
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp and	David	Kempe

2

http://geek-and-poke.com/geekandpoke/2013/1/22/stackoverflow.html

3

STACKS	AND	QUEUES
Specialized	Lists

4

Stacks	&	Queues

• Lists	are	good	for	storing	generic	sequences	of	
items,	but	they	can	be	specialized	to	form	
other	useful	structures

• What	if	we	had	a	List,	but	we	restricted	how	
insertion	and	removal	were	done?
– Stack – Only	ever	insert/remove	from	one	end	of	
the	list

– Queue – Only	ever	insert	at	one	end	and	remove	
from	the	other

5

QUEUE	ADT
First-In,	First-Out	(FIFOs)

6

Queue	ADT
• Queue	– A	list	of	items	where	insertion	only	
occurs	at	the	back	of	the	list	and	removal	
only	occurs	at	the	front	of	the	list
– Like	waiting	in	line	for	a	cashier	at	a	store

• Queues	are	FIFO	(First	In,	First	Out)
– Items	at	the	back	of	the	queue	are	the	newest
– Items	at	the	front	of	the	queue	are	the	oldest
– Elements	are	processed	in	the	order	they	arrive

7

A	Queue	Visual

Items enter at the back
(push_back)

Items leave from the front
(pop_front)

(push_back)
(pop_front)

8

Queue	Operations
• What	member	functions	does	a	
Queue	have?
– push_back(item)	– Add	an	item	to	
the	back	of	the	Queue

– pop_front()	- Remove	the	front	item	
from	the	Queue

– front()	- Get	a	reference	to	the	front		
item	of	the	Queue	(don't	remove	it	
though!)

– size()	- Number	of	items	in	the	Queue
– empty()	- Check	if	the	Queue	is	
empty

(push_back)

(pop_front)

9

A	Queue	Class
• A	sample	class	interface	for	a	

Queue
• Queue	Error	Conditions

– Queue	Underflow	– The	name	
for	the	condition	where	you	call	
pop	on	an	empty	Queue

– Queue	Overflow	– The	name	for	
the	condition	where	you	call	
push	on	a	full	Queue	(a	Queue	
that	can't	grow	any	more)

• This	is	only	possible	for	Queues	
that	are	backed	by	a	bounded	
list

#ifndef QUEUEINT_H
#define QUEUEINT_H

class QueueInt {
public:
QueueInt();
~QueueInt();
int size() const;
void push_back(const int& value); //enqueue
void pop_front(); // dequeue
int const & front() const;
bool empty() const;

private:
// ???

};
#endif

10

Other	Queue	Details
• How	should	you	implement	a	Queue?

– Back	it	with	an	ArrayList
– Back	it	with	a	linked	list
– Back	it	with	a	vector
– Inherit	from	a	linked	list
– Which	is	best?

Push_back Pop_front Front()
ArrayList O(1) O(n) O(1)
LinkedList
(Singly-linked
w/	tail	ptr)

O(1) O(1) O(1)

LinkedList
(Singly-linked
w/o	tail	ptr)

O(n) O(1) O(1)

11

Queue	Applications

• Print	Jobs
– Click	“Print”	on	the	computer	is	much	faster	than	actually	
printing	(build	a	backlog)

– Each	job	is	processed	in	the	order	it's	received	(FIFO)
– Why	would	you	want	a	print	queue	rather	than	a	print	
stack

• Seating	customers	at	a	restaurant
• Anything	that	involves	"waiting	in	line"
• Helpful	to	decouple	producers	and	consumers

12

STACK	ADT
Last-In,	First-Out	(LIFOs)

13

Stack	ADT
• Stack:	A	list	of	items	where	

insertion	and	removal	only	
occurs	at	one	end	of	the	list

• Examples:
– A	stack	of	boxes	where	you	have	to	

move	the	top	one	to	get	to	ones	
farther	down

– A	spring-loaded	plate	dispenser	at	
a	buffet

– A	PEZ	dispenser
– Your	e-mail	inbox

• Stacks	are	LIFO
– Newest	item	at	top
– Oldest	item	at	bottom

(pop)(push)

Stack

Top
item

14

Stack	Operations
• What	member	functions	does	a	Stack	

have?
– push(item)	– Add	an	item	to	the	top	of	the	

Stack
– pop()	- Remove	the	top	item	from	the	

Stack
– top()	- Get	a	reference	to	the	top	item	on	

the	Stack	(don't	remove	it	though!)
– size()	- Get	the	number	of	items	in	the	

Stack

• What	member	data	does	a	Stack	have?
– A	list	of	items
– Top/Last	Item	Pointer/Index

(pop)(push)

Stack

Top
item

Top/Last
Item

15

A	Stack	Class
• A	sample	class	interface	for	a	Stack
• How	should	you	implement	a	Stack?

– Back	it	with	an	array
– Back	it	with	a	vector
– Back	it	with	a	linked	list
– Inherit	from	linked	list
– Which	is	best?

• Stack	Error	Conditions
– Stack	Underflow	– The	name	for	the	

condition	where	you	call	pop	on	an	
empty	Stack

– Stack	Overflow	– The	name	for	the	
condition	where	you	call	push	on	a	
full	Stack	(a	stack	that	can't	grow	any	
more)

#ifndef STACKINT_H
#define STACKINT_H

class StackInt {
public:
StackInt();
~StackInt();
int size() const;
bool empty() const;
void push(const int& value);
void pop();
int const & top() const;

};
#endif

16

Array	Based	Stack
• A	sample	class	interface	for	a	Stack
• If	using	an	array	list,	which	end	should	

you	use	as	the	"top"?
– Front	or	back?

