CSCI 104

Rafael Ferreira da Silva

rafsilva@isi.edu

Slides adapted from: Mark Redekopp and David Kempe

School of Engineering

STREAMS REVIEW

Kinds of Streams

* |/O streams
— Keyboard (cin) and monitor (cout)

* File streams — Contents of file are the stream of data

— #include <fstream> and #include <iostream>

— ifstream and ofstream objects

* String streams
— #include <sstream> and #include <iostream>

— sstream objects

e Streams support appropriate << or >> operators as
well as .fail (), .getline (), .get (), .eof ()
member functions

- 00000000 USC\ﬁtgrbi @
C++ Stream Input

e cin, ifstreams, and stringstreams can be used to accept data from the user
— intx;
— cout << "Enter a number: ";
— Cin>>X;
What if the user does not enter a valid number?
— Check cin.fail () to see if the read worked

 What if the user enters multiple values?
— >>reads up until the first piece of whitespace

— cin.getline() can read a max number of chars until it hits a delimeter but only works
for C-strings (character arrays)

cin.getline (buf, 80) // reads everything through a '\n'
// stopping after 80 chars if no '\n'

cin.getline (buf, 80, ';') // reads everything through a ';'
// stopping after 80 chars if no ';'
— The <string> header defines a getline(...) method that will read an entire line
(including whitespace):
string x;

getline(cin,x,';"'); // reads everything through a ';'

i, IS(™Viterbi -

When Does It Fail

School of Engineering

* For files & string streams the stream doesn't fail until you read PAST

the EOF

char buf[40];

ifstream inf(argv[1]);

inf >> buf:

inf >> buf;

inf >> buf;

getp —¢,

File text

.|\n

EOF

.|\n

EOF

EOF BAD FAIL

0

0

0

getp

v

File text |T

.|\n

EOF

buf e

EOF BAD FAIL

0

0

0

getp

\’

File text |T

.|\n

EOF

buf e

.|\O

EOF BAD FAIL

1

0

1

Which Option?

#include<iostream>
#include<fstream>

using namespace std;
int main ()

{

vector<int> nums;

int x;

while(!ifile.fail ()
ifile >> x;
nums .push back (x);

}

ifstream ifile ("data.txt");

data.txt

7 8 EOF

) nums

School of Engineering

®

Need to check for failure after you

extract but before you

store/use

#include<iostream>
#include<fstream>
using namespace std;
int main ()
{
vector<int> nums;
ifstream ifile("data.txt");
int x;
while(1) {
ifile >> x;
if(ifile.fail()) break;
nums .push back (x) ;

}

int x;
while (ifile >> x) {
nums .push back (x) ;

}

A stream returns itself after extraction
A stream can be used as a bool (returns true if it hasn't failed)

USC Viterbi C®

Choices
Where is my
data?
Keyboard File String
(use) (use) (use)

Do | know how many
items to read?

Yes, n items No, arbitrary
Use Use

Choices
Where is my
data?
Keyboard File String
(use iostream [cin]) (use ifstream) (use stringstream)

Do | know how many
items to read?

No, arbitrary
Use while(cin >> temp) or
while(getline(cin,temp))

Yes, n items
Use for(i=0;i<n;i++)

Text

Yes

Choices

What type
of data?

Is it
delimited?

No

Integers/
Doubles

Yes

Text
(getline or >>)
getline ALWAYS returns text

Yes at newlines
Use getline()

Choices

What type
of data?

Is it
delimited?

No, stop on any
whitespace...use >>

Ints/Doubles
(Use >> b/c it converts
text to the given type)

Yes at special chars
(5 or))
Use getline with 3™
input parameter
(delimeter parameter)

i, IS(™Viterbi 0

School of Engineering

getline() and stringstreams

Imagine a file has a certain format
where you know related data is on a
single line of text but aren't sure
how many data items will be on that
line

Can we use >>?

