
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp and	David	Kempe

2

STREAMS	REVIEW

3

Kinds	of	Streams

• I/O	streams
– Keyboard	(cin)	and	monitor	(cout)

• File	streams	– Contents	of	file	are	the	stream	of	data
– #include <fstream> and	#include <iostream>
– ifstream and	ofstream objects

• String	streams
– #include <sstream> and	#include <iostream>
– sstream objects

• Streams	support	appropriate	<< or	>> operators	as	
well	as	.fail(),	.getline(),	.get(),	.eof()
member	functions

4

C++	Stream	Input
• cin,	ifstreams,	and	stringstreams can	be	used	to	accept	data	from	the	user

– int x;
– cout <<	"Enter	a	number:	";
– cin >>	x;

• What	if	the	user	does	not	enter	a	valid	number?
– Check	cin.fail() to	see	if	the	read	worked

• What	if	the	user	enters	multiple	values?
– >>	reads	up	until	the	first	piece	of	whitespace
– cin.getline()	can	read	a	max	number	of	chars	until	it	hits	a	delimeter but	only	works	

for	C-strings	(character	arrays)
cin.getline(buf, 80) // reads everything through a '\n'

// stopping after 80 chars if no '\n'

cin.getline(buf, 80, ';') // reads everything through a ';'
// stopping after 80 chars if no ';'

– The	<string>	header	defines	a	getline(...)	method	that	will	read	an	entire	line	
(including	whitespace):
string x;

getline(cin,x,';'); // reads everything through a ';'

5

When	Does	It	Fail
• For	files	&	string	streams	the	stream	doesn't	fail	until	you	read	PAST	

the	EOF
T h e e n d . \n

getp

EOFFile text
char buf[40];
ifstream inf(argv[1]);

inf >> buf;

inf >> buf;

inf >> buf;

T h e \0buf

T h e e n d . \n

getp

EOFFile text

e n d \0buf

T h e e n d . \n

getp

EOFFile text

.

e n d \0buf

T h e e n d . \n

getp

EOFFile text

.

0

EOF BAD FAIL

0 0

0

EOF BAD FAIL

0 0

1

EOF BAD FAIL

0 1

6

Which	Option?
#include<iostream>
#include<fstream>
using namespace std;
int main()
{
vector<int> nums;
ifstream ifile("data.txt");
int x;
while(!ifile.fail()){

ifile >> x;
nums.push_back(x);

}
...
}

#include<iostream>
#include<fstream>
using namespace std;
int main()
{
vector<int> nums;
ifstream ifile("data.txt");
int x;
while(1){

ifile >> x;
if(ifile.fail()) break;
nums.push_back(x);

}
...
}

int x;
while(ifile >> x){
nums.push_back(x);

}
...

A stream returns itself after extraction
A stream can be used as a bool (returns true if it hasn't failed)

Need to check for failure after you
extract but before you store/use

7 8 EOF

data.txt

_

nums
_ _ _

7

Choices
Where	is	my	

data?

Keyboard
(use	_____)

File
(use	_____)

String
(use	______)

Do	I	know	how	many	
items	to	read?

Yes,	n	items
Use	_____

No,	arbitrary
Use	_____

8

Choices
Where	is	my	

data?

Keyboard
(use	iostream [cin])

File
(use	ifstream)

String
(use	stringstream)

Do	I	know	how	many	
items	to	read?

Yes,	n	items
Use	for(i=0;i<n;i++)

No,	arbitrary
Use	while(cin >>	temp)	or	
while(getline(cin,temp))

9

Choices

Text Integers/
Doubles

What	type	
of	data?

Is	it	
delimited?

Yes YesNo

10

Choices

Text
(getline or	>>)

getline ALWAYS	returns	text

Ints/Doubles
(Use	>>	b/c	it	converts	
text	to	the	given	type)

What	type	
of	data?

Is	it	
delimited?

Yes	at	newlines
Use	getline()

No,	stop	on	any	
whitespace…use	>>

Yes	at	special	chars	
(';'	or	',')

Use	getline with	3rd
input	parameter	

(delimeter parameter)

11

getline()	and	stringstreams
• Imagine	a	file	has	a	certain	format	

where	you	know	related	data	is	on	a	
single	line	of	text	but	aren't	sure	
how	many	data	items	will	be	on	that	
line

• Can	we	use	>>?
– No	it	doesn't	differentiate	between	

different	whitespace	(i.e.	a	'	'	and	a	'\n'	
look	the	same	to	>>	and	it	will	skip	over	
them)

• We	can	use	getline()	to	get	the	
whole	line,	then	a	stringstream with	
>>	to	parse	out	the	pieces

int num_lines = 0;
int total_words = 0;

ifstream myfile(argv[1]);

string myline;
while(getline(myfile, myline)){

stringstream ss(myline);

string word;
while(ss >> word)

{ total_words++; }
num_lines++;

}

double avg =
(double) total_words / num_lines;

cout << "Avg. words per line: ";
cout << avg << endl;

The fox jumped over the log.

