each expression evaluates to *ourptr -

(i.e.int, int *, int **)

___ Boreson | ________Twe

x[0]
X
myptr
*myptr
(*ourptr) +1
myptr + 2

ourptr

- USC\ﬁtgrbi .
References in C/C++

* Reference type (type &)
* “Syntactic sugar” to make it so you don't have to use pointers

— Probably really using/passing pointers behind the scenes
* Declare a reference to an object as type& (e.g. int &)

 Must be initialized at declaration time (i.e. can’t declare a reference
variable if without indicating what object you want to reference)

— Logically, C++ reference types DON'T consume memory...they are just an alias
(another name) for the variable they reference

— Physically, it may be implemented as a pointer to the referenced object but
that is NOT your concern

* Cannot change what the reference variable refers to once initialized

P SC Viterbi 2
Using C++ References

e (Can use it within the same function

int main ()

{

* Avariable declared with an ‘int &’ it = By T
doesn’t store an int, but is an alias for e
an actual variable imit Ems /) WOl most sesdgm
 MUST assign to the reference variable S e
when you declare it. // we’ve not copied

// y into x

// we’ve created an alias

// Now x can never reference
// any other int..only y!

With Pointers With References
- Logically X++; // y just got incr.
cout << y << endl;
y y X return 0;
}

0x1a0 3 0x1a0 3

ptr

0x1a0

i, IS(™Viterbi 2

Swap Two Variables

e Pass-by-value => Passes a copy
* Pass-by-reference =>

— Pass-by-pointer/address => Passes address of actual variable

— Pass-by-reference => Passes an alias to actual variable (likely its really
passing a pointer behind the scenes but now you don't have to
dereference everything)

int main () int main () int main ()
{ { {
int x=5,y=7; int x=5,y=7; int x=5,y=7;
swapit(x,vy); swapit (&x, &y) ; swapit(x,vy);
cout <<Mx, y="<< x<<M, "< vy cout <<Mx, y="<< x<<M, "< vy cout <<Mx,y="<< x<<M, "< y;;
cout << endl; cout << endl; cout << endl;
} } }
void swapit (int x, int vy) void swapit (int *x, int *y) void swapit (int &x, int &y)
{ { {
int temp; int temp; int temp;
temp = x; temp = *x; temp = x;
X =y X = *y; X =y
y = temp; *y = temp; y = temp;
} } }

program output: x=5,y=7 program output: x=7,y=5 program output: x=7,y=5

i, IS(™Viterbi «

Correct Usage of Pointers

// Computes rectangle area,

e (Can use a pointer to have a function // prints it, & returns it
. . void area(int, int, int*);
modify the variable of another

int main ()

{
int wid = 8, len = 5, a;
area(wid, len, &a) ;

}
Stack Area of RAM

void area (int w, int 1, int* p)
{

*p:w*l;
}

Oxbe0 8 w
area | Oxbe4d 5 |
Oxbe8 0xbf8 p

Oxbec | 004000ca0 | R

0xbf0 8 wid

main | Oxbf4 A len

oxbfs [zaal %0 | g

Oxbfc | oos00120 | Retum

e — ()5 Vitcrbi
Misuse of Pointers

* Make sure you don't return a pointer to a S
dead variable // prints it, & returns it

int* area(int, int);

* You might get lucky and find that old value
still there, but likely you won't

int main ()

{
int wid = 8, len = 5, *a;
a = area(wid, len);
cout << *a << endl;

}
Stack Area of RAM

int* area(int w, int 1)

{

int = ® g
0xbe0 P ans int ans Y
return &ans;
area | Oxbe4 8 w }
Oxbe8 5 |

Oxbec | 004000ca0 | R

0xbf0 8 wid

main Oxbf4 [len

Oxbf8 }&OXbeO .

Oxbfc | oos00120 | Retum

i, IS(™Viterbi -«

Use of C++ References

. // Computes rectangle area,
* We can pass using C++ reference // prints it, & returns it

void area(int, int, 1inté&);

 The reference 'ans'is just an alias for 'a’

. . int main ()
back in main :
. . . , int wid = 8, len = 5, a;
— In memory, it might actually be a pointer, but you don't area (wid, len, a) :
have to dereference (the kind of stuff you have to do }
with pointers)
Stack Area of RAM void area(int w, int 1, inté& ans)
{
ans = w * 1;
0xbe0 8 w }
area Oxbe4 5 |
Oxbe8 | 20xbfg? ans =

