
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp and	David	Kempe

2

Courtesy of Randall Munroe @ http://xkcd.com

XKCD #1739

3

http://viterbiundergrad.usc.edu/varc/

Offering tutoring for CSCI 104
http://viterbiundergrad.usc.edu/varc/#onlineappointment

4

RECURSION	&	LINKED	LISTS

5

Summing	the	Values
• Write	a	recursive	routine	to	sum	the	values	of	a	
linked	list
– Head	Recursion	(recurse first,	do	work	on	the	way	
back	up)

– Tail	Recursion	(do	work	on	the	way	down,	then	
recurse)

val next

3 0x1c0

val next

9 0x168

0x148

0x148 0x1c0

val next

2 0x0
(Null)

0x168

6

Head	Recursion
• Recurse to	the	end	of	the	chain	(head	==	NULL)	and	then	start	

summing	on	the	way	back	up
– What	should	the	base	case	return
– What	should	recursive	cases	(normal	nodes)	return?

val next

3 0x1c0

val next

9 0x168

0x148

0x148 0x1c0

val next

2 0x0
(Null)

0x168

head

sum(0x148) sum(0x1c0) sum(0x168) sum(0x0)

00+2=22+9=113+11=14

Main()

7

Tail	Recursion
• Produce	sum	as	you	walk	down	the	list	then	just	
return	the	final	answer	back	up	the	list

val next

3 0x1c0

val next

9 0x168

0x148

0x148 0x1c0

val next

2 0x0
(Null)

0x168

head

sum(0x148) sum(0x1c0) sum(0x168) sum(0x0)

14141414

Main()

3 12 14

8

INCREASING	EFFICIENCY	OF	
OPERATIONS	+	DOUBLY	LINKED	
LISTS

9

Adding	a	Tail	Pointer
• If	in	addition	to	maintaining	a	head	

pointer	we	can	also	maintain	a	tail	
pointer

• A	tail	pointer	saves	us	from	
iterating	to	the	end	to	add	a	new	
item

• Need	to	update	the	tail	pointer	
when…	
– We	add	an	item	to	the	end	(fast)
– We	remove	an	item	from	the	end	

(slow)

val next

2 0x0
(Null)

0x1680x168

val next

3 0x1c0

val next

9 NULL

0x148

head

0x148 0x1c0

0x1c0

tail

0x168

tail

10

Removal

• To	remove	the	last	item,	we	need	to	update	the	2nd
to	last	item	(set	it's	next	pointer	to	NULL)

• We	also	need	to	update	the	tail	pointer
• But	this	would	require	us	to	traverse	the	full	list
• ONE	SOLUTION:		doubly-linked	list

val next

5 0x1c0

val next

9 NULL

0x200 0x1c0

0x1c0

tail

val next

3 0x200
0x148

head
0x148 …

11

Doubly-Linked	Lists
• Includes	a	previous	pointer	

in	each	item	so	that	we	can	
traverse/iterate	backwards	
or	forward

• First	item's	previous	field	
should	be	NULL

• Last	item's	next	field	should	
be	NULL

#include<iostream>

using namespace std;
struct DLItem {

int val;
DLItem* prev;
DLItem* next;

};

int main()
{

DLItem* head, *tail;
};

int
val

DLItem *
next

struct Item blueprint:
DLItem *

prev

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

0x210

tail

12

Doubly-Linked	List	Add	Front
• Adding	to	the	front	requires	you	to	update…
• …Answer

– Head
– New	front's	next	&	previous
– Old	front's	previous

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

12

val nextprev

0x190

13

Doubly-Linked	List	Add	Front
• Adding	to	the	front	requires	you	to	update…

– Head
– New	front's	next	&	previous
– Old	front's	previous

0x148

head

3 0x1c00x190

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

12 0x148NULL

val nextprev

0x190

14

Doubly-Linked	List	Add	Middle
• Adding	to	the	middle	requires	you	to	update…

– Previous	item's	next	field
– Next	item's	previous	field
– New	item's	next	field
– New	item's	previous	field

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

12

val nextprev

0x190

15

Doubly-Linked	List	Add	Middle
• Adding	to	the	middle	requires	you	to	update…

– Previous	item's	next	field
– Next	item's	previous	field
– New	item's	next	field
– New	item's	previous	field