— No it doesn't differentiate between
different whitespace (i.e.a''and a '\n'
look the same to >> and it will skip over
them)

We can use getline() to get the
whole line, then a stringstream with

>> to parse out the pieces

int num lines = 0;
int total words = 0;
ifstream myfile(argv([1l]);

string myline;
while(getline (myfile, myline)) {

stringstream ss(myline) ;

string word;
while(ss >> word)

{ total words++; }
num_ lines++;

}

double avg =
(double) total words / num lines;

cout << "Avg. words per line: "
cout << avg << endl;

The fox Jjumped over the log.
The bear ate some honey.

The CS student solved a hard problem.

- 00000000 USCViterbi @
Using Delimiters

_ _ . Text file:
* Imagine a file has a certain format [oirrage scuer (woras 1 care about) junk

where you know related data is on a
single line of text but aren't sure
how many data items will be on that

vector<string> mywords;

ifstream myfile(argv([1]);

line
string myline;
getline (myfile, myline, '(');
°
Can we use >>7? e

. . . // and throws away ' ('
— No it doesn't differentiate between

different whitespace (i.e.a''and a '\n' | gstiine(myfite, myline, *) ")7

// gets "words I care about"

look the same to >> and it will skip over | // and throws away ') "

them) stringstream ss(myline) ;
i string word;
 We can use getline() to get the while(ss >> word) |

mywords.push back (word) ;

whole line, then a stringstream with |
>> to parse out the pieces

"wordsﬂ "I" "Ca]fe" "aboutﬂ

mywords

Choosing an I/O Strategy

Is my data delimited by particular characters?
— Yes, stop on newlines: Use getline()
— Yes, stop on other character: User getline() with optional 3" character

— No, Use >> to skip all whitespaces and convert to a different data type
(int, double, etc.)

If "yes" above, do | need to break data into smaller pieces (vs.
just wanting one large string)
— Yes, create a stringstream and extract using >>
— No, just keep the string returned by getline()
Is the number of items you need to read known as a constant
or a variable read in earlier?
— Yes, Use a loop and extract (>>) values placing them in array or vector
— No, Loop while extraction doesn't fail placing them in vector

Remember: getline() always gives text/string.
To convert to other types it is easiest to use >>

RECURSION

Recursion

* Problem in which the solution can be expressed in terms of
itself (usually a smaller instance/input of the same problem)
and a base/terminating case

* Input to the problem must be categorized as a:

— Base case: Solution known beforehand or easily computable (no
recursion needed)

— Recursive case: Solution can be described using solutions to smaller
problems of the same type

* Keeping putting in terms of something smaller until we reach the base case
 Factorial:nl=n*(n-1)*(n-2)*..*2*1
— nl=n*(n-1)!
— Basecase: n=1
— Recursive case: n >1=> n*(n-1)!

Recursive Functions

e Recall the system stack

essentially provides
separate areas of
memory for each
‘instance’ of a function

Thus each local variable
and actual parameter of a
function has its own
value within that
particular function
instance’s memory space

C Code:

int fact(int n)
{
if(n == 1) {
// base case
return 1;
}
else {
// recursive case
return n * fact(n-1);

B ()5 Viterbi
Recursion & the Stack

* Must return back through the each call int fact(int n)
{
if(n == 1){
// base case
return 1;
Stack Area of RAM }
else {
Oxbd8 1 n // recursive case
fact return n * fact(n-1);
Oxbdc | 004001844 | Ret™ }
n 1
}
fact Oxbe0 2 n
Oxbe4 | 004001844 RT::II“ int main ()
2 {
fact 0Oxbe8 3 n int val = 4;
Retu g
Oxbec | 004001844 ing‘ cout << fact(val) << endl;
}
0xbf0 °
fact X . n
Oxbf4 | 004001844 | "Siurm
: 0xbf8 4 val 24
main
Oxbfc | 00400120 | oM™

USC Viterbi

School of Engineering

Recursion

* Google is in on the joke too...

GO g|€ Q

All Images Videos Books More Settings Tools

[ra'kerZHan/

noun MATHEMATICS LINGUISTICS

the repeated application of a recursive procedure or definition.