Oxbec | 004000ca0 | R

0xbf0 8 wid

main Oxbf4 [len

0xbf8 }2. 40 a =ans

Oxbfc | oos00120 | Retum

R, IS(Viterbi

School of Engineering

Pass-by-Value vs. -Reference

* Arguments are said to be:
— Passed-by-value: A copy is made from one function and
given to the other

— Passed-by-reference: A reference (really the address) to
the variable is passed to the other function

Pass-by-Value Benefits Pass-by-Reference Benefits

+ Protects the variable in the caller + Allows another function to modify

since a copy is made (any the value of variable in the caller
modification doesn’t affect the + Saves time vs. copying
original)

e Care needs to be taken when choosing between the
options

i, IS(™Viterbi €

Pass by Reference

* Notice no copy of x need be made // Computes rectangle area,
// prints it, & returns it

since we pass it to sum() by reference | int sum(const vector<iness);

— Notice that likely the computer passes the address Sl mmdim (]
to sum() but you should just think of dat as an alias {
for int result;
vector<int> x = {1,2,3,4};
result = sum(x);
}
Stack Area of RAM int sum(const vector<int>& dat)
{
[int s = 0;
sum Oxbe0 0 s for(int i=0; 1 < dat.size(); i++)
Oxbe4 20xbf0? dat sum += dat[i];

Oxbe8 | 004000ca0 | Retu™ /

link return s;

}

Oxbec 0 sum

0xbf0 1 x [= dat
main | 0xbf4 2

0xbf8

0xb?? | 00400120 | Retum

USCViterbi
Pointers vs. References

* How to tell references and pointers apart

— Check if you see the '&' or '*' in a type declaration
or expression

__Type __ Expression

& C++ Reference Var Address-of (yields a pointer)
(int &val, vector<int> &vec) &val => int *, &vec = vector<int>*
%k Pointer De-Reference (Value @ address)

(int *valptr = &val, vector<int> *valptr => val
*vecptr = &vec) *vecptr => vec

School of Engineering

DYNAMIC ALLOCATION

i, IS(™Viterbi

School of Engineering

Dynamic Memory & the Heap

* Code usually sits at low addresses 0
: Cod
* Global variables somewhere after code oce
e System stack (memory for each function instance
that is alive) Globals
— Local variables
— Return link (where to return) H
eap
— etc.
 Heap: Area of memory that can be allocated and l,
de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program
Stack
« Heap grows downward, stack grows upward... (aroa for
— In rare cases of large memory usage, they could da:a local to
. . fffffffc | @ function)
collide and cause your program to fail or generate
an exception/error Memory

Motivation

Automatic/Local Variables Dynamic Allocation
* Deallocated (die) when they < Persist until explicitly

go out of scope deallocated by the program
 As ageneral rule of thumb, (via ‘delete’)

they must be statically sized ¢ Can be sized at run-time

(size is a constant known at — int size;

compile time) cin >> size;

Lk - o
— int data[100]; int *data = new int[size];

i, IS(™Viterbi 2

School of Engineering

C Dynamic Memory Allocation

* void* malloc(int num_bytes) function in stdlib.h

— Allocates the number of bytes requested and returns a pointer to the block of
memory

— Use sizeof(type) macro rather than hardcoding 4 since the size of an int may
change in the future or on another system

* free(void * ptr) function

— Given the pointer to the (starting location of the) block of memory, free returns it to the
system for re-use by subsequent malloc calls

#include <iostream>
#include <cstdlib>

using namespace std;

int main(int argc, char *argv[])
{

int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = (int*) malloc(num*sizeof (int));
// can now access scores[0] .. scores[num-1];

free (scores) ;
return 0;

i, IS(™Viterbi)

School of Engineering

C++ new & delete operators

* new allocates memory from heap

— followed with the type of the variable you want or an array type declaration
* double *dptr = new double;

* int *myarray = new int[100];
— can obviously use a variable to indicate array size
— returns a pointer of the appropriate type

* if you ask for a new int, you get an int * in return
* ifyou ask for a new array (new int[10]), you get an int * in return]

* delete returns memory to heap

— followed by the pointer to the data you want to de-allocate
* delete dptr;

— usedelete [] for pointersto arrays

e delete [] myarray;

i, IS(™Viterbi

School of Engineering

Dynamic Memory Allocation

int main(int argc, char *argv[]) 0 Code
{

int num;

cout << “How many students?” << endl; Globals

cin >> num;

int *scores = new int[num] new

// can now access scores[Oi .. scores[num-1]; Heap allocates:
return 0; 20bc0 00 scores[0]
} 20bc4 00 scores[1]
20bc8 00 scores[2]
20bcc 00 scores|[3]
20bd0 00 scores[4]

int main(int argc, char *argv/[])
{

int num;

cout << “How many students?” << endl;
cin >> num;

int *scores = new int[num];