The bear ate some honey.

The CS student solved a hard problem.

12

Using	Delimiters
• Imagine	a	file	has	a	certain	format	

where	you	know	related	data	is	on	a	
single	line	of	text	but	aren't	sure	
how	many	data	items	will	be	on	that	
line

• Can	we	use	>>?
– No	it	doesn't	differentiate	between	

different	whitespace	(i.e.	a	'	'	and	a	'\n'	
look	the	same	to	>>	and	it	will	skip	over	
them)

• We	can	use	getline()	to	get	the	
whole	line,	then	a	stringstream with	
>>	to	parse	out	the	pieces

vector<string> mywords;

ifstream myfile(argv[1]);

string myline;
getline(myfile, myline, '(');
// gets "garbage stuff "
// and throws away '('

getline(myfile, myline, ')');
// gets "words I care about"
// and throws away ')'`

stringstream ss(myline);
string word;
while(ss >> word) {

mywords.push_back(word);
}

garbage stuff (words I care about) junk

"words" "I" "care" "about"mywords

0 1 2 3

Text file:

13

Choosing	an	I/O	Strategy
• Is	my	data	delimited	by	particular	characters?

– Yes,	stop	on	newlines:		Use	getline()
– Yes,	stop	on	other	character:	User	getline()	with	optional	3rd character
– No,	Use	>>	to	skip	all	whitespaces	and	convert	to	a	different	data	type	

(int,	double,	etc.)

• If	"yes"	above,	do	I	need	to	break	data	into	smaller	pieces	(vs.	
just	wanting	one	large	string)
– Yes,	create	a	stringstream and	extract	using	>>
– No,	just	keep	the	string	returned	by	getline()

• Is	the	number	of	items	you	need	to	read	known	as	a	constant	
or	a	variable	read	in	earlier?
– Yes,	Use	a	loop	and	extract	(>>)	values	placing	them	in	array	or	vector
– No,	Loop	while	extraction	doesn't	fail	placing	them	in	vector

Remember:		getline()	always	gives	text/string.	
To	convert	to	other	types	it	is	easiest	to	use	>>

14

RECURSION

15

Recursion
• Problem	in	which	the	solution	can	be	expressed	in	terms	of	

itself	(usually	a	smaller	instance/input	of	the	same	problem)	
and	a	base/terminating	case

• Input	to	the	problem	must	be	categorized	as	a:
– Base	case:		Solution	known	beforehand	or	easily	computable	(no	

recursion	needed)
– Recursive	case:	Solution	can	be	described	using	solutions	to	smaller	

problems	of	the	same	type
• Keeping	putting	in	terms	of	something	smaller	until	we	reach	the	base	case		

• Factorial:	n!	=	n	*	(n-1)	*	(n-2)	*	…	*	2	*	1	
– n!	=	n	*	(n-1)!
– Base	case:		n	=	1
– Recursive	case:	n	>	1	=>		n*(n-1)!

16

Recursive	Functions

• Recall	the	system	stack	
essentially	provides	
separate	areas	of	
memory	for	each	
‘instance’	of	a	function

• Thus	each	local	variable
and	actual	parameter of	a	
function	has	its	own	
value	within	that	
particular	function	
instance’s	memory	space

int fact(int n)
{
if(n == 1){

// base case
return 1;

}
else {

// recursive case
return n * fact(n-1);

}
}

C Code:

17

Recursion	&	the	Stack
• Must	return	back	through	the	each	call int fact(int n)

{
if(n == 1){

// base case
return 1;

}
else {

// recursive case
return n * fact(n-1);

}
}

int main()

{

int val = 4;

cout << fact(val) << endl;

}

Stack Area of RAM

main
4 val0xbf8

00400120 Return
link

0xbfc

4 n0xbf0

004001844 Return
link

0xbf4
fact

3 n0xbe8

004001844 Return
link

0xbec
fact

2 n0xbe0

004001844 Return
link

0xbe4
fact

1 n0xbd8

004001844 Return
link

0xbdc
fact

1

2

6

24

18

Recursion

• Google is in on the joke too...