« a recursive definition.
plural noun: recursions

Translations, word origin, and more definitions

Feedback

- USCViterbi .
Recursion

« 20438!

— To obtain the 2048 tile

* Two 1024 tiles are required

* for which, four 512 tiles are required 2 4 2
* for which, eight 256 tiles are required
e for which, 16 128 tiles are required 4

» for which, 32 64 tiles are required
* for which, 64 32 tiles are required
» for which, 128 16 tiles are required

* for which, 256 eight tiles are required
» for which, 512 four tiles are required
» for which, 1024 two tiles are required

Recursive Functions

* Many loop/iteration
based approaches can be
defined recursively as
well

C Code:

int main ()
{
int data[4] = {8, 6, 7, 9};
int size=4;
int suml = isum it(data, size);
int sum2 = rsum it(data, size);

}

int isum it(int data[], int len)
{
int sum = data[0];
for(int i=1l; i < len; i++) {
sum += datal[i];
}
}

int rsum it(int data[], int len)
{
if(len == 1)
return data[0];
else

int sum = rsum it(data, len-1);

return sum + data[len-1];

USC Viterbi (22
Recursive Call Timeline

int rsum it(int data[], int len)

int main () { {
int data[4] = {8, 6, 7, 9}; if(len == 1)
int size=4; return data[0];
int sum2 = rsum it(data, size); else

int sum = rsum it(data, len-1);
return sum + data[len-1];

5]
rsum_it(data,4)
int sum=

rsum_it(data,4-1) —fb rsum _it(data,3) len = 2 len = 1
int sum=
rsum_it(data,3-1)

rsum_it(data,2)

— — int sum=
I e n _ 4 I e n - 3 rsum_it(data,2-1) rsum_it(data,1)
___return data[0];

int sum =8 ‘/-8

— return 8+data[1];

int sum = 14 ‘/-14

— return 14+data[2];

int sum =21 <= || o1
return 21+data[3];

v 30

Each instance of rsum_it has its own len argument and sum variable
Every instance of a function has its own copy of local variables

i, IS(™Viterbi 2

System Stack & Recursion

int main ()
{
* The system stack makes recursion int data[d] = {8, 6, 7, 9};
int size=4;
possible by providing separate memory irt sum2 = rsum it(data, size);
} }
storage for the local variables of each | int rsum it(int gatari, int 1en)
. . . {
running instance of the function if (len — 1)
return data[0];
else
int sum =
rsum_it(data, len-1);
return sum + data[len-1];
Code for all functions }
Data for rsum it (data=800,
len=1, sum=2??) and return link
SS)[SStE!TT\ Data for rsum it (data=800,
len=2, sum=8) and return link
Memory Data for rsum it (data=800,
(RAM) len=3, sum=14) and return link 800
Data for rsum it (data=800, 8/6|7]9
len=4, sum=21) and return link dataf4]: 0 1 2 3

Data for main (data=800, size=4,
suml=?7?, sum2=27?) and return link

System stack area

School of Engineering

HELPER FUNCTIONS

Exercise

Write a recursive routine to find the maximum element of an
array containing POSITIVE integers.

int data[4] = {8, 9, 7, 6};
Primary signature:
int max(int* data, int len);

For recursion we usually need some parameter to tell use
which item we are responsible for...thus the signature needs
to change. We can make a helper function.

The client uses the original:
int max(int* data, int len);
But it just calls:
int max(int* data, int len, int curr);

i, IS(™Viterbi -«

Exercise — Helper Function

Head recursion
int data

[4]

{

School of Engineering

* Tail recursion

8

, 9, 7, 6};)

// The client only wants this
int max(int* data, int len);

// But to do the job we need this

// The client only wants this
int max(int* data, int 1len);