// can now access scores[0] .. scores[num-1];
delete [] scores FFFFffc local vars
return 0O;

} Memory

Fill in the Blanks

. data = new int;

. data = new char;

. data = new char[100];

. data = new char*[20];

. data = new vector<string>;

. data = new Student;

Fill in the Blanks

. data = new int;
— int*
. data = new char;
— char*
. data = new char[100];
— char*
. data = new char*[20];
— char**
. data = new vector<string>;

— vector<string>*

. data = new Student;
— Student*

i ()5 Viterbi
Dynamic Allocation

° Dynam|c A”OCatlon // COmPUteS | rectangle areg,
// prints it, & returns it
— Lives on the heap int* area(int, int);

* Doesn't have a name, only pointer/address to it , ,
int main ()

— Lives until you 'delete’ it {
* Doesn't die at end of function L wedl =, lem = 39, Tay
(though pointer to it may) 2o;taiiaizlfél§2éi-
* Let's draw these as boxes in the heap area delete a;
}
Stack Area of RAM Heap Area of RAM
int* area(int w, int 1)
{
Oxbe0 D ans int* ans = new int;
area | Oxbed 8 w *ans = w * 1;
Oxbe8 5 I 0x93c 40 return ans;

Oxbec | 004000ca0 | oM™

0xbf0 8 wid
main | O0xbf4 5 len
0xbf8 | .73249515 a

Oxbfc | oo400120 | Retum

i, IS(™Viterbi

Dynamic Allocation

° Dynamic Allocation // Computes | rectangle areg,
// prints it, & returns it
— Lives on the heap int* area(int, int);

* Doesn't have a name, only pointer/address to it
int main ()

— Lives until you 'delete’ it i
* Doesn't die at end of function LR whe = 8y len = 9, =ej
(though pointer to it may) a = area(wid, len);
cout << *a << endl;
* Let's draw these as boxes in the heap area delete a;
}
Stack Area of RAM Heap Area of RAM
int* area(int w, int 1)
{
int* ans = new int;
*ans = w * 1;
0x93c 40 return ans;
}
0xbf0 8 wid
main | 0xbf4 5 len
0xbf8 0x93c a
Oxbfc | 00400120 | RS™

i, IS(™Viterbi

School of Engineering

Dynamic Allocation

Dynamic Allocation

— Lives on the heap

* Doesn't have a name, only pointer/address to it

— Lives until you 'delete’ it

 Doesn't die at end of function

(though pointer to it may)

Let's draw these as boxes in the heap area

Stack Area of RAM

Heap Area of RAM

area

main

Oxbe0 0x93c ans
Oxbe4 8 w
Oxbe8 5 |
Oxbec | 004000ca0 | oM™
0xbf0 8 wid
0xbf4 5 len
0xbf8 | 73249515 a
Oxbfc | oo400120 | Retum

0x93c

40

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);

void print (int);

int main ()

{
int wid = 8, len = 5, a;
area (wid, len) ;

}

int* area(int w, int 1)
{
int* ans = new int;
*ans = w * 1;
return ans;

i, IS(™Viterbi

Dynamic Allocation

° Dynamic Allocation // Computes rectangle area,
// prints it, & returns it
— Lives on the heap int* area(int, int);
« Doesn't have a name, only pointer/address to it | vo+d print(int);
— Lives until you 'delete’ it ?'lt e
* Doesn't die at end of function int wid = 8, len = 5, a:
(though pointer to it may) area (wid, len) ;
* Let's draw these as boxes in the heap area }
Stack Area of RAM Heap Area of RAM int* area(int w, int 1)
{
int* ans = new int;
*ans = w * 1;
0x93 return ans;
X99C 40 }
MEMORY LEAK
_ No one saved a pointer
0xbf0 8 wid to this data
main | Oxbf4 5 len
0xbf8 | .73249515 a
Oxbfc | 00400120 | RoM™

i, IS(™Viterbi

Dynamic Allocation

° Dynamic Allocation // Computes rectangle area,
// prints it, & returns it
— Lives on the heap int* area(int, int);
* Doesn't have a name, only pointer/address to it
— Lives until you 'delete’ it 1“ e
* Doesn't die at end of function int wid = 8, len = 5, a:
(though pointer to it may) area (wid, len) ;
* Let's draw these as boxes in the heap area }
Stack Area of RAM Heap Area of RAM int* area(int w, int 1)
{
int* ans = new int;
Oxbe0 0x93c ans e = G
area | 0xbe4 8 w 0x93c 10 } return ans;
Oxbe8 5 |

