
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp and	David	Kempe



2



3

CLASSES	(CONT.)



4

Composite	Objects
• Fun	Fact:		Memory	for	an	object	comes	alive	before	the	code	

for	the	constructor	starts	at	the	first	curly	brace	'{'
#include <string>
#include <vector>
using namespace std;

struct Student
{

string name;
int id;
vector<double> scores; 
// say I want 10 test scores per student

Student() /* mem allocated here */
{
// Can I do this to init. members?
name("Tommy Trojan");
id = 12313;
scores(10);

}
};

int main()
{

Student s1;
}

string name

int id

scores



5

Composite	Objects
• You	cannot	call	constructors	on	data	members	once	the	

constructor	has	started	(i.e.	passed	the	open	curly	'{'	)
– So	what	can	we	do???		Use	initialization	lists!

#include <string>
#include <vector>
using namespace std;

struct Student
{

string name;
int id;
vector<double> scores; 
// say I want 10 test scores per student

Student() /* mem allocated here */
{
// Can I do this to init. members?
name("Tommy Trojan");
id = 12313;
scores(10);

}
};

int main()
{

Student s1;
}

string name

int id

scores

This would be 
"constructing" 
name twice. It's 

too late to do it in 
the {…}



6

Constructor	Initialization	Lists

• Though	you	do	not	see	it,	realize	that	the	default	
constructors	are	implicitly	called	for	each	data	
member	before	entering	the	{…}

• You	can	then	assign	values	but	this	is	a	2-step
process

Student::Student() 
{ 

name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

Student::Student() :
name(), id(), scores() 
// calls to default constructors

{ 
name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

If you write this… The compiler will still generate this.



7

Constructor	Initialization	Lists

• Rather	than	writing	many	assignment	statements	
we	can	use	a	special	initialization	list	technique	
for	C++	constructors
– Constructor(param_list)	:member1(param/val),	…,	memberN(param/val)	

{	…	}

• We	are	really	calling	the	respective	constructors	
for	each	data	member

Student:: Student() /* mem allocated here */
{
name("Tommy Trojan");
id = 12313;
scores(10);

}

Student::Student() :
name("Tommy"), id(12313), scores(10)

{  }

You can't call member 
constructors in the {…} 

You would have to call the member 
constructors in the initialization list context



8

Constructor	Initialization	Lists

• You	can	still	assign	values	in	the	constructor	but	
realize	that	the	default	constructors	will	have	
been	called	already

• So	generally	if	you	know	what	value	you	want	to	
assign	a	data	member	it's	good	practice	to	do	it	
in	the	initialization	list

Student::Student() 
{ 

name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

Student::Student() :
name(), id(), scores() 
// calls to default constructors

{ 
name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

You can still assign data 
members in the {…}

But any member not in the initialization list will 
have its default constructor invoked before the 

{…}



9

Member	Functions
• Have	access	to	all	member	
variables	of	class

• Use	“const”	keyword	if	it	
won't	change	member	data

• Normal	member	access	uses	
dot	(.)	operator

• Pointer	member	access	uses	
arrow	(->)	operator

class Item
{ int val;
public:
void foo();
void bar() const;

};

void Item::foo() // not Foo()
{ val = 5; }

void Item::bar() const
{ }

int main()
{
Item x;  
x.foo();
Item *y = &x;
(*y).bar();
y->bar();  // equivalent
return 0;

}



10

Exercises

• cpp/cs104/classes/const_members
• cpp/cs104/classes/const_members2
• cpp/cs104/classes/const_return



11

C++	Classes:	Other	Notes
• Classes	are	generally	split	across	two	

files
– ClassName.h – Contains	interface	

description
– ClassName.cpp	– Contains	

implementation	details

• Make	sure	you	remember	to	prevent	
multiple	inclusion	errors	with	your	
header	file	by	using	#ifndef,	#define,	
and	#endif
#ifndef CLASSNAME_H
#define	CLASSNAME_H
class	ClassName {	…	};