0x148

head

3 0x1c0NULL

val nextprev

9 0x1900x148

val nextprev

0x148 0x1c0

6 NULL0x190

val nextprev

0x210

12 0x2100x1c0

val nextprev

0x190

16

Doubly-Linked	List	Remove	Middle

• Removing	from	the	middle	requires	you	to	update…
– Previous	item's	next	field	
– Next	item's	previous	field
– Delete	the	item	object

0x148

head

3 0x1c0NULL

val nextprev

9 0x2100x148

val nextprev

0x148 0x1c0

6 NULL0x1c0

val nextprev

0x210

17

Doubly-Linked	List	Remove	Middle

• Removing	from	the	middle	requires	you	to	update…
– Previous	item's	next	field	
– Next	item's	previous	field
– Delete	the	item	object

0x148

head

3 0x210NULL

val nextprev

9 0x2100x148

val nextprev

0x148

0x1c0

6 NULL0x148

val nextprev

0x210

18

ABSTRACT	DATA	TYPE	(ADT)

19

Abstract	Data	Types
• DAPS	defines	an	abstract	data	type,	or	ADT,	as:

– Specification/model	for	a	group	of	values/data	and	the	operations	on	
those	values

• The	model	allows	us	to	separate…
– The	decision	of	what	data	structure	to	use	and	how	it	will	be	used	in	our	

higher	level	application	
– And	the	implementation	of	the	specific	data	structure

• DAPS	defines	a	data	structure	as:
– An	implementation	of	an	ADT	in	a	given	programming	language

• Each	ADT	we	will	examine	in	this	course	has	certain:
– Well	defined	operations	and	capabilities	that	are	often	useful
– Time	&	space	advantages
– Time	&	space	disadvantages

• You	need	to	know	those	operations,	advantages	and	
disadvantages

Data Abstraction & Problem Solving with C++, Carrano and Henry will henceforth
be abbreviated as DAPS

20

3	Popular	ADTs

• List
• Dictionary/Map
• Set
• (Possible	4th:		Priority	Queue)

21

Lists
• Ordered	collection	of	items,	which	may	contain	duplicate	

values,	usually	accessed	based	on	their	position	(index)
– Ordered	=	Each	item	has	an	index	and	there	is	a	front	and	back	(start	

and	end)
– Duplicates	allowed	(i.e.	in	a	list	of	integers,	the	value	0	could	appear	

multiple	times)
– Accessed	based	on	their	position	(list[0],	list[1],	etc.)

• What	are	some	operations	you	perform	on	a	list?

list[0]
list[1]

list[2]

22

List	Operations
Operation Description Input(s) Output(s)

insert Add	a	new	value	at	a	particular	
location	shifting	others	back

Index :	int
Value

remove Remove value	at	the	given	location Index	:	int Value	at	location

get	/	at Get	value	at	given	location Index	:	int Value	at	location

set Changes the	value	at	a	given	location Index :	int
Value

empty Returns true	if	there	are	no	values	in	
the	list

bool

size Returns	the	number	of	values	in	the	
list

int

push_back /	
append

Add	a	new value	to	the	end	of	the	list Value

find Return	the location	of	a	given	value Value Int :	Index

23

Maps	/	Dictionaries
• Stores	<key,	value>	pairs

– Example:	Map	student	names	to	their	
GPA

• Keys	must	be	unique	(can	only	occur	
once	in	the	structure)

• No	constraints	on	the	values
• What	operations	do	you	perform	on	a	

map/dictionary?
• No	inherent	ordering	between	

key,value pairs
– Can't	ask	for	the	0th item…

"Tommy
Trojan"

3.7

"Billy
Bruin"

2.5

"Harry
Harvard"

4.3

"Dale
Duck"

2.5

24

Map	/	Dictionary	Operations
Operation Description Input(s) Output(s)

Insert	/	add Add	a	new key,value pair	to	the	
dictionary	(assuming	its	not	there	
already)

Key,	Value

Remove Remove	the	key,value pair	with	the	
given	key

Key

Get	/	lookup Lookup the	value	associated	with	the	
given	key	or	indicate	the	key,value
pair	doesn't	exist

