
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp and	David	Kempe

2

Courtesy of Randall Munroe @ http://xkcd.com

XKCD #138

3

RECURSION	(cont.)

4

Recursive	Definitions
• N	=	Non-Negative	Integers	and	is	defined	as:

– The	number	0	[Base]
– n	+	1	where	n	is	some	non-negative	integer	[Recursive]

• String
– Empty	string,	ε
– String	concatenated	with	a	character	(e.g.	'a'-'z')

• Palindrome	(string	that	reads	the	same	forward	as	backwards)
– Example:		dad,	peep,	level
– Defined	as:

• Empty	string	[Base]
• Single	character	[Base]
• xPx where	x	is	a	character	and	P	is	a	Palindrome	[Recursive]

• Recursive	definitions	are	often	used	in	defining	grammars	for	
languages	and	parsers	(i.e.	your	compiler)

5

C++	Grammar

• Languages	have	rules	governing	their	syntax	and	
meaning

• These	rules	are	referred	to	as	its	grammar
• Programming	languages	also	have	grammars	that	code	
must	meet	to	be	compiled
– Compilers	use	this	grammar	to	check	for	syntax	and	other	
compile-time	errors

– Grammars	often	expressed	as	“productions/rules”

• ANSI	C	Grammar	Reference:	
– http://www.lysator.liu.se/c/ANSI-C-grammar-y.html#declaration

6

Simple	Paragraph	Grammar
Substitution Rule

subject "I"		|	"You"		|		"We"

verb "run"	|	"walk"	|	"exercise" |	"eat"	|	"play"	|	"sleep"

sentence subject verb		'.'

sentence_list sentence
|		sentence_list sentence

paragraph [TAB	=	\t]		sentence_list [Newline	=	\n]

I run. You walk. We exercise.
subject verb. subject verb.

subject verb.

sentence sentence sentence
sentence_list sentence sentence
sentence_list sentence
sentence_list
paragraph

Example: Example:
I eat You sleep
Subject verb subject verb
Error

7

C++	Grammar
Rule Expansion

expr constant	
|	variable_id
|	function_call
|	assign_statement
|	‘(‘		expr ‘)’
|	expr binary_op expr
|	unary_op expr

assign_statement variable_id ‘=‘	expr

expr_statement ‘;’
|	expr ‘;’

5 * (9 + max);
expr * (expr + expr);
expr * (expr);
expr * expr;
expr;
expr_statement

Example: Example: x + 9 = 5;
expr + expr = expr;
expr = expr;

NO SUBSTITUTION
Compile Error!

8

C++	Grammar
Rule Substitution

statement expr_statement
|	compound_statement
|	if	(expr)	statement
|	while	(expr)	statement
…

compound_statement ‘{‘	statement_list ‘}’

statement_list statement
|	statement_list statement

while(x > 0) { doit(); x = x-2; }
while(expr) { expr; assign_statement; }
while(expr) { expr; expr; }
while(expr) { expr_statement expr_statement }
while(expr) { statement statement }
while(expr) { statement_list statement }
while(expr) { statement_list }
while(expr) compound_statement
while(expr) statement
statement

Ex
am

pl
e: while(x > 0)

x--;
x = x + 5;

while(expr)
statement
statement

statement
statement

Ex
am

pl
e:

9

MORE	EXAMPLES

10

Combinatorics Examples
• Given	n	things,	how	can	you	choose	k	of	them?

– Written	as	C(n,k)

• How	do	we	solve	the	problem?
– Pick	one	person	and	single	them	out

• Groups	that	contain	Joe										=>	C(n-1,	k-1)
• Groups	that	don't	contain	Joe	=>	C(n-1,	k)

– Total	number	of	solutions:	C(n-1,k-1)	+	C(n-1,k)
– What	are	base	cases?

Joe

11

Combinatorics Examples

• You're	going	to	Disneyland	and	you're	trying	to	pick	4	
people	from	your	dorm	to	go	with	you

• Given	n	things,	how	can	you	choose	k	of	them?
– Written	as	C(n,k)
– Analytical	solution:		C(n,k)	=	n!	/	[k!	*	(n-k)!]