#endif

#ifndef ITEM_H
#define ITEM_H

class Item
{ int val;
public:
void foo();
void bar() const;

};

#endif

#include "item.h"

void Item::foo()
{ val = 5; }

void Item::bar() const
{ }

item.h

item.cpp



12

CONDITIONAL	COMPILATION



13

Multiple	Inclusion
• Often	separate	files	may	

#include's of	the	same	header	
file

• This	may	cause	compiling	
errors	when	a	duplicate	
declaration	is	encountered
– See	example

• Would	like	a	way	to	include	only	
once	and	if	another	attempt	to	
include	is	encountered,	ignore	it

string.h

class string{

... };

#include "string.h"
class Widget{
public:
string s;

};

widget.h
#include "string.h"
#include "widget.h"
int main()
{ }

main.cpp
class string { // inc. from string.h
};

class string{ // inc. from widget.h
};
class Widget{ 
... }
int main()
{ }

main.cpp after preprocessing



14

Conditional	Compiler	Directives
• Compiler	directives	start	with	

'#'
– #define	XXX

• Sets	a	flag	named	XXX	in	the	
compiler

– #ifdef,	#ifndef XXX	…	#endif
• Continue	compiling	code	below	

until	#endif,	if	XXX	is	(is	not)	
defined

• Encapsulate	header	
declarations	inside	a
– #ifndef XX

#define	XX
…
#endif

String.h

#ifndef STRING_H
#define STRING_H
class string{

... };
#endif

#include "string.h"
class Widget{
public:
string s;

};

Character.h

#include "string.h"
#include "string.h"

main.cpp

class string{ // inc. from string.h
};

class Widget{ // inc. from widget.h

...

main.cpp after preprocessing



15

Conditional	Compilation
• Often	used	to	compile	

additional	DEBUG	code
– Place	code	that	is	only	needed	for	

debugging	and	that	you	would	not	want	
to	execute	in	a	release	version

• Place	code	in	an	#ifdef
XX...#endif bracket

• Compiler	will	only	compile	if	a	
#define	XX	is	found

• Can	specify	#define	in:
– source	code
– At	compiler	command	line	with	

(-Dxx)	flag
• g++	-o	stuff	–DDEGUG	stuff.cpp

stuff.cpp

int main()
{

int x, sum=0, data[10];
...
for(int i=0; i < 10; i++){

sum += data[i];
#ifdef DEBUG

cout << "Current sum is ";
cout << sum << endl;

#endif
}

cout << "Total sum is ";
cout << sum << endl;

$ g++ -o stuff –DDEBUG stuff.cpp



16

RUNTIME	ANALYSIS

XKCD #399



17

Runtime
• It	is	hard	to	compare	the	run	time	of	an	algorithm	on	actual	hardware

– Time	may	vary	based	on	speed	of	the	HW,	etc.
• The	same	program	may	take	1	sec.	on	your	laptop	but	0.5	second	on	a	high	

performance	server

• If	we	want	to	compare	2	algorithms	that	perform	the	same	task	we	could	
try	to	count	operations	(regardless	of	how	fast	the	operation	can	execute	
on	given	hardware)…
– But	what	is	an	operation?
– How	many	operations	is:		i++ ?
– i++ actually	requires	grabbing	the	value	of	i from	memory	and	bringing	it	to	

the	processor,	then	adding	1,	then	putting	it	back	in	memory.		Should	that	be	
3	operations	or	1?

– Its	painful	to	count	'exact'	numbers	of	operations
• Big-O,	Big-Ω,	and	Θ notation	allows	us	to	be	more	general	(or	"sloppy"	as	

you	may	prefer)



18

Complexity	Analysis
• To	find	upper	or	lower	bounds	on	the	

complexity,	we	must	consider	the	set	of	all	
possible	inputs,	I,	of	size,	n

• Derive	an	expression,	T(n),	in	terms	of	the	
input	size,	n,	for	the	number	of	
operations/steps	that	are	required	to	solve	
the	problem	of	a	given	input,	i
– Some	algorithms	depend	on	i and	n

• Find(3)	in	the	list	shown	vs.	Find(2)
– Others	just	depend	on	n

• Push_back /	Append

• Which	inputs	though?
– Best,	worst,	or	"typical/average"	case?