19

Recursion

• 2048!
– To	obtain	the	2048	tile

• Two	1024	tiles	are	required
• for	which,	four	512	tiles	are	required
• for	which,	eight	256	tiles	are	required
• for	which,	16	128	tiles	are	required
• for	which,	32	64	tiles	are	required
• for	which,	64	32	tiles	are	required
• for	which,	128	16	tiles	are	required
• for	which,	256	eight	tiles	are	required
• for	which,	512	four	tiles	are	required
• for	which,	1024	two	tiles	are	required

20

Recursive	Functions

• Many	loop/iteration	
based	approaches	can	be	
defined	recursively	as	
well

int main()
{
int data[4] = {8, 6, 7, 9};
int size=4;
int sum1 = isum_it(data, size);
int sum2 = rsum_it(data, size);

}

int isum_it(int data[], int len)
{
int sum = data[0];
for(int i=1; i < len; i++){
sum += data[i];

}
}

int rsum_it(int data[], int len)
{
if(len == 1)
return data[0];

else
int sum = rsum_it(data, len-1);
return sum + data[len-1];

}

C Code:

21

Recursive	Call	Timeline

Each	instance	of	rsum_it has	its	own	len argument	and	sum variable
Every	instance	of	a	function	has	its	own	copy	of	local	variables

rsum_it(data,4)
int sum=
rsum_it(data,4-1)

Time

len = 4 len = 3

len = 2 len = 1rsum_it(data,3)
int sum=
rsum_it(data,3-1) rsum_it(data,2)

int sum=
rsum_it(data,2-1) rsum_it(data,1)

return data[0];

int main(){
int data[4] = {8, 6, 7, 9};
int size=4;
int sum2 = rsum_it(data, size);
...

}

8

int rsum_it(int data[], int len)
{

if(len == 1)
return data[0];

else
int sum = rsum_it(data, len-1);
return sum + data[len-1];

}

int sum = 8
return 8+data[1];

int sum = 14
return 14+data[2];

int sum = 21
return 21+data[3];

14

21

30

22

Code for all functions

System	Stack	&	Recursion
• The	system	stack	makes	recursion	

possible	by	providing	separate	memory	
storage	for	the	local	variables	of	each	
running	instance	of	the	function

System stack area

System
Memory

(RAM)

Code for all functions

int main()
{

int data[4] = {8, 6, 7, 9};
int size=4;
int sum2 = rsum_it(data, size);

}

int rsum_it(int data[], int len)
{

if(len == 1)
return data[0];

else
int sum =

rsum_it(data, len-1);
return sum + data[len-1];

}

Data for rsum_it (data=800,
len=4, sum=??) and return link

Data for rsum_it (data=800,
len=3, sum=??) and return link

Data for rsum_it (data=800,
len=2, sum=??) and return link

Data for rsum_it (data=800,
len=1, sum=??) and return link
Data for rsum_it (data=800,

len=2, sum=8) and return link
Data for rsum_it (data=800,

len=3, sum=14) and return link
Data for rsum_it (data=800,

len=4, sum=21) and return link
Data for main (data=800, size=4,
sum1=??,sum2=??) and return link

8 6 7 9
0 1 2 3data[4]:

800

23

HELPER	FUNCTIONS

24

Exercise
• Write	a	recursive	routine	to	find	the	maximum	element	of	an	

array	containing	POSITIVE	integers.
int data[4] = {8, 9, 7, 6};

• Primary	signature:		
int max(int*	data,	int len);

• For	recursion	we	usually	need	some	parameter	to	tell	use	
which	item	we	are	responsible	for…thus	the	signature	needs	
to	change.		We	can	make	a	helper	function.

