CSCI 104

Rafael Ferreira da Silva

rafsilva@isi.edu

Slides adapted from: Mark Redekopp and David Kempe

R 1S Viterbi (2
XKCD #163

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FROM ONE, S0ME FROWM ZERD.

DIFFERENT TASks CALL FOR VAT WHAT?

DIFFERENT CONVENTIONS. TO '
QUOTE STANFORD AIGOR ITHMYS [WELL, THATS WHAT HE
EXPERT DONALD KNUTH, SAID WHEN | ASKED
“WHO ARE You? HOW DID_ HiA ABOUT IT.

YOU GET 'N/ MY HOUSE? l /

Courtesy of Randall Munroe @ http://xkcd.com

School of Engineering

LIST ADT & ARRAY-BASED
IMPLEMENTATIONS

* Ordered collection of items, which may contain duplicate
values, usually accessed based on their position (index)

— Ordered = Each item has an index and there is a front and back (start
and end)

— Duplicates allowed (i.e. in a list of integers, the value 0 could appear
multiple times)

— Accessed based on their position (list[0], list[1], etc.)
 What are some operations you perform on a list?

- 00000000 USC\ﬁtgrbi @
List Operations

T S T

insert Add a new value at a particular Index :

location shifting others back Value
remove Remove value at the given location Index : int Value at location
get / at Get value at given location Index : int Value at location
set Changes the value at a given location Index: int

Value

empty Returns true if there are no values in bool

the list
size Returns the number of values in the int

list

push_back / Add a new value to the end of the list Value
append

find Return the location of a given value Value Int : Index

School of Engineering

IMPLEMENTATIONS

Implementation Strategies

e Linked List

— Can grow with user needs

* Bounded Dynamic Array

— Let user choose initial size but is then fixed

 Unbounded Dynamic Array

— Can grow with user needs

School of Engineering

BOUNDED DYNAMIC ARRAY
STRATEGY

A Bounded Dynamic Array Strategy

* Allocate an array of some
user-provided size

e What data members do |
need?

* Together, think through
the implications of each
operation when using a
bounded array (what
issues could the fact that it
is bounded cause)?

#ifndef BALISTINT H
#define BALISTINT H

class BAListInt {

public:
BAListInt (unsigned int cap):;

bool empty() const;
unsigned int size () const;
void insert (int pos,

const inté& wval);
void remove (int pos);
int const & get(int loc) const;
inté& get (int loc);
void set (int loc, const inté& wval);
void push back(const inté& wval);

private:

#fendif

balist.h

A Bounded Dynamic Array Strategy

 What data members do |
need?
— Pointer to Array
— Current size
— Capacity

* Together, think through the
implications of each
operation when using a static
(bounded) array
— Push_back: Run out of room?

— Insert: Run out of room, invalid
location

#ifndef BALISTINT H
#define BALISTINT H

class BAListInt {
public:
BAListInt (unsigned int cap):;

bool empty() const;
unsigned int size () const;
void insert (int pos,

const inté& wval);
void remove (int pos);
int const & get(int loc) const;
inté& get (int loc);
void set (int loc, const inté& wval);
void push back(const inté& wval);

private:

int* data ;
unsigned int size ;
unsigned int cap ;

¥
#endif

balist.h

Implementation

o Implement the BAListInt::BAListInt (unsigned int cap)

{
following

}
member void BAListInt::push back(const ints& val)
functions |

— A picture to help
write the code

}

o 1 2 3 4 5 6 7 . _ . . .
-t TS void BAListInt::insert (int loc, const inté& wval)
30 (51|52|53 (54|10 [| {

balist.h (cont)

Implementation (cont.)

* Implement the
. void BAListInt::remove (int loc)
following member |
functions

— A picture to help
write the code

0 1 2 3 4 5 6 7
30|51|52|53|54|10 [

balist.h

Constness

e What functions stand out
as looking strange?

* Two versions of get()

* Why do we need two
versions of get?

e Because we have two use
cases...

