CSCI 104

Rafael Ferreira da Silva

rafsilva@isi.edu

Slides adapted from: Mark Redekopp and David Kempe

e USCVlterbl @

XKCD #1739 e

WHAT ARE YOU WORKING ON?

TRYING TO FiX THE. PROBLEMS T

CREATED WHEN I TRIED TO FiX

THE PROBLEMS I CREATED \JHEN

L TRIED T FiX THE PROBLEMS
2 I CREATED LJHEN...

/

Courtesy of Randall Munroe @ http://xkcd.com

R, IS(Viterbi 3

School of Engineering

USC Vlterb]. MY ACADEMIC EXPERIENCE BUILDING MY FUTURE MY VITERBI LIFE Q
UNDERGRAD

‘\\W" V
VITERBI ACADEMIC RESOE S\CENTER

Setting you up for academic sugcess ' \ BN\ |

N | B)

Online Appointment System Academic Success Workshops Writing Consultations VARC Additional Resources

http://viterbiundergrad.usc.edu/varc/

Offering tutoring for CSCI 104
http://viterbiundergrad.usc.edu/varc/#onlineappointment

School of Engineering

RECURSION & LINKED LISTS

Summing the Values
 Write a recursive routine to sum the values of a

linked list

— Head Recursion (recurse first, do work on the way
back up)

— Tail Recursion (do work on the way down, then
recurse)

0x148

0x148 0x1c0 0x168

0x0
3 | 0x1c0 O |ox168 2 (Null)

val next val next val next

] USCViterbi @
Head Recursion

 Recurse to the end of the chain (head == NULL) and then start
summing on the way back up
— What should the base case return
— What should recursive cases (normal nodes) return?

o Main()
head |0x148
sum(0x148) —1 sum(0x1c0) sum(0x168) sum(0x0)
0x148 0x1c0 0x168
3 |ox1co O |ox168 2 (m)l)

-
val next val next val next \
3+11=14 2+9=11 @ hp—

Tail Recursion
* Produce sum as you walk down the list then just

return the final answer back up the list

o Main()

head [0x148

sum(0x148) —1 sum(0x1c0) sum(0x168) sum(0x0)

0x148 < > 0x1c0 <?> 0x168
14
3 |ox1co O |ox168 —F=—— 2 (r(\)lﬁ(ﬁ)

1
val next val next val next

)

School of Engineering

INCREASING EFFICIENCY OF
OPERATIONS + DOUBLY LINKED
LISTS

* If in addition to maintaining a head
pointer we can also maintain a tail
pointer

* A tail pointer saves us from
iterating to the end to add a new
item

* Need to update the tail pointer
when...
— We add an item to the end (fast)

— We remove an item from the end
(slow)

tail

0x168

v O

E:' 2 0x0

L (Nl

val next

Removal

* To remove the last item, we need to update the 2"
to last item (set it's next pointer to NULL)

 We also need to update the tail pointer

* But this would require us to traverse the full list
* ONE SOLUTION: doubly-linked list

tail

0Ox1cO

head
0x148 0x148 0x200 OXiPO

L———> 3 |0x200—> = » » | 5§ |0x1cO O |NuLL

val next val next val next

i, IS(™Viterbi 0

Doubly-Linked Lists

Includes a previous pointer
in each item so that we can
traverse/iterate backwards
or forward

First item's previous field
should be NULL

Last item's next field should
be NULL

head
0x148

#include<iostream>

using namespace std;

struct DLItem {

School of Engineering

struct Item blueprint:

———————————————————————

int val; rDLItem *} “int [DLItem*:
DLItem* prev; __prev__j val_| _next _
DLItem* next;
i
int main ()
{
DLItem* head, *tail;
i
tail
0x210
0x148 0x1c0 OXEDO
NULL | 3 |0Ox1cO0 0x148 | 9 |0x210|, 0x1c0| 6 |NULL
prev. val next prev. val next prev. val next

i, IS(™Viterbi 2

School of Engineering

Doubly-Linked List Add Front

 Adding to the front requires you to update...

* ..Answer
— Head
— New front's next & previous
— Old front's previous

0x190
head

0x148

12

prev val next

:: 0x148 0x1c0 0x210

NULL| 3 |0x1cO 0x148 [9 |0x210 0x1c0| 6 |NULL

prev. val next prev. val next prev val next

i, IS(™Viterbi)

School of Engineering

Doubly-Linked List Add Front

 Adding to the front requires you to update...