• The	client	uses	the	original:	
int max(int*	data,	int len);

• But	it	just	calls:		
int max(int*	data,	int len,	int curr);

25

Exercise	– Helper	Function
• Head	recursion • Tail	recursion

// The client only wants this
int max(int* data, int len);

// But to do the job we need this
int max(int* data, int len, int curr);

int max(int* data, int len)
{ return max(data, len, 0);
}

int max(int* data, int len, int curr)
{

if(curr == len) return 0;
else {

int prevmax = max(data, len, curr+1);
if(data[curr] > prevmax)

return data[curr];
else

return prevmax;
}

int data[4] = {8, 9, 7, 6};

// The client only wants this
int max(int* data, int len);

// But to do the job we need this
void max(int* data, int len, int curr, int& mx);

int max(int* data, int len)
{ int mymax = 0;
max(data, len, 0, mymax);
return mymax;

}

void max(int* data, int len, int curr, int& mx)
{

if(curr == len) return;
else {

if(data[curr] > mx)
mx = data[curr];

max(data, len, curr+1, mx);
}

26

Exercise
• We	can	also	formulate	things	w/o	the	helper	function	in	this	case…

int max(int* data, int len)
{

if(len == 1) return data[0];
else {

int prevmax = max(data, len-1);
if(data[len-1] > prevmax)

return data[len-1];
else

return prevmax;
}

}

int data[4] = {8, 6, 9, 7};

27

GENERATING	ALL	COMBINATIONS

28

Recursion's	Power

• The	power	of	recursion	often	comes	when	
each	function	instance	makes	multiple
recursive	calls

• As	you	will	see	this	often	leads	to	exponential	
number	of	"combinations"	being	
generated/explored	in	an	easy	fashion

29

Binary	Combinations

• If	you	are	given	the	value,	n,	
and	a	string	with	n	
characters	could	you	
generate	all	the	
combinations	of	n-bit	
binary?

• Do	so	recursively!

0
1

00
01
10
11

000
001
010
011
100
101
110
111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1-bit
Bin.

2-bit
Bin.

3-bit
Bin.

4-bit
Bin.

Exercise: bin_combo_str

30

Recursion	and	DFS

• Recursion	forms	a	kind	of	Depth-First	Search

binCombos(…,3)
Set to 0; recurse;
Set to 1; recurse;

binCombos(…,3)
Base case

binCombos(…,3)
Set to 0; recurse;
Set to 1; recurse;

binCombos(…,3)
Set to 0; recurse;
Set to 1; recurse; 0

00

000

1

01 10 11

001 010 011 100 101 110 111

// user interface
void binCombos(int len)
{
binCombos("", len);

}
// helper-function
void binCombos(string prefix,

int len)
{
if(prefix.length() == len)
cout << prefix << endl;

else {
// recurse
binCombos(prefix+"0", len);
// recurse
binCombos(prefix+"1", len);

}
}

31

Recursion	and	DFS	(w/	C-Strings)

• Recursion	forms	a	kind	of	Depth-First	Search

binCombos(2,3)
Set to 0; recurse;
Set to 1; recurse;

binCombos(3,3)
Base case

binCombos(1,3)
Set to 0; recurse;
Set to 1; recurse;

binCombos(0,3)
Set to 0; recurse;
Set to 1; recurse; 0

0

0

1

1 0 1

1 0 1 0 1 0 1

void binCombos(char* data,
int curr,
int len)

{
if(curr == len)
data[curr] = '\0';

else {
// set to 0
data[curr] = '0';
// recurse
binCombos(data, curr+1, len);
// set to 1
data[curr] = '1';
// recurse
binCombos(data, curr+1, len);

}
}

32

Generating	All	Combinations
• Recursion	offers	a	simple	way	to	generate	all	combinations	of	N

items	from	a	set	of	options,	S
– Example:		Generate	all	2-digit	decimal	numbers	(N=2,	S={0,1,…,9})

void TwoDigCombos(char data[3],
int curr)

{
if(curr == 2)
cout << data;

else {
for(int i=0; i < 10; i++){
// set to i
data[curr] = '0'+i;
// recurse
TwoDigCombos(data, curr+1);

}
}

TDC(data,0)

TDC(data,1) TDC(data,1)…

TDC(2) TDC(2) TDC(2) TDC(2) TDC(2)

…

0 0 '\0' 9 9 '\0'

1 - '\0' 9 - '\0'0 - '\0'

TDC(data,1)

0 9 '\0' 9 0 '\0'

…

…

…

33

Recursion	and	Combinations
• Recursion	provides	an	elegant	way	of	generating	all	n-length	

combinations	of	a	set	of	values,	S.
– Ex.		Generate	all	length-n combinations	of	the	letters	in	the	set	S={'U','S','C'}	

(i.e.	for	n=2:	UU,	US,	UC,	SU,	SS,	SC,	CU,	CS,	CC)