• We	will	always	apply	it	to	the	"worst	case"
– That's	usually	what	people	care	about

val next

3 0x1c0

val next

9 0x168

0x148

head

0x148 0x1c0

val next

2 0x0
(Null)

0x168

Note:	Running	time	is	not	just	
based	on	an	algorithm,	

BUT	algorithm	+	input	data



19

Big-O,	Big-W
• T(n)	is	said	to	be	O(f(n))	if…

– T(n)	<		a*f(n)	for	n	>	n0 (where	a	and	n0 are	
constants)

– Essentially	an	upper-bound
– We'll	focus	on	big-O	for	the	worst	case

• T(n)	is	said	to	be	Ω(f(n))	if…
– T(n)	>		a*f(n)	for	n	>	n0 (where	a	and	n0 are	

constants)
– Essentially	a	lower-bound

• T(n)	is	said	to	be	Θ(f(n))	if…
– T(n)	is	both	O(f(n))	AND	Ω(f(n))	

n0

a*f(n)

T(n)



20

Worst	Case	and	Big-W
• What's	the	lower	bound	on	List::find(val)

– Is	it	Ω(1)	since	we	might	find	the	given	value	on	the	first	element?
– Well	it	could	be	if	we	are	finding	a	lower	bound	on	the	'best	case'

• Big-Ω does	NOT have	to	be	synonymous with	'best	case'
– Though	many	times	it	mistakenly	is

• You	can	have:
– Big-O	for	the	best,	average,	worst	cases
– Big-Ω for	the	best,	average,	worst	cases
– Big-Θ for	the	best,	average,	worst	cases



21

Worst	Case	and	Big-W
• The	key	idea	is	an	algorithm	may	perform	differently	for	different	input	cases

– Imagine	an	algorithm	that	processes	an	array	of	size	n	but	depends	on	what	data	is	in	
the	array

• Big-O for	the	worst-case says	ALL possible	inputs	are	bound	by	O(f(n))
– Every	possible	combination	of	data	is	at	MOST	bound	by	O(f(n))

• Big-Ω for	the	worst-case is	attempting	to	establish	a	lower	bound	(at-least)	for	the	
worst	case	(the	worst	case	is	just	one	of	the	possible	input	scenarios)
– If	we	look	at	the	first	data	combination	in	the	array	and	it	takes	n	steps	then	we	can	

say	the	algorithm	is	Ω(n).
– Now	we	look	at	the	next	data	combination	in	the	array	and	the	algorithm	takes	n1.5.		

We	can	now	say	worst	case	is	Ω(n1.5).	
• To	arrive	at	Ω(f(n))	for	the	worst-case requires	you	simply	to	find	AN input	case	

(i.e.	the	worst	case)	that	requires	at	least	f(n)	steps
• Cost	analogy…



22

Deriving	T(n)
• Derive	an	expression,	T(n),	in	terms	of	

the	input	size	for	the	number	of	
operations/steps	that	are	required	to	
solve	a	problem

• If	is	true	=>	4
• Else	if	is	true	=>	5
• Worst	case	=>	T(n)	=	5

#include <iostream>

using namespace std;

int main()
{

int i = 0;

x = 5;

if(i < x){
x--;

}
else if(i > x){

x += 2;
}
return 0;