• If	using	a	linked	list,	which	end	
should	you	use?
– If	you	just	use	a	head	pointer	only?
– If	you	have	a	head	and	tail	pointer?

#ifndef STACKINT_H
#define STACKINT_H

class StackInt {
public:
StackInt();
~StackInt();
int size() const;
bool empty() const;
void push(const int& value);
void pop();
int const& top() const;

private:
AListInt mylist_;
// or LListInt mylist_;

};
#endif

17

Stack	Examples

• Reverse	a	string
#include <iostream>
#include <string>
#include "stack.h"
using namespace std;
int main()
{

StackChar s;

string word;
cout << "Enter a word: ";
getline(cin,word);

for(int i=0; i < word.size(); i++)
s.push(word.at(i));

while(!s.empty()){
cout << s.top();
s.pop();

}
}

Type in: "hello"
Output: "olleh"

18

Another	Stack	Example
• Depth	First	Search	(See	

Graph	Traversals	later	in	
this	semester)

• Use	a	stack	whenever	you	
encounter	a	decision,	just	
pick	and	push	decision	
onto	stack.		If	you	hit	a	
dead	end	pop	off	last	
decision	(retrace	steps)	
and	keep	trying,	etc.
– Strait	or	Left

• Choose	straight…dead	end
• Pop	straight	and	make	next	
choice…left

– Straight	or	Right…etc.

http://www.pbs.org/wgbh/nova/einstein/images/lrk-maze.gif

19

Stack	Usage	Example
• Check	whether	an	expression	is	properly	

parenthesized	with	'(',	'[',	'{',	'}',	']',	')'
– Correct:		(7	*	[8	+	[9/{5-2}]])
– Incorrect:		(7*8
– Incorrect:		(7*8]

• Note:	The	last	parentheses	started	should	be	the	
first	one	completed

• Approach
– Scan	character	by	character	of	the	expression	

string
– Each	time	you	hit	an	open-paren:	'(',	'[',	'{'	push it	

on	the	stack	
– When	you	encounter	a	')',	']',	'}'	the	top character	

on	the	stack	should	be	the	matching	opening	
paren type,	otherwise	ERROR!

(
[
[
{

(7 * [8 + [9/{5-2}]])
([[{ }]])

(7 * [4 + 2 + 3])

(
7

[
4
+
2
+
33

5
9

*

(
7

9
*

9
63

63

20

DEQUE ADT
Double-ended	Queues

21

The	Deque ADT

• Double-ended	queues
• Equally	good	at	pushing	and	popping	on	either	
end

(push_back)(push_front)

(pop_front)
(pop_back)

22

STL	Deque Class
• Similar	to	vector	but	allows	for	

push_front()	and	pop_front()	
options

• Useful	when	we	want	to	put	
things	in	one	end	of	the	list	and	
take	them	out	of	the	other

#include <iostream>
#include <deque>

using namespace std;

int main()
{

deque<int> my_deq;
for(int i=0; i < 5; i++){

my_deq.push_back(i+50);
}
cout << “At index 2 is: “ << my_deq[2] ;
cout << endl;

for(int i=0; i < 5; i++){
int x = my_deq.front();
my_deq.push_back(x+10);
my_deq.pop_front();

}
while(! my_deq.empty()){

cout << my_deq.front() << “ “;
my_deq.pop_front();

}
cout << endl;

}

my_deq 51

1
52 53 54 60

0 1 2 3 4

my_deq 50 51 52 53 54

0 1 2 3 4

my_deq 60 61 62 63 64

0 1 2 3 4

2
3
4

1

2
3

4

my_deq

after 1st iteration

after all iterations

23

STL	Vector	vs.	Deque
• std::vector	is	essentially	a	Dynamic	Array	List

– Slow	at	removing	and	inserting	at	the	front	or	middle
– Fast	at	adding/remove	from	the	back
– Implies	it	could	be	used	well	as	a	(stack	/	queue)

• std::deque gives	fast	insertion	and	removal	from	
front	and	back	along	with	fast	random	access	(i.e.	
at(i))
– Almost	has	"look	and	feel"	of	linked	list	with	head	and	tail	
pointers	providing	fast	addition/removal	from	either	end

– Implies	it	could	be	used	well	as	a	(stack	/	queue)
– Practically	it	is	likely	implemented	as	a	circular	array	buffer

24

Circular	Buffers
• Take	an	array	but	imagine	it	wrapping	into	

a	circle	to	implement	a	deque
• Setup	a	head	and	tail	pointer

– Head	points	at	first	occupied	item,	tail	at	
first	free	location

– Push_front()	and	pop_front()	update	the	
head	pointer

– Push_back()	and	pop_back()	update	the	
tail	pointer

• To	overcome	discontinuity	from	index	0	to	
MAX-1,	use	modulo	operation

– Index	=	7;		Index++	should	cause	index	=	0
– index	=	(index	+	1)%MAX
– Index	=	0;	Index-- should	cause	index	=	7
– if(--index	<	0)	index	=	MAX-1;

• Get	item	at	index	i
– It's	relative	to	the	head	pointer
– Return	item	at	(head	+	i)%MAX

7
6 5

4

3
21

0

head

tail

0 1 2 3 4 5 6 7

7
6 5

4

3
21

0

head

tail

7
6 5

4

3
21

0

head

3.) Push_front()

size=2 size=3

1.) Push_back()
2.) Push_back()

tail