• General	approach:
– Need	some	kind	of	array/vector/string to	store	partial	answer	as	it	is	being	

built
– Each	recursive	call	is	only	responsible	for	one	of	the	n "places"	(say	location,	i)
– The	function	will	iteratively	(loop)	try	each	option	in	S	by	setting		location	i to	

the	current	option,	then	recurse to	handle	all	remaining	locations	(i+1	to	n)
• Remember	you	are	responsible	for	only	one	location

– Upon	return,	try	another	option	value	and	recurse again
– Base	case	can	stop	when	all	n	locations	are	set	(i.e.	recurse off	the	end)
– Recursive	case	returns	after	trying	all	options

34

Exercises

• bin_combos_str
• Zero_sum
• Prime_products_print
• Prime_products
• basen_combos
• all_letter_combos

35

Another	Exercise

• Generate	all	string	
combinations	of	
length	n	from	a	
given	list	(vector)	
of	characters

#include <iostream>
#include <string>
#include <vector>
using namespace std;

void all_combos(vector<char>& letters, int n) {

}

int main() {
vector<char> letters;
letters.push_back('U');
letters.push_back('S');
letters.push_back('C');

all_combos(letters, 2);

all_combos(letters, 4);

return 0;
}

36

RECURSIVE	DEFINITIONS

37

Recursive	Definitions
• N	=	Non-Negative	Integers	and	is	defined	as:

– The	number	0	[Base]
– n	+	1	where	n	is	some	non-negative	integer	[Recursive]

• String
– Empty	string,	ε
– String	concatenated	with	a	character	(e.g.	'a'-'z')

• Palindrome	(string	that	reads	the	same	forward	as	backwards)
– Example:		dad,	peep,	level
– Defined	as:

• Empty	string	[Base]
• Single	character	[Base]
• xPx where	x	is	a	character	and	P	is	a	Palindrome	[Recursive]

• Recursive	definitions	are	often	used	in	defining	grammars	for	
languages	and	parsers	(i.e.	your	compiler)

38

C++	Grammar

• Languages	have	rules	governing	their	syntax	and	
meaning

• These	rules	are	referred	to	as	its	grammar
• Programming	languages	also	have	grammars	that	code	
must	meet	to	be	compiled
– Compilers	use	this	grammar	to	check	for	syntax	and	other	
compile-time	errors

– Grammars	often	expressed	as	“productions/rules”

• ANSI	C	Grammar	Reference:	
– http://www.lysator.liu.se/c/ANSI-C-grammar-y.html#declaration

39

Simple	Paragraph	Grammar
Substitution Rule

subject "I"		|	"You"		|		"We"

verb "run"	|	"walk"	|	"exercise" |	"eat"	|	"play"	|	"sleep"

sentence subject verb		'.'

sentence_list sentence
|		sentence_list sentence

paragraph [TAB	=	\t]		sentence_list [Newline	=	\n]

I run. You walk. We exercise.
subject verb. subject verb.

subject verb.

sentence sentence sentence
sentence_list sentence sentence
sentence_list sentence
sentence_list
paragraph

Example: Example:
I eat You sleep
Subject verb subject verb
Error

40

C++	Grammar
Rule Expansion

expr constant	
|	variable_id
|	function_call
|	assign_statement
|	‘(‘		expr ‘)’
|	expr binary_op expr
|	unary_op expr

assign_statement variable_id ‘=‘	expr

expr_statement ‘;’
|	expr ‘;’

5 * (9 + max);
expr * (expr + expr);
expr * (expr);
expr * expr;
expr;
expr_statement

Example: Example: x + 9 = 5;
expr + expr = expr;
expr = expr;

NO SUBSTITUTION
Compile Error!

41

C++	Grammar
Rule Substitution

statement expr_statement
|	compound_statement
|	if	(expr)	statement
|	while	(expr)	statement
…

compound_statement ‘{‘	statement_list ‘}’

statement_list statement
|	statement_list statement

while(x > 0) { doit(); x = x-2; }
while(expr) { expr; assign_statement; }
while(expr) { expr; expr; }
while(expr) { expr_statement expr_statement }
while(expr) { statement statement }
while(expr) { statement_list statement }
while(expr) { statement_list }
while(expr) compound_statement
while(expr) statement
statement

Ex
am

pl
e: while(x > 0)

x--;
x = x + 5;

while(expr)
statement
statement

statement
statement

Ex
am

pl
e:

42

MORE	EXAMPLES

43

Towers	of	Hanoi	Problem
• Problem	Statements:		Move	n	discs	from	source	pole	to	

destination	pole	(with	help	of	a	3rd alternate	pole)	
– Cannot	place	a	larger	disc	on	top	of	a	smaller	disc
– Can	only	move	one	disc	at	a	time