Oxbec | 004000ca0 | oM™

0xbf0 8 wid
main | O0xbf4 5 len
0xbf8 | .73249515 a

Oxbfc | oo400120 | Retum

i, IS(™Viterbi

Dynamic Allocation

 Be sure you keep a pointer around somewhere // Computes rectangle area,

. // rints it, & returns it
otherwise you'll have a memory leak P . .
int* area(int, 1int);

int main ()

{
int wid = 8, len = 5, a;
area (wid, len) ;

Stack Area of RAM Heap Area of RAM int* area(int w, int 1)
{
int* ans = new int;
Oxbe0 Oxbed ns _)
ans = &w,;
area | Oxbe4 8 <——rw return ans;
0x93c 40)
Oxbe8 5 |
Oxbec | 004000ca0 | Rem MEMORY LEAK
0xbfo 3 wid Lost pointer to this data
main | 0xbf4 5 len
0xbf8 | -73249515 a
Oxbfc | 00400120 | RoM™

i, IS(™Viterbi

Dynamic Allocation

» The LinkedList object is allocated as a /0 ESSE RS CEER
static/local variable struct Item {
— But each element is allocated on the heap int val;
Item* next;
* Wheny goes out of scope only the data s
members are deallocated Sleers LplieCUsSE |
public:
— You may have a memory leak void push back(int v);
private:
Item* head;
Stack Area of RAM Heap Area of RAM I
int main ()
0x93c {
> 3 addData () ;
addData }
0x748
Oxbe8 | 0x93c y ¥
void addbData ()
Oxbec | 004000ca0 | Mot 0x748 5 {
0 LinkedList y;

y.push back(3);
y.push back(5);
}

main MEMORY LEAK

When y is deallocated we have
no pointer to the data

Oxbfc | oo400120 | Retum

e I;ES(}‘V}teI{I[‘III’

Dynamic Allocation

* The LinkedList object is allocated as a static/local // LinkedList example
variable

— But each element is allocated on the heap

struct Item {
int val;

 When x goes out of scope only the data members Item* next;
are deallocated b

class LinkedList {
— You may have a memory leak public:

oid sh back (int ;
An Appropriate Destructor Will Help Solve This v . Te DRSS (1 v)
private:

Ttem* head;

Stack Area of RAM Heap Area of RAM I
int main ()
0x93c¢ {
> 3 addData () ;
0x748 }
v void addData ()
0x748 5 {
0 LinkedList y;
y.push back(3);
. .push back (5);
main MEMORY LEAK \ Y-Pusi_ (5)
When y is deallocated we have
Return no pointer to the data
Oxbfc | 00400120 .

School of Engineering

PRACTICE ACTIVITIES

destination struct or class

Object Assighment
* Assigning one struct or class object to another will
cause an element by element copy of the source data

{

enum {CS,

[

int main(int

#include<iostream>
using namespace std;

CECS 1}

struct student {

char name[80];

int id;
int major;

student sl;
strncpy (sl.
sl.id = 5;

student s2

return 0O;

argc, char *argvl])

name, “Bi11”,80) ;
sl.major = CS;

= g »

0x00 ‘B’
0x01 ‘4
0x4F 00
0x50 5
0x54 1
‘B
i
00
5
1

name

major
—

name

major
—

Memory Allocation Tips

* Take care when returning a pointer or reference that
the object being referenced will persist beyond the
end of a function

* Take care when assigning a returned referenced
object to another variable...you are making a copy

* Try the examples yourself
— S wget http://ee.usc.edu/~redekopp/cs104/memref.cpp

Understanding Memory Allocation

USC Viterbi

School of Engineering

There are no syntax errors. Which of these can correctly build an Item and then

have main() safely access its data

class Item

{ public:
Item(int w,

};

Item buildItem()

{ Item x(4, “hi”);
return x;

}

int main ()
{ Item i = buildItem()
// access 1’s data.

string vy);

class Item

{ public:
Item(int w,

};

Item& buildItem/()

{ Item x(4, “hi”);
return x;

}

int main ()
{ ITtem& i = buildItem();
// access 1’s data

}

string vy);

class Item
{ public:

Item(int w, string vy);

Iy

Item* buildItem{()

{ Item* x = new Item(4,“hi”);
return x;

