CSCI 104

Rafael Ferreira da Silva

rafsilva@isi.edu

Slides adapted from: Mark Redekopp and David Kempe

USC Viterbi C2

School of Engineering

THE WORLD SEEN BY AN "OBTECT - ORIENTED =~ PROGRAMMER .

Privacy M auaibolc.aa."b

c %!.' Tndoor Session Tnitial :@
Entertainment Provider Sn'hald’on
©
Thirst Quencher Container l ey v
Livin) SP-CG SeparationDecoraton Yisitor Montor TnferFace
1

Mo+ Bu“SuHx»-{u- %

Enerfasmmeat Provi dev View Controller |

MANY

School of Engineering

CLASSES (conT)

— ()5 Viterbi
Composite Objects

* Fun Fact: Memory for an object comes alive before the code
for the constructor starts at the first curly brace '{'

#include <string>
#include <vector>
using namespace std;

struct Student
{
string name;
int id;
vector<double> scores;

string name

// say I want 10 test scores per student
int id

Student () /* mem allocated here */

{ scores
// Can I do this to init. members-?
name ("Tommy Trojan") ;
id = 12313;
scores (10) ;

}

};

int main ()

{
Student sl1;

}

e ()5 Viterbi >
Composite Objects

 You cannot call constructors on data members once the
constructor has started (i.e. passed the open curly {')

— So what can we do??? Use initialization lists!

#include <string>
#include <vector>
using namespace std;

struct Student
{

string name;

string name

int id;
vector<double> scores; int id
// say I want 10 test scores per student
scores
Student () /* mem allocated here */
{ .
// Can I do this to init. members-? ,-,rhls WOUIC.I be..
name ("Tommy Trojan"); constructlng
id = 12313;) name twice. It's
scores (10) ; too late to do it in
) the {...}

I 5

int main ()

{
Student sl1;

}

S (]S Viterbi (>
Constructor Initialization Lists~

Student::Student () Student::Student () :
{ name (), id(), scores()
name = "Tommy Trojan"; // calls to default constructors

id = 12313 {
scores.resize (10); name = "Tommy Trojan";
} id = 12313

scores.resize (10);

}

If you write this... The compiler will still generate this.

 Though you do not see it, realize that the default
constructors are implicitly called for each data
member before entering the {...}

* You can then assign values but this is a 2-step
process

c e pe : .USCXi’Egbi @
Constructor Initialization Lists ™

Student:: Student() /* mem allocated here */ Student::Student () :

{

}

name ("Tommy") , id(12313), scores(10)

name ("Tommy Trojan") ; { 1}
id = 12313;
scores (10) ;

You can't call member You would have to call the member
constructors in the {...} constructors in the initialization list context

Rather than writing many assighment statements
we can use a special initialization list technique
for C++ constructors

— Constructor(param_list) : memberl(param/val), ..., memberN(param/val)

{..}

 We are really calling the respective constructors

for each data member

e e ge) USCXYE?}}'M .
Constructor Initialization Lists "

Student: :Student () Student::Student () :
{ name (), id(), scores()
name = "Tommy Trojan"; // calls to default constructors

id = 12313 {
scores.resize (10); name = "Tommy Trojan";
} id = 12313

scores.resize (10);

}

You can still assign data But any member not in the initialization list will
members in the {...} have its default constructor invoked before the
{...}

* You can still assign values in the constructor but
realize that the default constructors will have
been called already

* So generally if you know what value you want to

assign a data member it's good practice to do it
in the initialization list

Member Functions

e Have access to all member
variables of class

* Use “const” keyword if it
won't change member data

* Normal member access uses
dot (.) operator

* Pointer member access uses
arrow (->) operator

class Item
{ int wval;
public:
void foo ()
void bar () const;

b g

void Item::foo() // not Foo ()
{ val = 5; }

volid Item::bar () const

{3

int main ()
{
Item x;
x.foo();
Item *y = &x;
(*y) .bar();
y->bar(); // equivalent
return 0O;

* cpp/csl104/c
* cpp/csl04/c
* cpp/csl04/c

Exercises

asses/const_members
asses/const_ members?2
asses/const_return

School of Engineering

C++ Classes: Other Notes

Classes are generally split across two
files

— ClassName.h — Contains interface
description

— ClassName.cpp — Contains
implementation details

Make sure you remember to prevent
multiple inclusion errors with your
header file by using #ifndef, #define,
and #endif