3
2
1

A
(src)

B
(dst)

C
(alt)

A
(src)

B
(dst)

C
(alt)

Start	(n=3) Goal	(n=3)
3
2
1

A B C

Not	allowed
3

2
1

44

Observation	1
• Observation	1:		Disc	1	(smallest)	can	always	be	moved
• Solve	the	n=2	case:

A (src) B (dst) C (alt)

1

A B C

2 1

A B C

2
1

A B C

2
1

2
Move 1 from src to alt Move 2 from src to dst

Move 1 from alt to dst

Start

45

Observation	2
• Observation	2:		If	there	is	only	one	disc	on	the	src pole	and	the	

dest pole	can	receive	it	the	problem	is	trivial

3

3

A (src) B (dst) C (alt)

2
1

A B C

2
1

A B C

3

2
1

A B C

3

Move n-1 discs from src to alt Move disc n from src to dst

Move n-1 discs from alt to dst

2
1

46

Recursive	solution
• But	to	move	n-1	discs	from	src to	alt	is	really	a	smaller	version	of	

the	same	problem	with	
– n	=>	n-1
– src=>src
– alt	=>dst
– dst=>alt

• Towers(n,src,dst,alt)
– Base	Case:	n==1			//	Observation	1:	Disc	1	always	movable

• Move	disc	1	from	src to	dst
– Recursive	Case:				//	Observation	2:	Move	of	n-1	discs	to	alt	&	back

• Towers(n-1,src,alt,dst)
• Move	disc	n	from	src to	dst
• Towers(n-1,alt,dst,src)

3

A (src) B (dst) C (alt)

2
1

47

Exercise

• Implement	the	Towers	of	Hanoi	code
– $	wget http://ee.usc.edu/~redekopp/cs104/hanoi.cpp
– Just	print	out	"move	disc=x	from	y	to	z"	rather	than	trying	
to	"move"	data	values

• Move	disc	1	from	a	to	b
• Move	disc	2	from	a	to	c
• Move	disc	1	from	b	to	c
• Move	disc	3	from	a	to	b
• Move	disc	1	from	c	to	a
• Move	disc	2	from	c	to	b
• Move	disc	1	from	a	to	b

48

Recursive	Box	Diagram

Towers(3,a,b,c)

Towers(2,a,c,b)

Towers(1,a,b,c) Move	D=1	a	to	b

Move	D=2	a	to	c

Towers(1,b,c,a) Move	D=1	b	to	c

Move	D=3	a	to	b

Towers(2,c,b,a)

Towers(1,c,a,b) Move	D=1	c	to	a

Move	D=2	c	to	b

Towers(1,a,b,c) Move	D=1	a	to	b

Towers(disc,src,dst,alt)

Towers Function Prototype

49

Combinatorics Examples
• Given	n	things,	how	can	you	choose	k	of	them?

– Written	as	C(n,k)

• How	do	we	solve	the	problem?
– Pick	one	person	and	single	them	out

• Groups	that	contain	Joe										=>	_______________
• Groups	that	don't	contain	Joe	=>	_______________

– Total	number	of	solutions:	__________________
– What	are	base	cases?

Joe

50

Combinatorics Examples
• Given	n	things,	how	can	you	choose	k	of	them?

– Written	as	C(n,k)

• How	do	we	solve	the	problem?
– Pick	one	person	and	single	them	out

• Groups	that	contain	Joe										=>	C(n-1,	k-1)
• Groups	that	don't	contain	Joe	=>	C(n-1,	k)

– Total	number	of	solutions:	C(n-1,k-1)	+	C(n-1,k)
– What	are	base	cases?

Joe

51

Combinatorics Examples

• You're	going	to	Disneyland	and	you're	trying	to	pick	4	
people	from	your	dorm	to	go	with	you

• Given	n	things,	how	can	you	choose	k	of	them?
– Written	as	C(n,k)
– Analytical	solution:		C(n,k)	=	n!	/	[k!	*	(n-k)!]

• How	do	we	solve	the	problem?

52

Recursive	Solution

• Sometimes	recursion	can	yield	an	incredibly	simple	
solution	to	a	very	complex	problem

• Need	some	base	cases
– C(n,0)	=	1
– C(n,n)	=	1

int C(int n, int k)
{
if(k == 0 || k == n)
return 1;

else
return C(n-1,k-1) + C(n-1,k);

}