— Head
— New front's next & previous

— Old front's previous

head

0x148

0x190
NULL | 12 |0x148
prev val next

0x148 0x1c0 0x210
0x190 | 3 (0Ox1cO0 0x148 | 9 |0x210 Ox1c0| 6 |[NULL
prev. val next prev. val next prev val next

i, IS(™Viterbi

School of Engineering

Doubly-Linked List Add Middle

 Adding to the middle requires you to update...
— Previous item's next field
— Next item's previous field
— New item's next field
— New item's previous field

0x190
head 12
0x148 prev val next
0x148 0x1c0 [1 0x210
NULL| 3 [Ox1cO 0x148 | 9 |0x210 Ox1cO| 6 |NULL

prev. val next prev. val next prev val next

i, IS(™Viterbi 9

 Adding to the middle requires you to update...

School of Engineering

Doubly-Linked List Add Middle

Previous item's next field
Next item's previous field

New item's next field

New item's previous field

head

0x148

0x148 0x1c0
NULL [3 |0x1cO 0x148 | 9 |[0x190
prev. val next prev. val next

0x190
Ox1c0 | 12 |0x210
prev val next

0x210
0x190 | 6 |NULL
prev val next

i, IS(™Viterbi

School of Engineering

Doubly-Linked List Remove Middle

 Removing from the middle requires you to update...
— Previous item's next field
— Next item's previous field
— Delete the item object

head
0x148

0x148 0x1c0 0x210

NULL| 3 ([0x1cO 0x148 | 9 |[0x210 Ox1c0| 6 |NULL

prev. val next prev. val next prev. val next

i, IS(™Viterbi o

School of Engineering

Doubly-Linked List Remove Middle

 Removing from the middle requires you to update...
— Previous item's next field
— Next item's previous field

— Delete the item object

head

0x148

0x148

0x210

NULL

0x210

0x148

NULL

prev

val

next

prev

val

next

School of Engineering

ABSTRACT DATA TYPE (ADT)

e — 5 iterbi >
Abstract Data Types

* DAPS defines an abstract data type, or ADT, as:

— Specification/model for a group of values/data and the operations on
those values

 The model allows us to separate...

— The decision of what data structure to use and how it will be used in our
higher level application

— And the implementation of the specific data structure
* DAPS defines a data structure as:

— An implementation of an ADT in a given programming language
* Each ADT we will examine in this course has certain:

— Well defined operations and capabilities that are often useful

— Time & space advantages

— Time & space disadvantages

* You need to know those operations, advantages and
disadvantages

Data Abstraction & Problem Solving with C++, Carrano and Henry will henceforth
be abbreviated as DAPS

3 Popular ADTs

List

Dictionary/Map

Set

(Possible 4t Priority Queue)

Ordered collection of items, which may contain duplicate
values, usually accessed based on their position (index)

— Ordered = Each item has an index and there is a front and back (start
and end)

— Duplicates allowed (i.e. in a list of integers, the value 0 could appear
multiple times)

— Accessed based on their position (list[0], list[1], etc.)

What are some oEerations you Eerform on a list?

- 00000000 USC\ﬁtgrbi @
List Operations

T S T

insert Add a new value at a particular Index :

location shifting others back Value
remove Remove value at the given location Index : int Value at location
get / at Get value at given location Index : int Value at location
set Changes the value at a given location Index: int

Value

empty Returns true if there are no values in bool

the list
size Returns the number of values in the int

list

push_back / Add a new value to the end of the list Value
append

find Return the location of a given value Value Int : Index

Maps / Dictionaries

» Stores <key, value> pairs

— Example: Map student names to their
GPA

e Keys must be unique (can only occur
once in the structure)

* No constraints on the values

* What operations do you perform on g 2.5

map/dictionary?

"Harry
Harvard"

* No inherent ordering between
key,value pairs

— Can't ask for the 0t item...

R, IS(Viterbi

School of Engineering

Map / Dictionary Operations
operston — beseipton———————opute) ———Joupu)

Insert / add Add a new key,value pair to the Key, Value
dictionary (assuming its not there
already)
Remove Remove the key,value pair with the Key
given key
Get / lookup Lookup the value associated with the Key Value associated with
given key or indicate the key,value the key
pair doesn't exist
In / Find Check if the given key is present in Key bool
the map (or ptr to pair/NULL)
empty Returns true if there are no values in bool
the list
size Returns the number of values in the int

list

 Asetis adictionary where we only store keys (no associated
values)

— Example: All the courses taught at USC (ARLT 100, ..., CSCI 104, MATH
226, ...)

* Items (a.k.a. Keys) must be unique

— No duplicate keys (only one occurrence)

e Not accessed based on index but on value
— We wouldn't say, "What is the 0t course at USC?"