#ifndef CLASSNAME_H

#define CLASSNAME_H

class ClassName { ... };

Hendif

#ifndef ITEM H
#define ITEM H

class Item
{ int wval;
public:
void foo ()
void bar () const;

b g
#endif

item.h

#include "item.h"
volid Item: :foo ()

{ val = 5; }

volid Item: :bar () const

{}

item.cpp

School of Engineering

CONDITIONAL COMPILATION

- USC\/itcrbi @
Multiple Inclusion

class string{

e Often separate files may)
#include's of the same header string.h
file e

* This may cause compiling o o

. }:
errors when a duplicate

declaration is encountered

widget.h

#include "string.h"

— See example #include "widget.h"
int main ()
* Would like a way to include only ()
once and if another attempt to main.cpp
include is encountered, ignore it class string { // inc. from string.h

¥

class string{ // inc. from widget.h
i
class Widget{
o b
int main ()

{1}

main.cpp after preprocessing

i, IS(™Viterbi

School of Engineering

Conditional Compiler Directives

#ifndef STRING H

* Compiler directives start with fdefine STRING_H

class stringf{

I#I coo b

#endif

— #define XXX String.h
* Sets a flag named XXX in the

#include "string.h"

conprer class Widget{
. . . blic:
— #ifdef, #ifndef XXX ... #endif S e 5
* Continue compiling code below bi
until #endif, if XXX is (is not) Character.h
defined

#include "string.h"

¢ EncapSUIate header #include "string.h"
declarations inside a main.cpp

— #ifndef XX class string{ // inc. from string.h
. }i
#define XX

class Widget{ // inc. from widget.h

Hendif

main.cpp after preprocessing

i, IS(™Viterbi 9

School of Engineering

Conditional Compilation

Often used to compile
additional DEBUG code

— Place code that is only needed for
debugging and that you would not want
to execute in a release version

Place code in an #ifdef
XX...#endif bracket

Compiler will only compile if a
#define XX is found

Can specify #define in:
— source code

— At compiler command line with
(-Dxx) flag
e g++ -0 stuff -DDEGUG stuff.cpp

int main ()

{

int x, sum=0, datal[l0];

for(int 1=0; i < 10; i++){
sum += datali];
#ifdef DEBUG
cout << "Current sum is "
cout << sum << endl;
#endif
}

cout << "Total sum is "
cout << sum << endl;

stuff.cpp

$ g++ -o stuff -DDEBUG stuff.cpp

USC Viterbi

School of Engineering

BRUTE -FORCE DYNAMIC |
SOLU‘I‘:gRNC PROGRAMMING SELUNG ON ERAY:
(n! ALGORITHMS: 0(1)

STILL WORKING
ON YOUR ROVTE?

g A
~
SHUT THE
HEW VR

XKCD #399

RUNTIME ANALYSIS

- USC\ﬁtgrbi @
Runtime

* |tis hard to compare the run time of an algorithm on actual hardware

— Time may vary based on speed of the HW, etc.

 The same program may take 1 sec. on your laptop but 0.5 second on a high
performance server

e |f we want to compare 2 algorithms that perform the same task we could
try to count operations (regardless of how fast the operation can execute
on given hardware)...

— But what is an operation?
— How many operations is: i++ ?

— i++ actually requires grabbing the value of i from memory and bringing it to
the processor, then adding 1, then putting it back in memory. Should that be

3 operations or 1?
— Its painful to count 'exact' numbers of operations

* Big-0, Big-Q, and O notation allows us to be more general (or "sloppy" as
you may prefer)

- 00000000 USC\ﬁtgrbi .
Complexity Analysis

* To find upper or lower bounds on the
complexity, we must consider the set of all
possible inputs, |, of size, n

* Derive an expression, T(n), in terms of the head
input size, n, for the number of 0x148| 0x148 Ox1c0 0x168
operations/steps that are required to solve L[3 Toxtcols| 9 Joxtess| 2)
the problem of a given input, i val next val next val next

— Some algorithms depend oniandn
* Find(3) in the list shown vs. Find(2)

— Others just depend on n
* Push_back / Append
* Which inputs though? Note: Running time is not just

— Best, worst, or "typical/average" case? based on an algorithm,
BUT algorithm + input data

We will always apply it to the "worst case"

— That's usually what people care about

Big-0O, Big-Q2

T(n) is said to be O(f(n)) if...