// But to do the job we need this

return data[curr];
else
return prevmax;

if (data[curr] > mx)
mx data[curr];
max (data, len, curr+l, mx);

int max(int* data, int len, int curr); void max (int* data, int len, int curr, inté& mx);
int max(int* data, int len) int max(int* data, int len)
{ return max(data, len, 0); { int mymax = O;
} max (data, len, 0, mymax);
return mymax;
int max(int* data, int len, int curr) }
{
if (curr == len) return O; void max(int* data, int len, int curr, inté& mx)
else { {
int prevmax = max(data, len, curr+l); if (curr == len) return;
if (data[curr] > prevmax) else {

- USCViterbi .
Exercise

* We can also formulate things w/o the helper function in this case...

int data[4] = {8, 6, 9, 7};

int max(int* data, int len)
{
if(len == 1) return data[0];
else {
int prevmax = max(data, len-1);
if (data[len-1] > prevmax)
return data[len-1];
else
return prevmax;

School of Engineering

GENERATING ALL COMBINATIONS

Recursion's Power

* The power of recursion often comes when

each function instance makes multiple
recursive calls

* As you will see this often leads to exponential
number of "combinations" being

generated/explored in an easy fashion

Binary Combinations

° : 0 00 000 0000
If you are given the value, n, i I o 201 0001
and a string with n o | 10 010 0010

) 11 011 0011

Bin.
characters could you L 08 0100
generate all the Bin. 101 0101
. . . 110 0110
combinations of n-bit 111 0111
binary? 3ot +000
y Bin. 1001
* Do sorecursively! 1010
o0 /—099 1011
L / _ee1 1100
Exercise: bin_combo_str o P 1101
\ out 1110
_10 _/ 1111
N 4-bit

_11 _/ Bin.
_ 111

I Uscviterbi
School of Engineering

Recursion and DFS

e Recursion forms a kind of Depth-First Search

binCombos(...,3)
Set to 0; recurse;
Set to 1; recurse;

binCombos(...,3)
Set to O; recurse;
Set to 1; recurse;

binCombos(...,3)
Set to 0; recurse;
Set to 1; recurse;

binCombos(...,3)
Base case

11

// user interface
void binCombos (int len)

{

binCombos ("", len);
}
// helper-function
void binCombos (string prefix,
int len)

{
if (prefix.length () == len)

cout << prefix << endl;
else {

// recurse

binCombos (prefix+"0", 1len);

// recurse

binCombos (prefix+"1", len);

i, IS(™Viterbi)

School of Engineering

Recursion and DFS (w/ C-Strings)

e Recursion forms a kind of Depth-First Search

binCombos(0,3)
Set to 0; recurse;
Set to 1; recurse;
binCombos(1,3)
Set to 0; recurse;
Set to 1; recurse;

binCombos(2,3)
Set to 0; recurse;
Set to 1; recurse;

binCombos(3,3)
Base case

void binCombos (char* data,
int curr,
int len)

if (curr == len)
data[curr] = '\0';
else {
// set to O
datal[curr] = '0';
// recurse
binCombos (data, curr+1l,
// set to 1
data[curr] = '1"';
// recurse
binCombos (data, curr+1l,

len) ;

len) ;

USC Viterbi (2

School of Engineering

Generating All Combinations

* Recursion offers a simple way to generate all combinations of N
items from a set of options, S
— Example: Generate all 2-digit decimal numbers (N=2, $={0,1,...,9})

0| - |"\0O

-

TDC(data,1)

TDC(data,0)

1

\0' 9

_ I\OI

/

TDC(data,1)

/\

TDC(data,1)

N

void TwoDigCombos (char data[3],
int curr)
{
if (curr ==)
cout << data;
else {
for(int i=0; i < 10; i++) {
// set to 1
data[curr] = '0'+1i;
// recurse

NO'[| 9| 9 |"\O

ol 0o ["\O O] 9 |\O 910
| 4 S 4
TDC(2) || TDC(2)| | TDC(2) TDC(2)

TwoDigCombos (data, curr+l);

X

TDC(2)

i, IS(™Viterbi)