* In DAPS textbook Chapter 1, this is ARLT 100
the 'bag' ADT

 What operations do we perform
on a set?

R, IS(Viterbi

Set Operations

School of Engineering

T S T

Insert / add

Remove

In / Find

empty

size

intersection

union

difference

Add a new key to the set (assuming its
not there already)

Remove

Check if the given key is present in the
map

Returns true if there are no values in the
list

Returns the number of values in the list

Returns a new set with the common
elements of the two input sets

Returns a new set with all the items that
appear in either set

Returns a set with all items that are just in
setl but not set2

Key
Key

Setl, Set2

Setl, Set2

Setl, Set2

bool
(or ptr to item/NULL)

bool

Int

New set with all elements
that appear in both setl
and set2

New set with all elements
that appear in either setl
and set2

New set with only the
items in setl that are not in
set2

CLASSES

C Structs

* Needed a way to group values that are
related, but have different data types

 NOTE: struct has changed in C++!
— C
* Only data members
* Some declaration nuances
— C++
* Like a class (data + member functions)
* Default access is public

struct Person{
char name[20];
int age;

[

int main ()
{
// Anyone can modify
// b/c members are public
Person pl;
pl.age = -34;
// probably not correct

return 0;

B ()5 C Vierbi
Classes & OO Ideas

* |In object-oriented programming languages (C++) classes are used as the
primary way to organize code

* Encapsulation
— Place data and operations on data into one code unit | struct Machine({

Piece* pieces;

— Keep state hidden/separate from other Engine* engine;
programmers via private members b5

int main ()

e Abstraction i

Machine m;

— Depend only on an interface!

* Ex. a microwave...Do you know how it works?
Butcarlyou use it? change subsystemB (&m) ;

— Hide implementation details to create low
degree of coupling between different
m.start ();

COmponentS // Seg. Fault!! Why?

* Polymorphism & Inheritance

init subsystemA (&m) ;

replace subsystemC (&m) ;

— More on this later...

Protect yourself from users & protect your
users from themselves

Coupling

Coupling refers to how much components depend on each
other's implementation details (i.e. how much work it is to
remove one component and drop in a new implementation of
it)

— Placing a new battery in your car vs. a new engine

— Adding a USB device vs. a new video card to your laptop

OO Design seeks to reduce coupling as much as possible by

— Creating well-defined interfaces to change (write) or access (read) the
state of an object

— Enforcing those interfaces are adhered to
* Private vs. public

— Allow alternate implementations that may be more appropriate for
different cases

- USC\/iterbi @
C++ Classes

* A composition mechanism

— Create really large and powerful software systems from tiny
components

— Split things up into manageable pieces

* Somewhat of a bottom up approach (define little pieces that can be used
to compose larger pieces)

— Delegation of responsibility

* An abstraction and encapsulation mechanism

— Make functionality publicly available, but hide data & implementation
details

* A mechanism for polymorphism

— More on this later

C++ Classes: Overview

 What are the main parts of a class?

— Member variables
e What data must be stored?

— Constructor(s)

* How do you build an instance?

— Member functions

e How does the user need to interact with the stored
data?

— Destructor

* How do you clean up after an instance?

C++ Classes: Overview

* Member data can be public or private (for now)

Defaults is private (only class functions can access)
Must explicitly declare something public

* Most common C++ operators will not work by default
(e.8. ==, +, <<, >>, etc.)

You can't cout an object (cout << myobject;

won't work)

— The only one you get for free is '=' and even that may not work the

way you want (more on this soon)

* Classes may be used just like any other data type (e.g. int)

Get pointers/references to them

Pass them to functions (by copy, reference or pointer)
Dynamically allocate them

Return them from functions

d1 is implicitly

How do member functions know which

this Pointer

USC Viterbi

School of Engineering

object’s data to be operating on? cards[52] 137121| 4 | 9 [16|43|20(39
d1 is implicitly passed via a special pointer top_index | d2
call the ‘this’ pointer
#include<iostream> m
#include “deck.h”
3 cards[52] 141127| 8 |39(25| 4 | 11|17
— int main(int argc, char *argv([]) { f:b- t ind d1
B’ Deck dl, d2; % op_Index 1
= dl.shuffle(); ©
= =
= ~. this | int main({ peck d1;
) . . — dl.shuffle();
B #include<iostream>)
e R CITEIS e <ol void Deck::shuffle (Deck *this)
3 void Deck::shuffle () {
% { this->cut(); // calls cut()
o cut(); // calls cut() // for this object
// for this object for (i=0; 1 < 52; i++){
for (i=0; i < 52; 1i++){ int r = rand() % (52-1i); %
int r = rand() % (52-1); % int temp = this->cards|[r]; %
int temp = cards|r]; % this->cards[r] = this->cards[i]; |o
cards[r] = cards[i]; o this->cards[i] = temp; %
. i)
cards[i] = temp; o }
} }
) Actual code you write Compiler-generated code