• How	do	we	solve	the	problem?

12

Recursive	Solution

• Sometimes	recursion	can	yield	an	incredibly	simple	
solution	to	a	very	complex	problem

• Need	some	base	cases
– C(n,0)	=	1
– C(n,n)	=	1

int C(int n, int k)
{
if(k == 0 || k == n)
return 1;

else
return C(n-1,k-1) + C(n-1,k);

}

13

LINKED	LISTS

14

Array	Problems
• Once	allocated	an	array	cannot	grow	or	shrink
• If	we	don't	know	how	many	items	will	be	added	we	could	just	allocate	an	

array	larger	than	we	need	but…
– We	might	waste	space	
– What	if	we	end	up	needing	more…would	need	to	allocate	a	new	array	and	

copy	items
• Arrays	can't	grow	with	the	needs	of	the	client	

30 51 52 53 54
0 1 2 3 4 5

10
6 7 8 9 10 11

30 51 52 53 54
0 1 2 3 4 5

10

21append(21) =>

Old, full array

Copy over items

0 1 2 3 4 5 6 7 8 9 10 11
Allocate new
array

30 51 52 53 54
0 1 2 3 4 5

10
6 7 8 9 10 11

Add new item 21

15

Motivation	for	Linked	Lists
• Can	we	create	a	list	implementation	that	can	easily	grow	or	

shrink	based	on	the	number	of	items	currently	in	the	list
• Observation:	Arrays	are	allocated	and	deallocated	in	LARGE	

chunks
– It	would	be	great	if	we	could	allocate/deallocate	at	a	finer	granularity

• Linked	lists	take	the	approach	of	allocating	in	small	chunks	
(usually	enough	memory	to	hold	one	item)

Bulk Item
(i.e. array)

Single Item
(i.e. linked

list)

16

Linked	List
• Use	structures/classes	and	pointers	

to	make	‘linked’	data	structures	
• A	List	is…

– Arbitrarily	sized	collection	of	
values

– Can	add	any	number	of	new	values	
via	dynamic	memory	allocation

– Supports	typical	List	ADT	
operations:

• Insert
• Get
• Remove
• Size
• Empty

• Can	define	a	List	class

#include<iostream>
using namespace std;

struct Item {
int val;
Item* next;

};

class List
{

public:
List();
~List();
void push_back(int v); ...

private:
Item* head_;

};

int
val

Item*
next

Item blueprint:

Rule of thumb: Still use ‘structs’ for objects that are
purely collections of data and don’t really have

operations associated with them. Use ‘classes’ when
data does have associated functions/methods.

val next

3 0x1c0

val next

9 0x168
0x148head 0x148 0x1c0

val next

2 0x0
(Null)

0x168

17

Don't	Need	Classes
• We	don't	have	to	use	

classes…
– The	class	just	acts	as	a	wrapper	

around	the	head	pointer	and	the	
operations

– So	while	a	class	is	probably	the	
correct	way	to	go	in	terms	of	
organizing	your	code,	for	today	we	
can	show	you	a	less	modular,	
procedural	approach	

• Define	functions	for	each	
operation	and	pass	it	the	
head	pointer	as	an	argument

#include<iostream>
using namespace std;
struct Item {

int val;
Item* next;

};

void append(Item*& head, int v);
bool empty(Item* head);
int size(Item* head);

int main()
{

Item* head1 = NULL;
Item* head2 = NULL;
int size1 = size(head1);
bool empty2 = empty(head2);
...

}

0x0

head_

int
val

Item*
next

Item blueprint:

class List:

Rule of thumb: Still use ‘structs’ for objects that are
purely collections of data and don’t really have

operations associated with them. Use ‘classes’ when
data does have associated functions/methods.