}

int main ()
{ Item *i = buildItem()
// access 1i’s data

ex1 ex2) ex3
Item
on
Build | ogxpes Build Build Heap
Ite - X Ite Oxbed X Ite
Oxbe8 "hi" Oxbe8 Oxbe8 0x93c X
Oxbec | 004000ca0 | RS Oxbec | 004000ca0 | "5 Oxbec | 004000ca0 | RoM™
main | 0xbf4 4 i main main
0xbf8 "hi" 0xbf8 Oxbed i 0xbf8 0x93c i
Oxbfc | 00400120 | RS Oxbfc | 00400120 | RS Oxbfc | oo400120 | "TN"

USC Viterbi

e Schoolof Engineering

Understanding Memory Allocation

There are no syntax errors. Which of these can correctly build an Item and then
have main() safely access its data

class Item
{ public:
Item(int w, string vy);

2

Item* buildItem()

{ Item x (4, “hi”);
return &x;

}

int main ()
{ Item *i = buildItem();
// access i’s data

class Item
{ public:
Item(int w, string vy);

}:

Item& buildItem()

{ Item* x = new Item(4,“hi”);
return *x;

}

int main ()
{ ITtem& i = buildItem();
// access 1’s data

) ex4 } ex5
Item
?tL:Id Oxbe4 X ?tl;"d Hz:p
Oxbe8 Oxbe8 0x93c X
Oxbec Retrn Oxbec | 004000ca0 | R
main | 0xbf4 main | 0xbf4
0xbf8 Oxbed i 0xbf8 | 2 ox93c ? i
Oxbfe | ood00120 | "G Oxbfc | oo400120 | Retur

Understanding Memory Allocati

class Item

{ public:
Item(int w,

};

Itemé& buildItem/()

string vy);

return *x;

}

int main ()
{ ITtem 1

buildItem() ;

{ Item* x = new Item(4,“hi”);

class Item

{ public:
Item(int w,

};

Itemé& buildItem/()

{ Item* x
return *x;

}

int main ()
{ Item *1i

string vy);

new Item(4,“hi”);

& (buildItem()) g

., ., { ITtem &i = buildItem();
// access 1’s data. // access 1’s data. 1) eeeess 178 deba
/ ex6 } ex7) ex8
Item Item Item
on on on
Heap Heap Heap
Build uild Build
lte Ite Ilte
Oxbe8 0x93c X Oxbe8 0x93c X Oxbe8 0x93c X
Oxbec | 004000ca0 | Retum Oxbec | 004000ca0 | RS Oxbec | 004000ca0 | RS
main 0xbf4 4 i main 0xbf4 main 0Oxbf4
0xbf8 "hi" 0xbf8 0x93c i 0xbf8 | 2 0x93c ? i
Oxbfc | oo400120 | RoM™ Oxbfc | oo400120 | oM™ Oxbfc | o0o0400120 | RoM™

USC Viterbi

School of Engineering

on

class Item
{ public:
Item(int w,

)7

Item& buildItem()

{ ITtem* x new Item(4,“hi”);
return *x;

}

int main ()

string vy);

You are responsible for this on your own since its covered in CS103

C++ LIBRARY REVIEW
(END LECTURE 1 SLIDES)

School of Engineering

* String
* |/O Streams
* Vector

C++ Library

C Strings

* In C, strings are:
— Character arrays (char mystring[80])
— Terminated with a NULL character
— Passed by reference/pointer (char *) to functions
— Require care when making copies

* Shallow (only copying the pointer) vs.
Deep (copying the entire array of characters)

— Processed using C String library (<cstring>)

i, IS(™Viterbi

School of Engineering

String Function/Library (cstring)

. In C, we have to pass the C-String
* ’
* int Strlen(Cha r deSt) as an argument for the function

e int strcmp(char *strl, char *str2); to operate on it

— Return 0 if equal, >0 if first non-equal char in strl is alphanumerically
larger, <0 otherwise

#include <cstring>
using namespace std;

e char *strcpy(char *dest, char *src); | ..o

char temp buf[5];

— strncpy(char *dest, char *src, int n); char str[] = "Too much":
. . strcpy(temp buf, str);
— Maximum of n characters copied strncpy (temp buf, str, 4);
temp buf[4] = '\0"
e char *strcat(char *dest, char *src); return 0;

— strncat(char *dest, char *src, int n);

— Maximum of n characters concatenated plus a NULL

* char *strchr(char *str, char c);

— Finds first occurrence of character ‘c’ in str returning a pointer to that
character or NULL if the character is not found

C++ Strings

* So you don't like remembering all these details?
— You can do it! Don't give up.

e C++ provides a 'string' class that abstracts all
those worrisome details and encapsulates all the
code to actually handle:

— Memory allocation and sizing
— Deep copy
— etc.