School of Engineering

Exercises

* cpp/csl104/classes/this scope

i, IS(™Viterbi

Another Use of 'this'

* This can be used
to resolve
scoping issues
with similar
named variables

School of Engineering

class Student {
public:
Student (string name, int id, double

~Student () ;
private:

string name;

int id;

double gpa;
i

// Destructor

Student::Student (string name, int id,
{ // which is the member and which is
name = name; id = id; gpa = gpa;

}

Student::Student (string name, int id,
{ // Now it's clear

this->name = name;
this->id = id;

this->gpa = gpa;

gpa) ;

double gpa)
the arg?

double gpa)

e — ()5 Vitcrbi
C++ Classes: Constructors

e (Called when a class is instantiated

— C++ won't automatically initialize member variables

— No return value lmee T
* Default Constructor { int val;
) public:
— Can have one or none in a class Teen () o /) defaul: comst,
— Basic no-argument constructor } Item(int v); // overloaded
— Has the name ClassName()

— If class has no constructors, C++ will make a default
* Butitisjust an empty constructor (e.g. Item:ltem() {})
* Overloaded Constructors
— Can have zero or more
— These constructors take in arguments

— Appropriate version is called based on how many and what type of arguments
are passed when a particular object is created

— If you define a constructor with arguments you should also define a default
constructor

ldentify that Constructor

* Prototype what constructors
are being called here
* sl

— string::string()
// default constructor

° s2
— string::string(const char™*)
* dat

— vector<int>::vector<int>(int);

#include <string>
#include <vector>
using namespace std;

int main ()

{
string sl;
string s2 ("abc");

vector<int> dat (30) ;

return 0;

}

Exercises

* cpp/csl104/classes/constructor init

Consider this Struct/Class

 Examine this struct/class definition...

#include <string>
#include <vector>
using namespace std;

struct Student
{

string name;
int id;
vector<double> scores;
// say I want 10 test scores per student

¥

int main ()
{

Student sl1;
}

string name

int id

SCores

i ()5 Viterbi -+
Composite Objects

* Fun Fact: Memory for an object comes alive before the code
for the constructor starts at the first curly brace '{'

#include <string>
#include <vector>
using namespace std;

struct Student
{
string name;
int id;
vector<double> scores;

string name

// say I want 10 test scores per student
int id

Student () /* mem allocated here */

{ scores
// Can I do this to init. members-?
name ("Tommy Trojan") ;
id = 12313;
scores (10) ;

}

};

int main ()

{
Student sl1;

}

i ()5 Viterbi
Composite Objects

 You cannot call constructors on data members once the
constructor has started (i.e. passed the open curly {')

— So what can we do??? Use initialization lists!

#include <string>
#include <vector>
using namespace std;

struct Student
{

string name;

string name

int id;
vector<double> scores; int id
// say I want 10 test scores per student
scores
Student () /* mem allocated here */
{ .
// Can I do this to init. members-? ,-,rhls WOUIC.I be..
name ("Tommy Trojan"); constructlng
id = 12313;) name twice. It's
scores (10) ; too late to do it in
) the {...}

I 5

int main ()

{
Student sl1;

}

S — : USCViterbi .
Constructor Initialization Lists~

Student::Student () Student::Student () :
{ name (), id(), scores()
name = "Tommy Trojan"; // calls to default constructors

id = 12313 {
scores.resize (10); name = "Tommy Trojan";
} id = 12313

scores.resize (10);

}

If you write this... The compiler will still generate this.

 Though you do not see it, realize that the default
constructors are implicitly called for each data
member before entering the {...}

* You can then assign values but this is a 2-step
process

c e pe : .USCXi’Egbi .
Constructor Initialization Lists ™

Student:: Student() /* mem allocated here */ Student::Student () :

{

}

name ("Tommy") , id(12313), scores(10)

name ("Tommy Trojan") ; { 1}
id = 12313;
scores (10) ;

You can't call member You would have to call the member
constructors in the {...} constructors in the initialization list context

Rather than writing many assighment statements
we can use a special initialization list technique
for C++ constructors

— Constructor(param_list) : memberl(param/val), ..., memberN(param/val)

{..}

 We are really calling the respective constructors

for each data member

e e ge) USCXYE?}}'M .
Constructor Initialization Lists "