}

1
1
1
1
1
1



23

Deriving	T(n)
• Since	loops	repeat	you	have	to	take	the	

sum	of	the	steps	that	get	executed	over	
all	iterations

• 𝑇 𝑛 =

• =	∑ 5 = 5 ∗ 𝑛()*
+,-

• Or	you	can	setup	a	relationship	like:
• 𝑇 𝑛 = 𝑇 𝑛 − 1 + 5
• =	𝑇 𝑛 − 2 + 5 + 5
• =	∑ 5 = 5 ∗ 𝑛()*

+,-

• =	∑ 𝑂(1) = 𝑂(𝑛)()*
+,-

#include <iostream>
using namespace std;

int main()
{

for(int i=0; i < N; i++){
x = 5;
if(i < x){

x--;
}
else if(i > x){

x += 2;
}

}   
return 0;

}



24

Common	Summations

• ∑ 𝑖(
+,* = (((6*)

7
= 𝜃 𝑛7

– This	is	called	the	arithmetic	series

• ∑ 𝜃(𝑖9)(
+,* = 𝜃 𝑛96*
– This	is	a	general	form	of	the	arithmetic	series

• ∑ 𝑐+(
+,* = ;<=>)*

;)*
= 𝜃 𝑐(

– This	is	called	the	geometric	series

• ∑ *
+

(
+,* = 𝜃 log 𝑛
– This	is	called	the	harmonic	series



25

Skills	You	Should	Gain

• To	solve	these	running	time	problems	try	to	
break	the	problem	into	2	parts:

• FIRST,	setup	the	expression	(or	recurrence	
relationship)	for	the	number	of	operations

• SECOND,	solve
– Unwind	the	recurrence	relationship
– Develop	a	series	summation
– Solve	the	series	summation



26

Loops
• Derive	an	expression,	T(n),	in	terms	of	

the	input	size	for	the	number	of	
operations/steps	that	are	required	to	
solve	a	problem

• 𝑇 𝑛 =

• =	∑ ∑ 𝜃(1)()*
B,-

()*
+,- =	∑ 𝜃 𝑛()*

+,- 	=	Θ(n2)

#include <iostream>

using namespace std;
const int n = 256;
unsigned char image[n][n]
int main()
{

for(int i=0; i < n; i++){
for(int j=0; j < n; j++){

image[i][j] = 0;
}

}   
return 0;

}



27

Matrix	Multiply
• Derive	an	expression,	T(n),	in	terms	

of	the	input	size	for	the	number	of	
operations/steps	that	are	required	
to	solve	a	problem

• 𝑇 𝑛 =

• = ∑ ∑ ∑ 𝜃(1)()*
C,-

()*
B,-

()*
+,- = 𝜃(𝑛D)

#include <iostream>
using namespace std;
const int n = 256;
int a[n][n], b[n][n], c[n][n];
int main()
{

for(int i=0; i < n; i++){
for(int j=0; j < n; j++){

c[i][j] = 0;
for(int k=0; k < n; k++){

c[i][j] += a[i][k]*b[k][j];
}

}
}   
return 0;

}

C A B

*=

Traditional Multiply



28

Sequential	Loops
• Is	this	also	n3?
• No!

– 3	for	loops,	but	not	nested
– O(n)	+	O(n)	+	O(n)	=	3*O(n)	=	O(n)

#include <iostream>

using namespace std;
const int n = 256;
unsigned char image[n][n]
int main()
{

for(int i=0; i < n; i++){
image[0][i] = 5;

}   
for(int j=0; j < n; j++){

image[1][j] = 5;
}   
for(int k=0; k < n; k++){

image[2][k] = 5;
}   

return 0;
}



29

Counting	Steps
• It	may	seem	like	you	can	just	look	for	

nested	loops	and	then	raise	n	to	that	
power	
– 2	nested	for	loops	=>	O(n2)

• But	be	careful!!
• You	have	to	count	steps

– Look	at	the	update	statement
– Outer	loop	increments	by	1	each	time	so	it	

will	iterate	N	times
– Inner	loop	updates	by	dividing	x	in	half	

each	iteration?
– After	1st iteration	=>	x=n/2
– After	2nd iteration	=>	x=n/4
– After	3rd iteration	=>	x=n/8
– Say	kth iteration	is	last	=>	x	=	n/2k	=	1
– Solve	for	k
– k	=	log2(n)	iterations
– O(n*log(n))

#include <iostream>
using namespace std;
const int n = 256;

int main()
{

for(int i=0; i < n; i++){
int y=0;
for(int x=n; x != 1; x=x/2){

y++;
}
cout << y << endl;

}   
return 0;

}



30

Analyze	This
• Count	the	steps	of	this	example?