- 00000000 USCViterbi .
String Examples

#include <iostream>
#include <string>

d “AlJSt: using namespace std;
— #include <string> int main(int argc, char *argv[]) {
. int len;
— using namespace std; string s1("CS is ");
. . I_ . . string s2 = "fun";
[]
Initializations / Assignment 2~ mreaily funts
— Use initialization constructor cout << sl << " is " << s2 << endl;
sS2 = s2 + N7
— Use ‘=’ operator cout << s2 << endl;
string s3 = sl;

— Can reassign and all memory allocation if (s1 == s3)
cout << sl << " same as " << s3;

will be handIEd cout << endl;

* Redefines operators: /

cout << “First letter is ™ << sl1[0];
cout << endl;

— + (concatenate / append)

— += (append)
— ==, I=, >, <, <=, >= (comparison)

. Output: CS is really fun
— [] (access individual character) really fun!!!

. . CSis same as CS is
http://www.cplusplus.com/reference/string/string/ First letter is C

i, IS(™Viterbi D

School of Engineering

More String Examples

Size/Length of string
Get C String (char *) equiv.

Find a substring
— Searches for occurrence of a substring

— Returns either the index where the
substring starts or string::npos

— std::npos is a constant meaning ‘just
beyond the end of the string’...it's a
way of saying ‘Not found’

Get a substring

— Pass it the start character and the
number of characters to copy

— Returns a new string

Others: replace, rfind, etc.

http://www.cplusplus.com/reference/string/string/

#include <iostream>
#include <string>
using namespace std;

int main(int argc, char *argv[]) {
string sl (“abc def”);
cout << "Len of sl: " << sl.size() << endl;
char my c str[80];
strcpy(my c str, sl.c str());
cout << my c str << endl;

if(sl.find(“bc d”) != string::npos)
cout << “Found bc d starting at pos=":
cout << sl.find(“bc d”) << endl;

found = sl.find(“def”);

if(found != string::npos) {
string s2 = sl.substr (found, 3)
cout << s2 << endl;

}

Len of s1: 7

abc def

The string is: abc def

Found bc_d starting at pos=1

Output:

def

C++ Strings

* Why do we need the string class?

— C style strings are character arrays (char[])
* See previous discussion of why we don't like arrays

— C style strings need a null terminator ('\0')
“abcd” is actually a char[5] ... Why?

— Stuff like this won't compile:
char my_string[7] = “abc” + “def”;

* How can strings help?
— Easier to use, less error prone
— Has overloaded operators like +, =, [], etc.
— Lots of built-in functionality (e.g. find, substr, etc.)

- USCVite_rbi .
C++ Streams

e Whatis a “stream”?

— A sequence of characters or bytes (of potentially infinite length) used for input
and output.

e C++ has four major libraries we will use for streams:
— <iostream>
— <fstream>
— <sstream>
— <iomanip>

e Stream models some input and/or output device
— fstream => a file on the hard drive;
— cin => keyboard and cout => monitor

* C++ has two operators that are used with streams
— Insertion Operator “<<”
— Extraction Operator “>>”

C++ 1/O Manipulators

* The <iomanip> header file has a number of “manipulators” to
modify how |I/O behaves
— Alignment: internal, left, right, setw, setfill
— Numeric: setprecision, fixed, scientific, showpoint
— Other: endl, ends, flush, etc.
— http://www.cplusplus.com/reference/iostream/manipulators/

* Use these inline with your cout/cerr/cin statements

— double pi =3.1415;
— cout << setprecision(2) << fixed << pi << end|;

Understanding Extraction

. User enters value “512” at 15t prompt, enters “123” at 2" prompt

int x=0;

cout << “Enter X: *;

cin >> Xx;

inty =0;
cout << “Enter Y: “;

cin >> y;