— 1. Just read a value in the
array w/o changes

— 2. Get a value w/ intention
of changing it

#ifndef BALISTINT H
#define BALISTINT H

class BAListInt {
public:
BAListInt (unsigned int cap):;

bool empty () const;
unsigned int size () const;
void insert (int pos,

const inté& wval);
bool remove (int pos);

int& const get(int loc) const;
int& get(int loc);

void set (int loc, const inté& wval);
voild push back(const inté& val);
private:

b g
#endif

i, IS(™Viterbi

Constness

// ---- Recall List Member functions ------
// const version

int& const BAListInt::get(int loc) const

{ return data_ [i]; }

// non-const version
int& BAListInt::get(int loc)
{ return data [i]; }

void BAListInt::insert(int pos, const inté& wval);

// ---- Now consider this code ------
void fl (const BAListInt& mylist) r
{ mylist
// This calls the con;t Verglon of get | S [::]
// w/o the const-version this would not compile
// since mylist was passed as a const parameter cap
cout << mylist.get(0) << endl;
. i _ data
mylist.insert (0, 57); // won't compile..insert is non-const
}
int main () 0 1 2 3 4 5 6 7
(
BAListInt mylist; » 30(51({52|53|54 (10 [!
f1l(mylist); e T

i ()5 Viterbi >
Returning References

// ---- Recall List Member functions ------
// const version

int& const BAListInt::get(int loc) const

{ return data [i]; }

// non-const version
int& BAListInt::get(int loc)
{ return data_[i]; }

void BAListInt::insert(int pos, const inté& wval);

// ---- Now consider this code ------ n1y“3t

Y01d f1 (BAListInt& mylist) e [::]
// This calls the non-const version of get cap
// 1if you only had the const-version this would not compile d [:::
// since we are trying to modify what the ata

// return value 1s referencing
mylist.get(0) += 1; // equiv. mylist.set(mylist.get(0)+1);

mylist.insert (0, 57);

// will compile since mylist is non-const 0 1 2 3 4 5 6 7
}
int main () » 30| 51|52|53(54|10 [!
{ BAListInt mylist, N "=

fl(mylist);

}

* Moral of the Story: We need both versions of get()

School of Engineering

UNBOUNDED DYNAMIC ARRAY
STRATEGY

i, IS(™Viterbi o

Unbounded Array

* Any bounded array solution runs the risk of running out of room
when we insert() or push_back()

* We can create an unbounded array solution where we allocate a

whole new, larger array when we try to add a new item to a full
array

push_back(21) => |2

0 1 2 3 4 5
Old, full array 30(51|52|53|54|10

o 1 2 3 4 5 6 7 8 9 10 11
Allocate new array [[[[[[[[[[[
We can use the strategy of
0 1 2 3 4 5 6 7 8 9 10 11 allocating a new array twice
Copy over items 30!51152153|54/|10 [the size of the old array

01 2 3 4 5 6 7 8 9 10 11
Add new item 30|51 |52|53|54|10] 21

- 00000000 USCViterbi .
Activity

* What function implementations need to change if any?

#ifndef ALISTINT H
#define ALISTINT H

class AListInt {

public:
bool empty() const;
unsigned int size() const;

void insert (int loc,
const inté& wval);

void remove (int loc);

int& const get (int loc) const;

int& get(int loc);

volid set (int loc, const inté& wval);

void push back(const T& new val);
private:

int* data;
unsigned int size;
unsigned int capacity;

I 5

// implementations here
#endif

i, IS(™Viterbi

School of Engineering
l \ t . . t

* What function implementations need to change if any?

#ifndef ALISTINT H
#define ALISTINT H

class AListInt {

public:
bool empty() const;
unsigned int size() const;

void insert (int loc,
const inté& wval) ;

void remove (int loc);

int& const get (int loc) const;
int& get(int loc);

volid set (int loc, const inté& wval);
void push back (const T& new_val) ;
private:

void resize(); // increases array size
int* data;

unsigned int size;

unsigned int capacity;

I §

// implementations here
tendif

An Unbounded Dynamic Array Strateg

* Implement the
push_back method
for an unbounded
dynamic array

#include "alistint.h"

void AListInt::push back(const inté& val)

{

alistint.cpp

void BAListInt::push_back(const 1int& val)
{
if (size_ < cap_) {
data_[size_++] = val;
}
}

Previous code (Bounded)