Key Value	associated	with	
the	key

In	/	Find Check	if	the	given	key	is	present	in	
the	map

Key bool
(or	ptr to	pair/NULL)

empty Returns true	if	there	are	no	values	in	
the	list

bool

size Returns	the	number	of	values	in	the	
list

int

25

Set
• A	set	is	a	dictionary	where	we	only	store	keys	(no	associated	

values)
– Example:		All	the	courses	taught	at	USC	(ARLT	100,	…,	CSCI	104,	MATH	

226,	…)

• Items	(a.k.a.	Keys)	must	be	unique	
– No	duplicate	keys	(only	one	occurrence)

• Not	accessed	based	on	index	but	on	value
– We	wouldn't	say,	"What	is	the	0th course	at	USC?"

• In	DAPS	textbook	Chapter	1,	this	is
the	'bag'	ADT

• What	operations	do	we	perform
on	a	set?

EE
101

ARLT 100

CSCI
104

MATH
226

26

Set	Operations
Operation Description Input(s) Output(s)

Insert	/	add Add	a	new key	to	the	set	(assuming	its	
not	there	already)

Key

Remove Remove Key

In	/	Find Check	if	the	given	key	is	present	in	the	
map

Key bool
(or	ptr to	item/NULL)

empty Returns true	if	there	are	no	values	in	the	
list

bool

size Returns	the	number	of	values	in	the	list Int

intersection Returns	a	new	set	with	the	common	
elements	of	the	two	input	sets

Set1,	Set2 New	set	with	all elements	
that	appear	in	both	set1	
and	set2

union Returns	a	new	set	with	all	the	items	that	
appear	in	either	set

Set1,	Set2 New	set	with	all elements	
that	appear	in	either	set1	
and	set2

difference Returns	a	set	with all	items	that	are	just	in	
set1	but	not	set2

Set1, Set2 New	set	with	only the	
items	in	set1	that	are	not	in	
set2

27

CLASSES

28

C	Structs

• Needed	a	way	to	group	values	that	are	
related,	but	have	different	data	types

• NOTE:	struct has	changed	in	C++!
– C

• Only	data	members
• Some	declaration	nuances

– C++
• Like	a	class	(data	+	member	functions)
• Default	access	is	public	

struct Person{
char name[20];
int age;

};

int main()
{
// Anyone can modify
// b/c members are public
Person p1;
p1.age = -34;
// probably not correct

return 0;
}

29

Classes	&	OO	Ideas
• In	object-oriented	programming	languages	(C++)	classes	are	used	as	the	

primary	way	to	organize	code
• Encapsulation

– Place	data	and	operations	on	data	into	one	code	unit
– Keep	state	hidden/separate	from	other	

programmers	via	private	members
• Abstraction

– Depend	only	on	an	interface!	
• Ex.	a	microwave…Do	you	know	how	it	works?

But	can	you	use	it?
– Hide	implementation	details	to	create	low	

degree	of	coupling between	different	
components

• Polymorphism	&	Inheritance
– More	on	this	later…

struct Machine{
Piece* pieces;
Engine* engine;

};

int main()
{

Machine m;

init_subsystemA(&m);

change_subsystemB(&m);

replace_subsystemC(&m);

m.start();
// Seg. Fault!! Why?

}

Protect	yourself	from	users	&	protect	your	
users	from	themselves

30

Coupling
• Coupling	refers	to	how	much	components	depend	on	each	

other's	implementation	details	(i.e.	how	much	work	it	is	to	
remove	one	component	and	drop	in	a	new	implementation	of	
it)
– Placing	a	new	battery	in	your	car	vs.	a	new	engine
– Adding	a	USB	device	vs.	a	new	video	card	to	your	laptop

• OO	Design	seeks	to	reduce	coupling	as	much	as	possible	by
– Creating	well-defined	interfaces	to	change	(write)	or	access	(read)	the	

state	of	an	object
– Enforcing	those	interfaces	are	adhered	to

• Private	vs.	public
– Allow	alternate	implementations	that	may	be	more	appropriate	for	

different	cases

31

C++	Classes
• A	composition	mechanism

– Create	really	large	and	powerful	software	systems	from	tiny	
components

– Split	things	up	into	manageable	pieces
• Somewhat	of	a	bottom	up	approach	(define	little	pieces	that	can	be	used	
to	compose	larger	pieces)

– Delegation	of	responsibility

• An	abstraction	and	encapsulation	mechanism
– Make	functionality	publicly	available,	but	hide	data	&	implementation	

details

• A	mechanism	for	polymorphism
– More	on	this	later

32

C++	Classes:	Overview

• What	are	the	main	parts	of	a	class?
– Member	variables

• What	data	must	be	stored?