Student: :Student () Student::Student () :
{ name (), id(), scores()
name = "Tommy Trojan"; // calls to default constructors

id = 12313 {
scores.resize (10); name = "Tommy Trojan";
} id = 12313

scores.resize (10);

}

You can still assign data But any member not in the initialization list will
members in the {...} have its default constructor invoked before the
{...}

* You can still assign values in the constructor but
realize that the default constructors will have
been called already

* So generally if you know what value you want to

assign a data member it's good practice to do it
in the initialization list

Exercises

* cpp/cs104/classes/constructor init2

Member Functions

e Have access to all member
variables of class

* Use “const” keyword if it
won't change member data

* Normal member access uses
dot (.) operator

* Pointer member access uses
arrow (->) operator

class Item
{ int wval;
public:
void foo ()
void bar () const;

b g

void Item::foo() // not Foo ()
{ val = 5; }

volid Item::bar () const

{3

int main ()
{
Item x;
x.foo();
Item *y = &x;
(*y) .bar();
y->bar(); // equivalent
return 0O;

* cpp/csl104/c
* cpp/csl04/c
* cpp/csl04/c

Exercises

asses/const_members
asses/const_ members?2
asses/const_return

School of Engineering

e —— ()5 Vitcrbi
C++ Classes: Destructors

e Called when a class goes out of scope or is freed from the heap (by
“delete”)

e Why useit?
— Not necessary in simple cases

— Clean up resources that won't go away automatically (e.g. stuff you used
“new” to create in your class member functions or constructors

* Destructor
— Has the name ~ClassName()
— Can have one or none
— No return value

— Destructor (without you writing any code) will automatically call destructor of
any data member objects...but NOT what data members point to!

* You only need to define a destructor if you need to do more than that (i.e. if you
need to release resources, close files, deallocate what pointers are point to, etc.)

C++ Classes: Other Notes

Classes are generally split across two
files

— ClassName.h — Contains interface
description

— ClassName.cpp — Contains
implementation details

Make sure you remember to prevent
multiple inclusion errors with your
header file by using #ifndef, #define,
and #endif

#ifndef CLASSNAME_H

#define CLASSNAME_H

class ClassName { ... };

Hendif

#ifndef ITEM H
#define ITEM H

class Item
{ int wval;
public:
void foo ()
void bar () const;

b g
#endif

item.h

#include "item.h"
volid Item: :foo ()

{ val = 5; }

volid Item: :bar () const

{}

item.cpp

School of Engineering

CONDITIONAL COMPILATION

- USC\/itcrbi @
Multiple Inclusion

class string{

e Often separate files may)
#include's of the same header string.h
file e

* This may cause compiling o o

. }:
errors when a duplicate

declaration is encountered

widget.h

#include "string.h"

— See example #include "widget.h"
int main ()
* Would like a way to include only ()
once and if another attempt to main.cpp
include is encountered, ignore it class string { // inc. from string.h

¥

class string{ // inc. from widget.h
i
class Widget{
o b
int main ()

{1}

main.cpp after preprocessing

i, IS(™Viterbi -«

School of Engineering

Conditional Compiler Directives

#ifndef STRING H

* Compiler directives start with fdefine STRING_H

class stringf{

I#I coo b

#endif

— #define XXX String.h
* Sets a flag named XXX in the

#include "string.h"

conprer class Widget{
. . . blic:
— #ifdef, #ifndef XXX ... #endif S e 5
* Continue compiling code below bi
until #endif, if XXX is (is not) Character.h
defined

#include "string.h"

¢ EncapSUIate header #include "string.h"
declarations inside a main.cpp

— #ifndef XX class string{ // inc. from string.h
. }i
#define XX

class Widget{ // inc. from widget.h

Hendif

main.cpp after preprocessing

i, IS(™Viterbi

School of Engineering

Conditional Compilation

Often used to compile
additional DEBUG code

— Place code that is only needed for
debugging and that you would not want
to execute in a release version

Place code in a #ifdef
XX...#endif bracket

Compiler will only compile if a
#define XX is found

Can specify #define in:
— source code

— At compiler command line with
(-Dxx) flag
e g++ -0 stuff -DDEGUG stuff.cpp

int main ()

{

int x, sum=0, datal[l0];

for(int 1=0; i < 10; i++){
sum += datali];
#ifdef DEBUG
cout << "Current sum is "
cout << sum << endl;
#endif
}

cout << "Total sum is "
cout << sum << endl;

stuff.cpp

$ g++ -o stuff -DDEBUG stuff.cpp

Example Code

Login to your VM, start a terminal

Download this example
— Create an 'lecture_code' directory
— S wget http://ee.usc.edu/~redekopp/ee355/code/coninit.cpp

— S make coninit