18

Linked	List	Implementation
• To	maintain	a	linked	list	you	need	only	

to	keep	one	data	value:	head
– Like	a	train	engine,	we	can	attach	any	

number	of	'cars'	to	the	engine
– The	engine	looks	different	than	all	the	

others
• In	our	linked	list	it's	just	a	single	pointer	

to	an	Item
• All	the	cars	are	Item	structs
• Each	car	has	a	hitch	for	a	following	car	

(i.e.	next	pointer)

Each car =
"Item"

Engine =
"head"

0x0
NULL

head1

#include<iostream>
using namespace std;
struct Item {

int val;
Item* next;

};

void append(Item*& head, int v);

int main()
{

Item* head1 = NULL;
Item* head2 = NULL;

}

19

A	Common	Misconception
• Important	Note:

– 'head'	is	NOT	an	Item,	it	is	a	pointer	to	
the	first	item

– Sometimes	folks	get	confused	and	think	
head	is	an	item	and	so	to	get	the	location	
of	the	first	item	they	write	'head->next'

– In	fact,	'head->next'	evaluates	to	the	2nd
items	address

val next

3 0x1c0

val next

9 0x168

0x148

head

0x148 0x1c0

val next

2 0x0
(Null)

0x168

20

Append
• Adding	an	item	(train	car)	to	the	

back	can	be	split	into	2	cases:
– Attaching	the	car	to	the	engine	(i.e.	

the	list	is	empty	and	we	have	to	
change	the	head	pointer)

– Attaching	the	car	to	another	car	(i.e.	
the	list	has	other	Items	already)	and	
so	we	update	the	next	pointer	of	an	
Item

val next

0x0

head1

0x148

3 NULL

0x148

#include<iostream>
using namespace std;
struct Item {

int val;
Item* next;

};

void append(Item*& head, int v)
{

if(head == NULL){
head = new Item;
head->val = v; head->next = NULL;

}
else {...}

}

int main()
{

Item* head1 = NULL;
Item* head2 = NULL;
append(head1, 3)

}

21

NULL

Linked	List
• Adding	an	item	(train	car)	to	the	

back	can	be	split	into	2	cases:
– Attaching	the	car	to	the	engine	(i.e.	

the	list	is	empty	and	we	have	to	
change	the	head	pointer)

– Attaching	the	car	to	another	car	(i.e.	
the	list	has	other	Items	already)	and	
so	we	update	the	next	pointer	of	an	
Item

val next

3 0x1c0

val next

9 0x0
NULL

0x148

head

0x148 0x1c0

#include<iostream>
using namespace std;
struct Item {

int val;
Item* next;

};

void append(Item*& head, int v)
{

if(head == NULL){
head = new Item;
head->val = v; head->next = NULL;

}
else {...}

}

int main()
{

Item* head1 = NULL;
Item* head2 = NULL;
append(head1, 3)

}

22

Append()
• Look	at	how	the	head	parameter	is	

passed…Can	you	explain	it?
– Head	might	need	to	change	if	it	is	the	1st

item	that	we	are	adding
– We've	passed	the	head	pointer	BY	VALUE	

so	if	we	modify	'head'	in	append()	we'll	
only	be	modifying	the	copy

– We	need	to	pass	the	pointer	by	reference
– We	choose	Item*&	but	we	could	also	pass	

an	Item**

val next

3 0x0
NULL

0x0

head

0x148

void append(Item*& head, int v)
{

Item* newptr = new Item;
newptr->val = v; newptr->next = NULL;

if(head == NULL){
head = newptr;

}
else {

Item* temp = head;
// iterate to the end
...

}
}

0x148

void append(Item** head, int v)
{

Item* newptr = new Item;
newptr->val = v; newptr->next = NULL;

if(*head == NULL){
head = newptr;

}
else {

Item* temp = head;
// iterate to the end
...