• ∑ ∑ 17E
B,-

FG	(()
+,-

• =∑ 2+FG	(()
+,-

• Use	the	geometric	sum	eqn.

• =∑ 𝑎+ = *)I<

*)I
()*
+,-

• So	our	answer	is…

• *)7JK < =>

*)7
= *)7∗(

)*
= 𝑂(𝑛)

for (int i = 0; i <= log2(n); i ++) 
for (int j=0; j < (int) pow(2,i); j++) 

cout << j; 



31

Another	Example
• Count	steps	here…

– Think	about	how	many	times
if	statement	will	evaluate	true

• 𝑇 𝑛 = ∑ 𝜃 1 + 𝑂(𝑛)()*
+,-

• 𝑇 𝑛 =

for (int i = 0; i < n; i++) 
{

cout << "i: ";
int m = sqrt(n);
if( i % m == 0){

for (int j=0; j < n; j++) 
cout << j << " ";

}
cout << endl;

}



32

Another	Example
• Count	steps	here…

– Think	about	how	many	times
if	statement	will	evaluate	true

• 𝑇 𝑛 = ∑ 𝜃 1 + 𝑂(𝑛)()*
+,-

• 𝑇 𝑛 = ∑ 𝜃 1()*
+,- + ∑ ∑ 𝜃 1(

B,*
(�
C,*

• 𝑇 𝑛 = 𝜃 𝑛 + ∑ 𝜃 𝑛(�
C,*

• 𝑇 𝑛 = 𝜃 𝑛 + 𝜃 𝑛 M 𝑛�

• 𝑇 𝑛 = 𝜃 𝑛N O⁄

for (int i = 0; i < n; i++) 
{

cout << "i: ";
int m = sqrt(n);
if( i % m == 0){

for (int j=0; j < n; j++) 
cout << j << " ";

}
cout << endl;

}



33

What	about	Recursion
• Assume	N	items	in	the	
linked	list

• T(n)	=	1	+	T(n-1)
• =	1	+	1	+	T(n-2)
• =	1	+	1	+	1	+	T(n-3)
• =	n	=	O(n)

void print(Item* head)
{

if(head==NULL) return;
else { 

cout << head->val << endl;
print(head->next);

}
}



34

Binary	Search
• Assume	N	items	in	the	
data	array

• T(n)	=	
– O(1)	if	base	case
– O(1)	+	T(n/2)

• =	1	+	T(n/2)
• =	1	+	1	+	T(n/4)
• =	k	+	T(n/2k)
• Stop	when	2k =	n	
– Implies	log2(n)	recursions

• O(log2(n))

int bsearch(int data[],
int start, int end,
int target)

{
if(end >= start)

return -1;
int mid = (start+end)/2;
if(target == data[mid])

return mid;
else if(target < data[mid])

return bsearch(data, start, mid, 
target);

else
return bsearch(data, mid, end, 

target); 
}  



35

Importance	of	Complexity

N O(1) O(log2n) O(n) O(n*log2n) O(n2) O(2n)

2 1 1 2 2 4 4

20 1 4.3 20 86.4	 400	 1,048,576	

200 1 7.6 200 1,528.8	 40,000	 1.60694E+60

2000 1 11.0 2000 21,931.6	 4,000,000	 #NUM!

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

N

Ru
n-
tim

e

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

N

Ru
n-

tim
e

 

 
N
N2

N*log2(N)