School of Engineering

Recursion and Combinations

* Recursion provides an elegant way of generating all n-length
combinations of a set of values, S.
— Ex. Generate all length-n combinations of the letters in the set S={'U','S','C'}
(i.e. for n=2: UU, US, UC, SU, SS, SC, CU, CS, CC)
* General approach:

— Need some kind of array/vector/string to store partial answer as it is being
built

— Each recursive call is only responsible for one of the n "places" (say location, i)

— The function will iteratively (loop) try each option in S by setting location i to
the current option, then recurse to handle all remaining locations (i+1 to n)

« Remember you are responsible for only one location
— Upon return, try another option value and recurse again
— Base case can stop when all n locations are set (i.e. recurse off the end)
— Recursive case returns after trying all options

Exercises

* bin_combos_str

* /Zero_sum

* Prime_products_print
* Prime_products

* basen_combos
e all_letter combos

] USC\/itcrbi @
Another Exercise

#include <iostream>
#include <string>

* Generate all string e
combinations of e el et (restendshanss opsens, Ane @) |
length n from a R
given list (vector) |
of characters

letters.push back('C'");
all combos (letters, 2);
all combos (letters, 4);

return O;

School of Engineering

RECURSIVE DEFINITIONS

Recursive Definitions

* N = Non-Negative Integers and is defined as:
— The number O [Base]
— n+ 1 where n is some non-negative integer [Recursive]
* String
— Empty string, €
— String concatenated with a character (e.g. 'a'-'z")
* Palindrome (string that reads the same forward as backwards)

— Example: dad, peep, level

— Defined as:
* Empty string [Base]
* Single character [Base]
* xPx where x is a character and P is a Palindrome [Recursive]

* Recursive definitions are often used in defining grammars for
languages and parsers (i.e. your compiler)

C++ Grammar

* Languages have rules governing their syntax and
meaning

* These rules are referred to as its grammar

* Programming languages also have grammars that code
must meet to be compiled

— Compilers use this grammar to check for syntax and other
compile-time errors

— Grammars often expressed as “productions/rules”

 ANSI C Grammar Reference:
— http://www.lysator.liu.se/c/ANSI-C-grammar-y.html#tdeclaration

i, IS(™Viterbi

School of Engineering

Simple Paragraph Grammar

Substitution Rule

subject “I'" | "You" | "We"

verb "run" | "walk" | "exercise" | "eat" | "play" | "sleep"
sentence subject verb "

sentence_list sentence

| sentence_list sentence

paragraph [TAB = \t] sentence_list [Newline =\n]
Example: Example:

I run. You walk. We exercise. I eat You sleep

subject verb. subject verb. Subject verb subject verb
Su,bj ect Verb. Error

sentence sentence sentence
sentence_list sentence sentence
sentence 1list sentence

sentence 1ist

paragraph

] USCViterbi .
C++ Grammar

Rule Expansion

expr constant
| variable_id
| function_call
| assign_statement
| /(“ expr)
| expr binary _op expr
| unary_op expr

assign_statement variable_id ‘=‘ expr

(.’

expr_statement ;

| expr ‘)’
expr > (expr+expr); expr + expr = expr;
expr > (expr); expr = expr;
expr * expr;
expr; NO SUBSTITUTION

expr_statement Compile Error!

] USCViterbi
C++ Grammar

Rule

statement

compound_statement

statement_list

while (x >
while
while

(
(
(
while (expr
(
(
(
(

o 0©
T 3
S S

while

Q
B
S

while
while
while (expr
while (expr
statement

Q
B
S

®
x
o
~
~— N N~ ~—~ S~ S~ ~—~ ~—~

Substitution

expr_statement

| compound_statement

| if (expr) statement

| while (expr) statement

‘{* statement_list ‘Y

statement
| statement_list statement

) { doit(); x = x-2; }

{ expr; assign_statement; }

{ expr; expr; }

{ expr_statement expr_statement }
{ statement statement }

{ statement_list statement }

{ statement_list }
compound_statement

statement

School of Engineering

while(x > 0)

while (expr)
statement
statement

statement
statement

School of Engineering

MORE EXAMPLES

USC Viterbi
Towers of Hanoi Problem

* Problem Statements: Move n discs from source pole to
destination pole (with help of a 3" alternate pole)
— Cannot place a larger disc on top of a smaller disc
— Can only move one disc at a time