}
}

0x200

23

Arrays/Linked	List	Efficiency
• Arrays	are	contiguous	pieces	of	memory
• To	find	a	single	value,	computer	only	needs

– The	start	address	
• Remember	the	name	of	the	array	evaluates	to	

the	starting	address	(e.g.	data	=	120)
– Which	element	we	want

• Provided	as	an	index	(e.g.	[20])

– This	is	all	thanks	to	the	fact	that	items	are	
contiguous	in	memory

• Linked	list	items	are	not	contiguous
– Thus,	linked	lists	have	an	explicit	field	to	

indicate	where	the	next	item	is
– This	is	"overhead"	in	terms	of	memory	usage
– Requires	iteration	to	find	an	item	or	move	to	

the	end

Memory

100
45 31 21 04 98 73 …

104 108 112 116 120

data = 100

#include<iostream>
using namespace std;

int main()
{

int data[25];
data[20] = 7;
return 0;

}

val next

3 0x1c0

val next

9 0x168

0x148

head

0x148 0x1c0

val next

2 0x0
(Null)

0x168

24

Append()
• Start	from	head	and	iterate	to	
end	of	list
– Allocate	new	item	and	fill	it	in
– Copy	head	to	a	temp	pointer	
– Use	temp	pointer	to	iterate	through	

the	list	until	we	find	the	tail	(element	
with	next	field	=	NULL)

– Update	old	tail	item	to	point	at	new	
tail	item

val next

3 0x1c0

val next

9 0x0
NULL

0x148

head

0x148 0x1c0

val next

2 0x0
(Null)

0x1680x168

0x148

temp

I don’t know where the list ends so I have
to traverse it

0x1c0

temp

void append(Item*& head, int v)
{

Item* newptr = new Item;
newptr->val = v; newptr->next = NULL;

if(head == NULL){
head = newptr;

}
else {

Item* temp = head;
// iterate to the end
...

}
}

25

Iterating	Over	a	Linked	List
• To	iterate	we	probably	need	
to	create	a	copy	of	the	head	
pointer	(because	if	we	
modify	'head'	we'll	never	
remember	where	the	list	
started

• How	do	we	take	a	step	
(advance	one	Item)	given	
the	temp	pointer
– temp	=	temp->next;

val next

3 0x1c0

val next

9 0x0
NULL

0x148head 0x148 0x1c0

0x148

temp

0x1c0

temp

void append(Item*& head, int v)
{

Item* newptr = new Item;
newptr->val = v; newptr->next = NULL;

if(head == NULL){
head = newptr;

}
else {

Item* temp = head;
while(temp->next){

temp = temp->next;
}
temp->next = newptr;

}
}

26

Using	a	For	loop

void append(Item*& head, int v)
{

Item* newptr = new Item;
newptr->val = v; newptr->next = NULL;

if(listPtr == NULL){
head = newptr;

}
else {

Item* temp = head; // init
while(temp->next){ // condition

temp = temp->next; // update
}
temp->next = newptr;

}
}

void append(Item*& head, int v)
{

Item* newptr = new Item;
newptr->val = v; newptr->next = NULL;

if(listPtr == NULL){
head = newptr;

}
else {

Item* temp;
for(temp = head; // init

temp->next; // condition
temp = temp->next); // update

temp->next = newptr;
}

}

27

Printing	Out	Each	Item

void print(Item* head)
{

Item* temp = head; // init
while(temp) { // condition

cout << temp->val << endl;
temp = temp->next; // update

}
}

void print(Item* head)
{

Item* temp;
for(temp = head; // init

temp; // condition
temp = temp->next){ // update

cout << temp->val << endl;
}

}

28

RECURSION	&	LINKED	LISTS

29

Recursion	and	Linked	Lists

• Notice	that	one	Item's	next	pointer	looks	like	a	head	
pointer	to	the	remainder	of	the	linked	list
– If	we	have	a	function	that	processes	a	linked	list	by	
receiving	the	head	pointer	as	a	parameter	we	can	
recursively	call	that	function	by	passing	our	'next'	pointer	
as	the	'head'

val next

3 0x1c0

val next

9 0x168

0x148

0x148 0x1c0

val next

2 0x0
(Null)

0x168

head

0x1c0head2

30

Recursive	Operations	on	Linked	List
• Many	linked	list	operations	can	be	recursively	defined
• Can	we	make	a	recursive	iteration	function	to	print	items?