– Constructor(s)
• How	do	you	build	an	instance?

– Member	functions
• How	does	the	user	need	to	interact	with	the	stored	
data?

– Destructor
• How	do	you	clean	up	after	an	instance?

33

C++	Classes:	Overview
• Member	data	can	be	public	or	private	(for	now)

– Defaults	is	private	(only	class	functions	can	access)
– Must	explicitly	declare	something	public

• Most	common	C++	operators	will	not	work	by	default	
(e.g.	==,	+,	<<,	>>,	etc.)
– You	can't	cout an	object		(cout << myobject; won't	work)
– The	only	one	you	get	for	free	is	'='	and	even	that	may	not	work	the	

way	you	want	(more	on	this	soon)

• Classes	may	be	used	just	like	any	other	data	type	(e.g.	int)
– Get	pointers/references	to	them
– Pass	them	to	functions	(by	copy,	reference	or	pointer)
– Dynamically	allocate	them
– Return	them	from	functions

34

this	Pointer
• How	do	member	functions	know	which	

object’s	data	to	be	operating	on?
• d1	is	implicitly	passed	via	a	special	pointer	

call	the	‘this’	pointer
#include<iostream>
#include “deck.h”

int main(int argc, char *argv[]) {
Deck d1, d2;
d1.shuffle();

d1.shuffle();
...

}

#include<iostream>
#include “deck.h”

void Deck::shuffle()
{

cut(); // calls cut()
// for this object

for(i=0; i < 52; i++){
int r = rand() % (52-i);
int temp = cards[r];
cards[r] = cards[i];
cards[i] = temp;

}
}

deck.cpp
poker.cpp

d1
 is

 im
pl

ic
itl

y
pa

ss
ed

 to
 s

hu
ffl

e(
)

41 27 8 39 25 4 11 17cards[52]

1top_index d1

0x2a0

int main() { Deck d1;
d1.shuffle();

}
void Deck::shuffle(Deck *this)
{

this->cut(); // calls cut()
// for this object

for(i=0; i < 52; i++){
int r = rand() % (52-i);
int temp = this->cards[r];
this->cards[r] = this->cards[i];
this->cards[i] = temp;

}
}

deck.cpp

Compiler-generated codeActual code you write

0x2a0

d2
37 21 4 9 16 43 20 39cards[52]

0top_index

0x7e0

this

35

Exercises

• cpp/cs104/classes/this_scope

36

Another	Use	of	'this'

• This	can	be	used	
to	resolve	
scoping	issues	
with	similar	
named	variables

class Student {
public:
Student(string name, int id, double gpa);

~Student(); // Destructor
private:

string name;
int id;
double gpa;

};

Student::Student(string name, int id, double gpa)
{ // which is the member and which is the arg?

name = name; id = id; gpa = gpa;
}

Student::Student(string name, int id, double gpa)
{ // Now it's clear

this->name = name;

this->id = id;

this->gpa = gpa;
}

37

C++	Classes:	Constructors
• Called	when	a	class	is	instantiated

– C++	won't	automatically	initialize	member	variables
– No	return	value

• Default	Constructor
– Can	have	one	or	none	in	a	class
– Basic	no-argument	constructor
– Has	the	name	ClassName()
– If	class	has	no	constructors,	C++	will	make	a	default	

• But	it	is	just	an	empty	constructor		(e.g.		Item::Item()	{	})

• Overloaded	Constructors
– Can	have	zero	or	more
– These	constructors	take	in	arguments
– Appropriate	version	is	called	based	on	how	many	and	what	type	of	arguments	

are	passed	when	a	particular	object	is	created
– If	you	define	a	constructor	with	arguments	you	should	also	define	a	default	

constructor

class Item
{ int val;
public:
Item(); // default const.
Item(int v); // overloaded