— T(n) < a*f(n) for n > n, (where a and n, are
constants)

— Essentially an upper-bound
— We'll focus on big-O for the worst case
T(n) is said to be Q(f(n)) if...

— T(n) > a*f(n) for n > n, (where a and n, are
constants)

— Essentially a lower-bound

T(n) is said to be ©(f(n)) if...
— T(n) is both O(f(n)) AND Q(f(n))

a*f(n)

Worst Case and Big-(2

 What's the lower bound on List::find(val)

— Is it Q(1) since we might find the given value on the first element?
— Well it could be if we are finding a lower bound on the 'best case’

* Big-Q does NOT have to be synonymous with 'best case’
— Though many times it mistakenly is
* You can have:
— Big-O for the best, average, worst cases
— Big-Q for the best, average, worst cases
— Big-O for the best, average, worst cases

i, IS(™Viterbi)

Worst Case and Big-(2

 The key idea is an algorithm may perform differently for different input cases

— Imagine an algorithm that processes an array of size n but depends on what data is in
the array

* Big-O for the worst-case says ALL possible inputs are bound by O(f(n))
— Every possible combination of data is at MOST bound by O(f(n))

* Big-Q for the worst-case is attempting to establish a lower bound (at-least) for the
worst case (the worst case is just one of the possible input scenarios)

— If we look at the first data combination in the array and it takes n steps then we can
say the algorithm is Q(n).

— Now we look at the next data combination in the array and the algorithm takes nt-.
We can now say worst case is Q(n'-).

* To arrive at Q(f(n)) for the worst-case requires you simply to find AN input case
(i.e. the worst case) that requires at least f(n) steps

* Cost analogy...

i, IS(™Viterbi 2

* Derive an expression, T(n), in terms of | finclude <iostream>
the input size for the number of nsdng nemespace Sk
operations/steps that are required to
solve a problem

int main ()

o Ifistrue=>4 {
 Elseifistrue=>5 int 1 = 0; 1
e Worst case =>T(n)=5 X = 5; 1
if(i < x){ 1
e
} 1
else if(i > x){ 1
X += 2; 1

}

return 0;

Deriving T(n)

Since loops repeat you have to take the
sum of the steps that get executed over
all iterations

T(n)

Or you can setup a relationship like:
T(n)=T(n—1)+5
=Tn—2)+5+5

= Y y5=5xn

Yo 0(D) = 0(n)

i, IS(™Viterbi «

School of Engineering

#include <iostream>
using namespace std;

int main ()
{
for(int i=0; i < N;
x = 5;
1f (1 < x){
X==;
}
else if (1 > x){
X += 2;
}
}
return 0;

}

1++) {

Common Summations

211'1=1i = n(n2+1) — g(nZ)

— This is called the arithmetic series
Yz, 0(iP) = 6(mP*h)

— This is a general form of the arithmetic series

n _ Cn+1_1 _ n

m L ct — = 0(c")
— This is called the geometric series
a 1 = 6(logn)

— ThIS is called the harmonic series

Skills You Should Gain

* To solve these running time problems try to
break the problem into 2 parts:

* FIRST, setup the expression (or recurrence
relationship) for the number of operations

e SECOND, solve
— Unwind the recurrence relationship

— Develop a series summation
— Solve the series summation

i, IS(™Viterbi

School of Engineering

* Derive an expression, T(n), in terms of #include <iostream>
the input size for the number of

. . using namespace std;
operations/steps that are required to

const int n = 256;
solve a problem unsigned char image[n] [n]
. T(n) _ int main ()
for (int i=0; i < n; i++){
for(int 3=0; j < n; J++){
image[i] [j] = 0;

}
=YY =N 6 o) |]

return 0;

- 00000000 USCViterbi @
Matrix Multiply
=

ERREEEES
* Derive an expression, T(n), in terms = i
of the input size for the number of C A B
operations/steps that are required Traditional Multiply
to solve a problem #include <iostream>
. T(n)== using namespace std;
const int n = 256;
int a[n][n], b[n][n], cln][n];
int main ()
{
for (int 1=0; 1 < n; i++){
o _ n—1 n—1 n—-1 _ 3 fO]f(j_flt j:O,' j < n; j++) {
_Zi:O Zj=0 k=00(1)_9(n) c[il[3] = 0;
for(int k=0; k < n; k++){
cli][J] += ali][k]*b[k][J]~
}
}
}
return 0O;
}

i, IS(™Viterbi

Sequential Loops

Is this also n3?
Nol!