– Recursive	case:		Print	one	item	then	the	problem	becomes	to	print	the	n-1	other	items.
• Notice	that	any	'next'	pointer	can	be	though	of	as	a	'head'	pointer	to	the	remaining	sublist

– Base	case:		Empty	list	
(i.e.	Null	pointer)

• How	could	you	print	values	in	reverse	order?

void print(Item* ptr)
{

if(ptr == NULL) return;
else {

cout << ptr->val << endl;
print(ptr->next);

}
}
int main()
{ Item* head;

...
print(head);

}

val next

3 0x1c0

val next

9 0x0
NULL

0x148head 0x148 0x1c0

main
0x148 head0xbf8

00400120 Return
link

0xbfc

0x148 ptr0xbf0

004001844 Return
link

0xbf4
print

0x1c0 ptr0xbe8

004001844 Return
link

0xbec
print

0x0 ptr0xbe8

004001844 Return
link

0xbec
print

31

Summing	the	Values
• Write	a	recursive	routine	to	sum	the	values	of	a	
linked	list
– Head	Recursion	(recurse first,	do	work	on	the	way	
back	up)

– Tail	Recursion	(do	work	on	the	way	down,	then	
recurse)

val next

3 0x1c0

val next

9 0x168

0x148

0x148 0x1c0

val next

2 0x0
(Null)

0x168

32

Head	Recursion
• Recurse to	the	end	of	the	chain	(head	==	NULL)	and	then	start	

summing	on	the	way	back	up
– What	should	the	base	case	return
– What	should	recursive	cases	(normal	nodes)	return?

val next

3 0x1c0

val next

9 0x168

0x148

0x148 0x1c0

val next

2 0x0
(Null)

0x168

head

sum(0x148) sum(0x1c0) sum(0x168) sum(0x0)

00+2=22+9=113+11=14

Main()

33

Tail	Recursion
• Produce	sum	as	you	walk	down	the	list	then	just	
return	the	final	answer	back	up	the	list

val next

3 0x1c0

val next

9 0x168

0x148

0x148 0x1c0

val next

2 0x0
(Null)

0x168

head

sum(0x148) sum(0x1c0) sum(0x168) sum(0x0)

14141414

Main()

3 12 14

34

Exercises

• llsum_head
• llsum_tail

http://bits.usc.edu/cs104/exercises.html

35

Recursive	Copy
• How	could	you	make	a	copy	of	a	linked	list	using	
recursion

struct Item {
int val;
Item* next;
Item(int v, Item* n){

val = v; next = n;
}

};

Item* copyLL(Item* head)
{

if(head == NULL) return NULL;
else {

return new Item(head->val,
copyLL(head->next));

}
}
int main()
{ Item* oldhead, *newhead;

...
newhead = copyLL(oldhead);

}

val next

3 0x1c0

val next

9 0x0
NULL

0x148oldhead

0x148 0x1c0

val next

3 0x7c0

val next

9 0x0
NULL

0x7c0

0x840

newhead

copyLL(0x148) copyLL(0x1c0) copyLL(0x0)

0x00x7c0

0x840

36

INCREASING	EFFICIENCY	OF	
OPERATIONS	+	DOUBLY	LINKED	
LISTS

37

Adding	a	Tail	Pointer
• If	in	addition	to	maintaining	a	head	

pointer	we	can	also	maintain	a	tail	
pointer

• A	tail	pointer	saves	us	from	
iterating	to	the	end	to	add	a	new	
item

• Need	to	update	the	tail	pointer	
when…	
– We	add	an	item	to	the	end	(fast)
– We	remove	an	item	from	the	end	

(slow)

val next

2 0x0
(Null)