};

38

Identify	that	Constructor

• Prototype	what	constructors	
are	being	called	here

• s1
– string::string()		
//	default	constructor

• s2
– string::string(const char*)

• dat
– vector<int>::vector<int>(int);

#include <string>
#include <vector>
using namespace std;

int main()
{

string s1;
string s2("abc");

vector<int> dat(30);

return 0;
}

39

Exercises

• cpp/cs104/classes/constructor_init

40

Consider	this	Struct/Class
• Examine	this	struct/class	definition…	
#include <string>
#include <vector>
using namespace std;

struct Student
{

string name;
int id;
vector<double> scores;
// say I want 10 test scores per student

};

int main()
{

Student s1;
}

string name

int id

scores

41

Composite	Objects
• Fun	Fact:		Memory	for	an	object	comes	alive	before	the	code	

for	the	constructor	starts	at	the	first	curly	brace	'{'
#include <string>
#include <vector>
using namespace std;

struct Student
{

string name;
int id;
vector<double> scores;
// say I want 10 test scores per student

Student() /* mem allocated here */
{
// Can I do this to init. members?
name("Tommy Trojan");
id = 12313;
scores(10);

}
};

int main()
{

Student s1;
}

string name

int id

scores

42

Composite	Objects
• You	cannot	call	constructors	on	data	members	once	the	

constructor	has	started	(i.e.	passed	the	open	curly	'{')
– So	what	can	we	do???		Use	initialization	lists!

#include <string>
#include <vector>
using namespace std;

struct Student
{

string name;
int id;
vector<double> scores;
// say I want 10 test scores per student

Student() /* mem allocated here */
{
// Can I do this to init. members?
name("Tommy Trojan");
id = 12313;
scores(10);

}
};

int main()
{

Student s1;
}

string name

int id

scores

This would be
"constructing"
name twice. It's

too late to do it in
the {…}

43

Constructor	Initialization	Lists

• Though	you	do	not	see	it,	realize	that	the	default	
constructors	are	implicitly	called	for	each	data	
member	before	entering	the	{…}

• You	can	then	assign	values	but	this	is	a	2-step
process

Student::Student()
{

name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

Student::Student() :
name(), id(), scores()
// calls to default constructors

{
name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

If you write this… The compiler will still generate this.

44

Constructor	Initialization	Lists

• Rather	than	writing	many	assignment	statements	
we	can	use	a	special	initialization	list	technique	
for	C++	constructors
– Constructor(param_list)	:member1(param/val),	…,	memberN(param/val)	

{	…	}

• We	are	really	calling	the	respective	constructors	
for	each	data	member

Student:: Student() /* mem allocated here */
{
name("Tommy Trojan");
id = 12313;
scores(10);

}

Student::Student() :
name("Tommy"), id(12313), scores(10)

{ }

You can't call member
constructors in the {…}

You would have to call the member
constructors in the initialization list context

45

Constructor	Initialization	Lists

• You	can	still	assign	values	in	the	constructor	but	
realize	that	the	default	constructors	will	have	
been	called	already

• So	generally	if	you	know	what	value	you	want	to	
assign	a	data	member	it's	good	practice	to	do	it	
in	the	initialization	list

Student::Student()
{

name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

Student::Student() :
name(), id(), scores()
// calls to default constructors

{
name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

You can still assign data
members in the {…}

But any member not in the initialization list will
have its default constructor invoked before the

{…}

46

Exercises

• cpp/cs104/classes/constructor_init2

47

Member	Functions
• Have	access	to	all	member	
variables	of	class

• Use	“const”	keyword	if	it	
won't	change	member	data

• Normal	member	access	uses	
dot	(.)	operator

• Pointer	member	access	uses	
arrow	(->)	operator

class Item
{ int val;
public:
void foo();
void bar() const;

};

void Item::foo() // not Foo()
{ val = 5; }

void Item::bar() const
{ }

int main()
{
Item x;
x.foo();
Item *y = &x;
(*y).bar();
y->bar(); // equivalent
return 0;

}

48

Exercises

• cpp/cs104/classes/const_members
• cpp/cs104/classes/const_members2
• cpp/cs104/classes/const_return

49

C++	Classes:	Destructors
• Called	when	a	class	goes	out	of	scope	or	is	freed	from	the	heap	(by	

“delete”)
• Why	use	it?