An Unbounded Dynamic Array Strateg

* Implement the
push_back method
for an unbounded
dynamic array

#include "alistint.h"

void AListInt::push back(const inté& val)
{

if (_size >= cap) {
resize ()
}
_data[sizet++] = val;
}
alistint.cpp

void BAListInt::push_back(const 1int& val)
{
if (size_ < cap_) {
data_[size_++] = val;
}
}

Previous code (Bounded)

School of Engineering

AMORTIZED RUNTIME

Example

* You love going to Universal Studios. You purchase a
gold annual pass for $299. You visit Universal Studios
once a month for a year. Each time you go you spend
S20 on food, etc.

— What is the cost of a visit?

* Your annual pass cost is spread or "amortized" (or
averaged) over the duration of its usefulness

e Often times an operation on a data structure will
have similar "irregular" costs that we can then
amortize over future calls

Amortized Array Resize Run-time

What is the run-time of
insert or push_back:

— If we have to resize?

— O(n)

— If we don't have to resize?
— 0(1)

Now compute the total
cost of a series of
insertions using resize by
1 at a time

Each insert now costs
O(n)... not good

push_back(21) => |2

Old, full array 3051|5253 54‘

Increase old array !
size by 1

Copy over items 30|51 (5253|5421

push_back(33) => |33

Increase old array !
size by 1

Copy over items 30|51|52|53|54|21|33

Resize by 1 strategy

i, IS(™Viterbi -«

School of Engineering

Amortized Array Resize Run-time

 What if we resize by adding 5
new locations each time

e Start analyzing when the list is
full...

— 1 call to insert will cost: 5
— What can | guarantee about the
next 4 calls to insert?

* They will cost 1 each because |
have room

— After those 4 calls the next
insert will cost: 10

— Then 4 more at cost=1

e |f the listis size n and full
— Nextinsert cost = n
— 4 inserts after than = 1 each
— Cost for 5 inserts = n+5

— Runtime = cost / insert = (n+5)/5 =
O(n)

push_back(21) => |2

Old, full array 30|51 (52|53 54‘

Increase old array !
size by 5

Copy overitems | 30|51 |52 |53 |54 |21 I [[|

Resize by 5 strategy

Resize by 5 Strategy

30

25

20

15

m Cost

10 7 —&— Capacity

HEENN N
9 11 13 15 17 19 21 23 25

Number of Calls to Insert

T-T.T.T.’\

Consider a Doubling Size Strategy

e Start when the list is full and at size n

e Nextinsertion will cost?
— O(n+1)

* How many future insertions will be guaranteed to be cost =17

— n-1insertions
— At a cost of 1 each, | get n-1 total cost

e So for the n insertions my total cost was

— n+l+n-1=2%n

e Amortized runtime is then:

Doubling Resize Strategy

— Cost / insertions

— 0(2*n/n)=0(2)
= O(1) = constant!!!

2 4 6 810121416182022242628303234363840
Number of Calls to Insert

m Cost

—4— Capacity

i, IS(™Viterbi €

School of Engineering
Another Example
* Let's say you are writing an algorithm to
000

take a n-bit binary combination (3-bit 0000
and 4-bit combinations are to the right) 001 0001
and produce the next binary 010 0010
combination 011 0011

* Assume all the cost in the algorithm is — —
spent changing a bit (define that as 1 — —
unit of work) e Lane

111 0111

* | could give you any combination, what
is the worst case run-time? Best-case?

— 0(n) => 011 to 100
— 0O(1) => 000 to 001

1000
1001
1010
1011
1100
1101
1110
1111

Another Example
* Let's say you are writing an algorithm to
000 :

take a n-bit binary combination (3-bit

and 4-bit combinations are to the right) 001 1
and produce the next binary 010 2
combination 011 1

* Assume all the cost in the algorithm is — -
spent changing a bit (define that as 1 — 1
unit of work) e 2

111 1

* | could give you any combination, what
is the worst case run-time? Best-case?

— 0O(n)=>011to0 100 Worst Case: O(n log n)
— 0O(1) => 000 to 001
n + floor(n/2) + floor(n/4) + ...
n+n/2+n/4+ ..
2n = 0O(n)

IAN IA