0x1680x168

val next

3 0x1c0

val next

9 NULL

0x148

head

0x148 0x1c0

0x1c0

tail

0x168

tail

38

Removal

• To	remove	the	last	item,	we	need	to	update	the	2nd
to	last	item	(set	it's	next	pointer	to	NULL)

• We	also	need	to	update	the	tail	pointer
• But	this	would	require	us	to	traverse	the	full	list
• ONE	SOLUTION:		doubly-linked	list

val next

5 0x1c0

val next

9 NULL

0x200 0x1c0

0x1c0

tail

val next

3 0x200
0x148

head
0x148 …

39

Doubly-Linked	Lists
• Includes	a	previous	pointer	

in	each	item	so	that	we	can	
traverse/iterate	backwards	
or	forward

• First	item's	previous	field	
should	be	NULL

• Last	item's	next	field	should	
be	NULL

#include<iostream>

using namespace std;
struct DLItem {

int val;
DLItem* prev;
DLItem* next;

};

int main()
{

DLItem* head, *tail;
};

int
val

DLItem *
next

struct Item blueprint:
DLItem *

prev

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

0x210

tail

40

Doubly-Linked	List	Add	Front
• Adding	to	the	front	requires	you	to	update…
• …Answer

– Head
– New	front's	next	&	previous
– Old	front's	previous

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

12

val nextprev

0x190

41

Doubly-Linked	List	Add	Front
• Adding	to	the	front	requires	you	to	update…

– Head
– New	front's	next	&	previous
– Old	front's	previous

0x148

head

3 0x1c00x190

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

12 0x148NULL

val nextprev

0x190

42

Doubly-Linked	List	Add	Middle
• Adding	to	the	middle	requires	you	to	update…

– Previous	item's	next	field
– Next	item's	previous	field
– New	item's	next	field
– New	item's	previous	field

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

12

val nextprev

0x190

43

Doubly-Linked	List	Add	Middle
• Adding	to	the	middle	requires	you	to	update…

– Previous	item's	next	field
– Next	item's	previous	field
– New	item's	next	field
– New	item's	previous	field

0x148

head

3 0x1c0NULL

val nextprev

9 0x1900x148

val nextprev

0x148 0x1c0

6 NULL0x190

val nextprev

0x210

12 0x2100x1c0

val nextprev

0x190

44

Doubly-Linked	List	Remove	Middle

• Removing	from	the	middle	requires	you	to	update…
– Previous	item's	next	field	
– Next	item's	previous	field
– Delete	the	item	object

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

45

Doubly-Linked	List	Remove	Middle

• Removing	from	the	middle	requires	you	to	update…
– Previous	item's	next	field	
– Next	item's	previous	field
– Delete	the	item	object

0x148

head

3 0x210NULL

val nextprev

9 0x2100x148

val nextprev

0x148

0x1c0

6 NULL0x148

val nextprev

0x210

46

ABSTRACT	DATA	TYPE	(ADT)

47

Abstract	Data	Types
• DAPS	defines	an	abstract	data	type,	or	ADT,	as:

– Specification/model	for	a	group	of	values/data	and	the	operations	on	
those	values

• The	model	allows	us	to	separate…
– The	decision	of	what	data	structure	to	use	and	how	it	will	be	used	in	our	

higher	level	application	
– And	the	implementation	of	the	specific	data	structure

• DAPS	defines	a	data	structure	as:
– An	implementation	of	an	ADT	in	a	given	programming	language

• Each	ADT	we	will	examine	in	this	course	has	certain:
– Well	defined	operations	and	capabilities	that	are	often	useful
– Time	&	space	advantages
– Time	&	space	disadvantages

• You	need	to	know	those	operations,	advantages	and	
disadvantages

Data Abstraction & Problem Solving with C++, Carrano and Henry will henceforth
be abbreviated as DAPS

48

3	Popular	ADTs

• List
• Dictionary/Map
• Set
• (Possible	4th:		Priority	Queue)

49

Lists
• Ordered	collection	of	items,	which	may	contain	duplicate	

values,	usually	accessed	based	on	their	position	(index)
– Ordered	=	Each	item	has	an	index	and	there	is	a	front	and	back	(start	

and	end)
– Duplicates	allowed	(i.e.	in	a	list	of	integers,	the	value	0	could	appear	

multiple	times)
– Accessed	based	on	their	position	(list[0],	list[1],	etc.)