C
src) dst) (alt) src) dst) (alt
L1 1=+
2 2
3 3
Start (n=3) Goal (n—3)
A B C
|
L 3 J 1]

Not allowed

USC Viterbi

School of Engineering

Observation 1

* Observation 1: Disc 1 (smallest) can always be moved

e Solve the n=2 case:
A (src) B (dst) C (alt)

S= I

Start
A B C A B C
I I
Move 1 from src to alt Move 2 from src to dst

B

A C

Move 1 from alt to dst

USC Viterbi

School of Engineering

Observation 2

* Observation 2: If there is only one disc on the src pole and the
dest pole can receive it the problem is trivial

A (src) B (dst) C (alt)
A B C A B C
1 | | 1 2
(3] 3 J [2]
Move n-1 discs from src to alt Move disc n from src to dst

A B C
(3)

Move n-1 discs from alt to dst

USC Viterbi

School of Engineering

Recursive solution

* But to move n-1 discs from src to alt is really a smaller version of
the same problem with

— n=>n-1
— Src=>src A (src) B (dst) C (alt)

— alt =>dst ln‘mI
— dst=>alt

 Towers(n,src,dst,alt)
— Base Case: n==1 // Observation 1: Disc 1 always movable
* Move disc 1 from src to dst
— Recursive Case: // Observation 2: Move of n-1 discs to alt & back
* Towers(n-1,src,alt,dst)
* Move disc n from src to dst

* Towers(n-1,alt,dst,src)

Exercise

* Implement the Towers of Hanoi code
— S wget http://ee.usc.edu/~redekopp/cs104/hanoi.cpp

— Just print out "move disc=x from y to z" rather than trying
to "move" data values
* Movedisclfromatob
* Movedisc2fromatoc
* Movedisclfrombtoc
* Movedisc3fromatob
* Move disc 1 fromctoa
* Move disc2 fromctob
* Movedisclfromatob

Towers Function PBkoqueu rS |Ve BOX D I ag ra m

Towers(disc,src,dst,alt)

Towers(1,a,b,c)

Move D=1atob

{ Towers(2,a,c,b) ‘ Move D=2 atoc

Towers(1,b,c,a)

Move D=1btoc

Towers(3,a,b,c) ‘ ‘ Move D=3 atob

Towers(1,c,a,b)

Move D=1 cto a

{ Towers(2,c,b,a) ‘ Move D=2 ctob

Towers(1,a,b,c)

Move D=1atob

Combinatorics Examples

* Given n things, how can you choose k of them?
— Written as C(n,k)
* How do we solve the problem?

— Pick one person and single them out
e Groups that contain Joe =>

* Groups that don't contain Joe =>

— Total number of solutions:

— What are base cases?

Joe

Mrrrrrereee
AAAAAAAAAAA

Combinatorics Examples

* Given n things, how can you choose k of them?
— Written as C(n,k)

* How do we solve the problem?

— Pick one person and single them out

e Groups that contain Joe => C(n-1, k-1)

* Groups that don't contain Joe => C(n-1, k)
— Total number of solutions: C(n-1,k-1) + C(n-1,k)
— What are base cases?

Joe

Mrrrrrereee

AMAAAAAAAAAA

Combinatorics Examples

* You're going to Disneyland and you're trying to pick 4
people from your dorm to go with you

* Given n things, how can you choose k of them?
— Written as C(n,k)
— Analytical solution: C(n,k) =n!/[k!* (n-k)!]

* How do we solve the problem?

Recursive Solution

* Sometimes recursion can yield an incredibly simple
solution to a very complex problem

* Need some base cases
— C(n,0)=1
— C(n,n)=1

int C(int n, int k)
{
if(k == 0 || k == n)
return 1;
else
return C(n-1,k-1) + C(n-1,k);
}