— 3 for loops, but not nested
— 0O(n) + O(n) + O(n) =3*0(n) = O(n)

School of Engineering

#include <iostream>

using namespace std;
const int n = 256;
unsigned char image[n] [n]
int main ()
{
for(int 1i=0; 1 < n; i++){
image[0] [1] = 5;
}
for (int j=0; 7 < n; J++){
image[1l][J] = 5;
}
for(int k=0; k < n; k++) {
image([2] [k] = 5;
}
return 0O;

}

i, IS(™Viterbi

School of Engineering

Counting Steps

It may seem like you can just look for
nested loops and then raise n to that
power

— 2 nested for loops => O(n?)
But be careful!!

You have to count steps
— Look at the update statement

— Outer loop increments by 1 each time so it
will iterate N times

— Inner loop updates by dividing x in half
each iteration?

— After 1stiteration => x=n/2

— After 2" jteration => x=n/4

— After 3 jteration => x=n/8

— Say kth iteration is last => x = n/2k=1
— Solve for k

— k=log,(n) iterations

— O(n*log(n))

#include <iostream>
using namespace std;
const int n = 256;

int main ()

{

for(int 1=0; 1 < n; 1++){
int y=0;
for (int x=n; x !'= 1; x=x/2){
y++;

}
cout << y << endl;

}

return 0;

i, IS(™Viterbi

Analyze This

* Count the steps of this example?

for (int 1 = 0; 1 <= log2(n); i ++)
for (int J=0; J < (int) pow(2,1); J++)
cout << 73,

1
o Z g(n) Z
o Zlg(n) 21

e Use the geometric sum eqgn.

n-1 ., _ 1—a”"

1-a
e So our answer is...

1-2180M+1 1_24n
o — = — — O(n)
1-2 1

Another Example

 Count steps here...

— Think about how many times
if statement will evaluate true

+ T(n) =X (6(1) +0(n))
e T(n) =

for

{

(int 1 = 0; 1 < n;

cout << "i: ";

int m = sqgrt(n);

if(1 $ m== 0){
for (int 3J=0; 73 <

ny

COUt << j << " ";

}

cout << endl;

j++)

Another Example

Count steps here...

— Think about how many times
if statement will evaluate true

T(n) = X5 (6(1) + 0(n))

for

{

(int 1 = 0; 1 <

cout << "1:

int m = sqgrt(n);
if(i % m == 0){
for (int j=0;

n; 1

7 <

ny

cout << J << " "y

}

cout << endl;

j++)

T(n) = Y18 60(1) + It I, (1)

T(n) = 6(n) +)7, 6(n)
T(n) =06(n)+0(n-+n)
T(n) = 9(1’13/2)

What about Recursion

Assume N items in the
linked list

T(n) =1+ T(n-1)
=1+1+T(n-2)
=1+1+1+T(n-3)
=n =0(n)

void print (Item* head)

{

}

if (head==NULL) return;

else {
cout << head->val << endl;
print (head->next) ;

}

Binary Search

Assume N items in the
data array

T(n) =

— O(1) if base case
— 0(1) + T(n/2)
=1+T(n/2)
=1+1+T(n/4)
=k + T(n/2¥)
Stop when 2k =n

int bsearch(int datal],

int start, int end,
int target)

if (end >= start)
return -1;
int mid = (start+end)/2;
if (target == data[mid])
return mid;
else if(target < data[mid])
return bsearch(data, start, mid,

target) ;
else
return bsearch(data, mid, end,
target) ;

— Implies log,(n) recursions

O(log,(n))

50

USC Viterbi (2

School of Engineering

Importance of Complexity

451

40 |-

35|

301

25(.

Run-time

20}~

151

10

Run-time

350

300

250

200

150

100

50

0

N2
N*log2(N)

,‘i:ciii*i

nmmmm

20

200

2000

1 4.3
1 7.6
1 11.0

20

200

2000

86.4

1,528.8

21,931.6

400

40,000

4,000,000

1,048,576

1.60694E+60

#NUM!