• What	are	some	operations	you	perform	on	a	list?

list[0]
list[1]

list[2]

50

List	Operations
Operation Description Input(s) Output(s)

insert Add	a	new	value	at	a	particular	
location	shifting	others	back

Index :	int
Value

remove Remove value	at	the	given	location Index	:	int Value	at	location

get	/	at Get	value	at	given	location Index	:	int Value	at	location

set Changes the	value	at	a	given	location Index :	int
Value

empty Returns true	if	there	are	no	values	in	
the	list

bool

size Returns	the	number	of	values	in	the	
list

int

push_back /	
append

Add	a	new value	to	the	end	of	the	list Value

find Return	the location	of	a	given	value Value Int :	Index

51

Maps	/	Dictionaries
• Stores	key,value pairs

– Example:	Map	student	names	to	their	
GPA

• Keys	must	be	unique	(can	only	occur	
once	in	the	structure)

• No	constraints	on	the	values
• What	operations	do	you	perform	on	a	

map/dictionary?
• No	inherent	ordering	between	

key,value pairs
– Can't	ask	for	the	0th item…

"Tommy
Trojan"

3.7

"Billy
Bruin"

2.5

"Harry
Harvard"

4.3

"Dale
Duck"

2.5

52

Map	/	Dictionary	Operations
Operation Description Input(s) Output(s)

Insert	/	add Add	a	new key,value pair	to	the	
dictionary	(assuming	its	not	there	
already)

Key,	Value

Remove Remove	the	key,value pair	with	the	
given	key

Key

Get	/	lookup Lookup the	value	associated	with	the	
given	key	or	indicate	the	key,value
pair	doesn't	exist

Key Value	associated	with	
the	key

In	/	Find Check	if	the	given	key	is	present	in	
the	map

Key bool
(or	ptr to	pair/NULL)

empty Returns true	if	there	are	no	values	in	
the	list

bool

size Returns	the	number	of	values	in	the	
list

int

53

Set
• A	set	is	a	dictionary	where	we	only	store	keys	(no	associated	

values)
– Example:		All	the	courses	taught	at	USC	(ARLT	100,	…,	CSCI	104,	MATH	

226,	…)

• Items	(a.k.a.	Keys)	must	be	unique	
– No	duplicate	keys	(only	one	occurrence)

• Not	accessed	based	on	index	but	on	value
– We	wouldn't	say,	"What	is	the	0th course	at	USC?"

• In	DAPS	textbook	Chapter	1,	this	is
the	'bag'	ADT

• What	operations	do	we	perform
on	a	set?

EE
101

ARLT 100

CSCI
104

MATH
226

54

Set	Operations
Operation Description Input(s) Output(s)

Insert	/	add Add	a	new key	to	the	set	(assuming	its	
not	there	already)

Key

Remove Remove Key

In	/	Find Check	if	the	given	key	is	present	in	the	
map

Key bool
(or	ptr to	item/NULL)

empty Returns true	if	there	are	no	values	in	the	
list

bool

size Returns	the	number	of	values	in	the	list Int

intersection Returns	a	new	set	with	the	common	
elements	of	the	two	input	sets

Set1,	Set2 New	set	with	all elements	
that	appear	in	both	set1	
and	set2

union Returns	a	new	set	with	all	the	items	that	
appear	in	either	set

Set1,	Set2 New	set	with	all elements	
that	appear	in	either	set1	
and	set2

difference Returns	a	set	with all	items	that	are	just	in	
set1	but	not	set2

Set1, Set2 New	set	with	only the	
items	in	set1	that	are	not	in	
set2