512

123

cin =

cin =

cin =

\n

\n

cin.fail() is false

cin =

cin =

cin =

\n

\n

\n

\n

cin.fail() is false

Understanding Extraction

. User enters value “23 99” at 1st prompt, 2"9 prompt skipped

int x=0; X=| 0 cin =
cout << “Enter X: *; X=| 0 cin=1213 9|9 |\n
cin >> x; X=| 23 cin = 9|9 [\n

cin.fail() is false

inty =0; Y=| 0 cin = 9|9 |\n
<< 114 kbo
cout Enter Y: “, Y = 0 cin = 919 (\n
cin >>y;
Y=| 99 cin = |\n

cin.fail() is false

Understanding Extraction

. User enters value “23abc” at 15t prompt, 2" prompt fails

int x=0; X=| 0 cin =

cout << “Enter X: *; X=| 0 cin=|2|3|a|b|c|\n

cin >> x; X=| 23 cin=|a|b|c|\n

cin.fail() is false

inty = 0; Y=| 0 cin=|a|b|c|\n
cout << “Enter Y: “; Y=| O cin=|2a|b|c|\n
cin >>y; Y = | xxx cin=lalb|e\n

cin.fail() is true

Understanding Extraction

. User enters value “23 99” at 1t prompt, everything read as string

string x; X = cin =

cout << “Enter X: ;

getline(cin,x); X = cin=1213 9| 9 [\n|Eor
X=]|23 99 cin =
cin.fail() is
false

NOTE: \n character is
discarded!

Understanding cin

e Things to remember
— When a read operation on cin goes wrong, the fail flag is set
— If the fail flag is set, all reads will automatically fail right away
— This flag stays set until you clear it using the cin.clear() function
— cin.good() returns true if ALL flags are false

* When you're done with a read operation on cin, you should
wipe the input stream

— Use the cin.ignore(...) method to wipe any remaining data off of cin
— Example: cin.ignore(1000,'\n'); cin.clear();

EOF BAD FAIL

istream |t/F |1/F | 1/F

Understanding Extraction

. User enters value “23abc” at 15t prompt, 2" prompt fails

inty =0; Y = 0 cin=|a|b| c|\n|eor
cout << “Enter Y: Y=| 0 cin=|2a|b|c|\nfeor
cin >>y; Y = | xxx cin=1|a|b|c |\n|eoF

cin.fail() is true
EOF BAD FAIL

cin.ignore(100, \n’);

cin = [Eor 0| o0 |1
// doing a cin >> here will
// still have the fail bit set EOF BAD FAIL
cin.clear(); cin = [EoF I

// now safe to do cin >>

C++ File I/O

* Use <fstream> library for reading/writing files

— Use the open() method to get access to a file
ofstream out; //ofstream is for writing, ifstream is for reading
out.open(“my_filename.txt”) //must be a C style string!

* Write to a file exactly as you would the console!

— out << “This line gets written to the file” << endl;

 Make sure to close the file when you're done

— out.close();
e Use fail() to check if the file opened properly
— out.open(“my_filename.txt”)

— if(out.fail()) cerr << “Could not open the output file!”;

Validating User Input

 Reading user input is easy, validating it is hard

 What are some ways to track whether or not the user has
entered valid input?

Use the fail() function on cin and re-prompt the user for input

Use a stringstream for data conversions and check the fail() method
on the stringstream

Read data in as a string and use the cctype header to validate each
character (http://www.cplusplus.com/reference/clibrary/cctype/)
for(int i=0; i < str.size(); i++)

if(!isdigit(str[i]))
cerr << “stris not a number!” << end|

C++ String Stream

* If streams are just sequences of characters, aren't
strings themselves like a stream?

— The <sstream> library lets you treat C++ string objects like
they were streams

 Why would you want to treat a string as a stream?
— Buffer up output for later display
— Parse out the pieces of a string

— Data type conversions
* This is where you'll use stringstream the most!

e Very useful in conjunction with string's getline(...)

C++ String Stream

* Convert numbers into strings (i.e. 12345 => "12345")

#include<sstream>

using namespace std;

int main ()

{

stringstream ss;
int number = 12345;

ss << number;

string strNumber;

ss >> strNumber;

return 0O;

}

sstream_test1.cpp

C++ String Stream

e Convert string into numbers [same as atoi()]

#include<sstream>

using namespace std;

int main ()

{

stringstream ss;
string numStr = “12345";

ss << numStr;

int num;
ss >> num;
return 0;

}

sstream_test2.cpp

C++ String Stream

 Beware of re-using the same stringstream object for
multiple conversions. It can be weird.
— Make sure you clear it out between uses and re-init with
an empty string

* Or just make a new stringstream each time

stringstream ss;

//do something with ss

ss.clear ()
ss.str("");
// now you can reuse sSs

// or just declare another stream
stringstream ss2;

C++ Arrays

 What are arrays good for?