– Not	necessary	in	simple	cases
– Clean	up	resources	that	won't	go	away	automatically	(e.g.	stuff	you	used	

“new”	to	create	in	your	class	member	functions	or	constructors
• Destructor

– Has	the	name	~ClassName()
– Can	have	one	or	none
– No	return	value
– Destructor	(without	you	writing	any	code)	will	automatically	call	destructor	of	

any	data	member	objects…but	NOT	what	data	members	point	to!
• You	only	need	to	define	a	destructor	if	you	need	to	do	more	than	that	(i.e.	if	you	

need	to	release	resources,	close	files,	deallocate what	pointers	are	point	to,	etc.)

50

C++	Classes:	Other	Notes
• Classes	are	generally	split	across	two	

files
– ClassName.h – Contains	interface	

description
– ClassName.cpp	– Contains	

implementation	details

• Make	sure	you	remember	to	prevent	
multiple	inclusion	errors	with	your	
header	file	by	using	#ifndef,	#define,	
and	#endif
#ifndef CLASSNAME_H
#define	CLASSNAME_H
class	ClassName {	…	};

#endif

#ifndef ITEM_H
#define ITEM_H

class Item
{ int val;
public:
void foo();
void bar() const;

};

#endif

#include "item.h"

void Item::foo()
{ val = 5; }

void Item::bar() const
{ }

item.h

item.cpp

51

CONDITIONAL	COMPILATION

52

Multiple	Inclusion
• Often	separate	files	may	

#include's of	the	same	header	
file

• This	may	cause	compiling	
errors	when	a	duplicate	
declaration	is	encountered

– See	example

• Would	like	a	way	to	include	only	
once	and	if	another	attempt	to	
include	is	encountered,	ignore	it

string.h

class string{

... };

#include "string.h"
class Widget{
public:
string s;

};

widget.h
#include "string.h"
#include "widget.h"
int main()
{ }

main.cpp
class string { // inc. from string.h
};

class string{ // inc. from widget.h
};
class Widget{
... }
int main()
{ }

main.cpp after preprocessing

53

Conditional	Compiler	Directives
• Compiler	directives	start	with	

'#'
– #define	XXX

• Sets	a	flag	named	XXX	in	the	
compiler

– #ifdef,	#ifndef XXX	…	#endif
• Continue	compiling	code	below	

until	#endif,	if	XXX	is	(is	not)	
defined

• Encapsulate	header	
declarations	inside	a
– #ifndef XX

#define	XX
…
#endif

String.h

#ifndef STRING_H
#define STRING_H
class string{

... };
#endif

#include "string.h"
class Widget{
public:
string s;

};

Character.h

#include "string.h"
#include "string.h"

main.cpp

class string{ // inc. from string.h
};

class Widget{ // inc. from widget.h

...

main.cpp after preprocessing

54

Conditional	Compilation
• Often	used	to	compile	

additional	DEBUG	code
– Place	code	that	is	only	needed	for	

debugging	and	that	you	would	not	want	
to	execute	in	a	release	version

• Place	code	in	a	#ifdef
XX...#endif bracket

• Compiler	will	only	compile	if	a	
#define	XX	is	found

• Can	specify	#define	in:
– source	code
– At	compiler	command	line	with	

(-Dxx)	flag
• g++	-o	stuff	–DDEGUG	stuff.cpp

stuff.cpp

int main()
{

int x, sum=0, data[10];
...
for(int i=0; i < 10; i++){

sum += data[i];
#ifdef DEBUG

cout << "Current sum is ";
cout << sum << endl;

#endif
}

cout << "Total sum is ";
cout << sum << endl;

$ g++ -o stuff –DDEBUG stuff.cpp

55

Example	Code
• Login	to	your	VM,	start	a	terminal
• Download	this	example

– Create	an	'lecture_code'	directory
– $	wget http://ee.usc.edu/~redekopp/ee355/code/coninit.cpp
– $	make	coninit