— Keeping collections of many pieces of the same data type
(e.g. | want to store 100 integers)

— int n[100];

* Each value is called out explicitly by its index
— Indexes start at O:

 Read an array value:

— cout << “5th value = “ << n[4] << end]|;

 Write an array value
— n[2] = 255;

C++ Arrays

e Unfortunately C++ arrays can be tricky...
— Arrays need a contiguous block of memory
— Arrays are difficult/costly to resize
— Arrays don't know their own size
— You must pass the size around with the array
— Arrays don't do bounds checking

— Potential for buffer overflow security holes

* e.g. Twilight Hack: http://wiibrew.org/wiki/Twilight _Hack
— Arrays are not automatically initialized
— Arrays can't be directly returned from a function

— You have to decay them to pointers

C++ Vectors

* Why do we need the vector class?
— Arrays are a fixed size. Resizing is a pain.
— Arrays don't know their size (no bounds checking)

— This compiles:
* int stuff[5];
* cout << stuff[-1] << “and “ << stuff[100];

* How can vectors help?
— Automatic resizing to fit data
— Sanity checking on bounds

— They do everything arrays can do, but more safely
* Sometimes at the cost of performance

— See http://www.cplusplus.com/reference/stl/

- USCViterbi .
Vector Class

e Container class (what it contains #include <iostream>
. . #include <vector>
is up to you via a template)

using namespace std;

* Mimics an array where we have int main()
an indexed set of homogenous { | - |
vector<int> my vec(5); // init. size of 5
()bjeCtS 1 for (unsigned int i=0; i < 5; i++){
my vec[i] = 1i+50;
* Resizes automatically }

my vec.push back(10); my vec.push back(8);
:Z my vec[0] = 30;
unsigned int 1i;
0 1 2 3 4 for(i=0; 1 < my vec.size(); i++){
<< g << W \\’.
my_vec | 50|51|52|53|54 [oo T e

cout << endl;

! int x = my vec.back(); // gets back val.
MY-YEE 13051 52|53 54 10[8 i 3 x += my vec.front(); // gets front val.
T // x 1s now 38;
cout << “x is “ << x << endl;
my vec.pop back();

my_Vec 130|51|52(53|54|10 i

""" 4 my vec.erase (my vec.begin() + 2);
0 1 2 3 4 5 my vec.insert (my vec.begin() + 1, 43);
T return 0;

My_Vec 130|43|51|53|54|10|)

P WO NN =

i, IS(™Viterbi)

School of Engineering

Vector Class

constructor

— Can pass an initial number of items or leave blank

operator|]

— Allows array style indexed access (e.g. myvec[1] + myvec[2])

push_back(T new_val)

— Adds a copy of new_val to the end of the array allocating
more memory if necessary

size(), empty()

— Size returns the current number of items stored as an
unsigned int

— Empty returns True if no items in the vector

pop_back()
— Removes the item at the back of the vector (does not return
it)
front(), back()

— Return item at front or back

erase(iterator)

— Removes item at specified index
(use begin() + index)

insert(iterator, T new_val)

— Adds new_val at specified index (use begin() + index)

#include <iostream>
#include <vector>

using namespace std;

int main ()
{
vector<int> my vec(5); // 5= init.
for (unsigned int i=0; i < 5; i++) {
i+50;

size

my vec[i] =
}
my vec.push back(10); my vec.push back(8);
my vec[0] = 30;
for(int i=0; i < my vec.size();
cout << my vec[i] << ™ %;

1+4) {

}

cout << endl;

int x = my vec.back();
X += my vec.front();
// x 1is now 38;

cout << “x is “ << x << endl;
my vec.pop back();

// gets back val.
// gets front val.

2);
my vec.insert (my vec.begin() + 1,
return 0;

my vec.erase (my vec.begin() +
43) ;

i, IS(™Viterbi

Vector Suggestions

* If you don’t provide an initial size to the | | "¢ us —osrean
vector, you must add items using

using namespace std;

push_back() int main ()
. . . . {
* When iterating over the items with a vector<int> my vec;
‘ . .) for(int 1i=0; i < 5; i++) {
for loop, used an ‘unsigned int // my vecli] = 14507 // doesn’t work
* When adding an item, a copy will be (RS e
made to add to the vector for (unsigned int 1=0;
i < my vec.size();
* [] orat() return a reference to an i++)
{ cout << my vec[i] << " "; }
element, not a copy of the element comie << @nclls
e Usually pass-by-reference if an my_vecll] = 5; my vec.at(2) = 6;
argument to avoid the wasted time of do_something (myvee) s

return 0;

making a copy }

void do_something (vector<int> &v)

{

// process v;

