
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp and	David	Kempe

2

http://i.imgur.com/Q0vFcHd.png

3

Files	for	Today

• $	mkdir inh
• $	cd	inh
• $	wget http://ee.usc.edu/~redekopp/cs104/inh.tar
• $	tar	xvf inh.tar
• $	make

4

CONSTRUCTOR	INITIALIZATION	
LISTS	(REVIEW)

5

Consider	this	Struct/Class
• Examine	this	struct/class	definition…	
#include <string>
#include <vector>
using namespace std;

struct Student
{

string name;
int id;
vector<double> scores;
// say I want 10 test scores per student

};

int main()
{

Student s1;
}

string name

int id

scores

6

Composite	Objects
• Fun	Fact:		Memory	for	an	object	comes	alive	before	the	code	

for	the	constructor	starts	at	the	first	curly	brace	'{'
#include <string>
#include <vector>
using namespace std;

struct Student
{

string name;
int id;
vector<double> scores;
// say I want 10 test scores per student

Student() /* mem allocated here */
{
// Can I do this to init. members?
name("Tommy Trojan");
id = 12313;
scores(10);

}
};

int main()
{

Student s1;
}

string name

int id

scoresThis would be
"constructing"
name twice. It's

too late to do it in
the {…}

7

Composite	Objects
• You	cannot	call	constructors	on	data	members	once	the	

constructor	has	started	(i.e.	passed	the	open	curly	'{')
– So	what	can	we	do???		Use	assignment	operators	(less	efficient)	or	use	

constructor	initialization	lists!
#include <string>
#include <vector>
using namespace std;

struct Student
{

string name;
int id;
vector<double> scores;
// say I want 10 test scores per student

Student() /* mem allocated here */
{
// Can I do this to init. members?
name = "Tommy Trojan";
id = 12313;
scores = 10;

}
};
int main()
{

Student s1;
}

string name

int id

scores

8

Constructor	Initialization	Lists

• Though	you	do	not	see	it,	realize	that	the	default	
constructors	are	implicitly	called	for	each	data	
member	before	entering	the	{…}

• You	can	then	assign	values	but	this	is	a	2-step
process

Student::Student()
{

name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

Student::Student() :
name(), id(), scores()
// calls to default constructors

{
name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

If you write this… The compiler will still generate this.

9

Constructor	Initialization	Lists

• Rather	than	writing	many	assignment	statements	
we	can	use	a	special	initialization	list	technique	
for	C++	constructors
– Constructor(param_list)	:member1(param/val),	…,	memberN(param/val)	

{	…	}

• We	are	really	calling	the	respective	constructors	
for	each	data	member

Student:: Student() /* mem allocated here */
{
name("Tommy Trojan");
id = 12313;
scores(10);

}

Student::Student() :
name("Tommy"), id(12313), scores(10)

{ }

You can't call member
constructors in the {…}

You would have to call the member
constructors in the initialization list context

10

Constructor	Initialization	Lists

• You	can	still	assign	values	(which	triggers	
operator=)	in	the	constructor	but	realize	that	the	
default	constructors	will	have	been	called	already

• So	generally	if	you	know	what	value	you	want	to	
assign	a	data	member	it's	good	practice	to	do	it	
in	the	initialization	list	to	avoid	the	extra	time	of	
the	default	constructor	executing

Student::Student()
{

name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

Student::Student() :
name(), id(), scores()
// calls to default constructors

{
name = "Tommy Trojan";
id = 12313
scores.resize(10);

}

You can still assign data
members in the {…}

But any member not in the initialization list will
have its default constructor invoked before the

{…}

11

Constructor	Initialization	Lists
Person::Person() { }
Person::Person(string myname)
{ name_ = myname;

id_ = -1;
}
Person::Person(string myname, int myid)
{ name_ = myname;

id_ = myid;
}
...

Person::Person() { }
Person::Person(string myname) :

name_(myname), id_(-1)
{ }
Person::Person(string myname, int myid) :

name_(myname), id_(myid)
{ }
...

Initialization using
assignment

Initialization List
approach

string name_

int id_

name_ = myname

id_ = myid

Memory is
allocated

before the '{' …

…then values
copied in when

assignment
performed

name_ = myname

id_ = myid

Memory is
allocated and
filled in "one-

step"

String Copy Constructor
Called

String Operator=() Called

12

INHERITANCE

13

Object	Oriented	Design

• Encapsulation
– Combine	data	and	operations	on	that	data	into	a	
single	unit	(e.g.	a	class	w/	public	and	private	
aspects)

• Inheritance
– Creating	new	objects	(classes)	from	existing	ones

• Polymorphism
– Using	the	same	expression	to	denote	different	
operations

14

Inheritance
• A	way	of	defining	interfaces,	re-using	classes	and	
extending	original	functionality

• Allows	a	new	class	to	inherit	all	the	data	members	and	
member	functions	from	a	previously	defined	class

• Works	from	more	general	
objects	to	more	specific	objects
– Defines	an	“is-a”	relationship
– Square	is-a	rectangle is-a	shape
– Square	inherits	from	Rectangle	which
inherits	from	Shape

– Similar	to	classification	of	organisms:	
• Animal	->	Vertebrate	->	Mammals	->	Primates

base
child

grandchild

15

Base	and	Derived	Classes
• Derived	classes	inherit	
all	data	members	and	
functions	of	base	class

• Student	class	inherits:
– get_name()	and	get_id()	
– name_	and	id_	member	
variables

class Person {
public:
Person(string n, int ident);
string get_name();
int get_id();

private:
string name_; int id_;

};
class Student : public Person {
public:
Student(string n, int ident, int mjr);
int get_major();
double get_gpa();
void set_gpa(double new_gpa);

private:
int major_; double gpa_;

};

int main()
{

Student s1("Tommy", 1, 9);
// Student has Person functionality
// as if it was written as part of
// Student
cout << s1.get_name() << endl;

}

Class Person
string name_

int id_

string name_

int id_

int major_

double gpa_

Class Student

16

Inheritance	Example
• Component

– Draw()
– onClick()

• Window
– Minimize()
– Maximize()

• ListBox
– Get_Selection()

• ScrollBox
– onScroll()

• DropDownBox
– onDropDown()

Component

Window ListBox

ScrollBox DropDown
Box

Inheritance Diagrams
(arrows shown base

to derived class
relationships)

17

Constructors	and	Inheritance
• How	do	we	initialize	base	

class	data	members?
• Can't	assign		base	class	

members	if	they	are	
private

class Person {
public:
Person(string n, int ident);
...

private:
string name_;
int id_;

};
class Student : public Person {
public:
Student(string n, int ident, int mjr);
...

private:
int major_;
double gpa_;

};

Student::Student(string n, int ident, int mjr)
{

name_ = n; // can't access name_ in Student
id_ = ident;
major_ = mjr;

}

18

Constructors	and	Inheritance
• Constructors	are	only	called	when	

a	variable	‘enters	scope’	(i.e.	is	
created)	and	cannot	be	called	
directly
– How	to	deal	with	base	

constructors?
• Also	want/need	base	class	or	

other	members	to	be	initialized	
before	we	perform	this	object's	
constructor	code

• Use	initializer	format	instead
– See	example	below

class Person {
public:
Person(string n, int ident);
...

private:
string name_;
int id_;

};
class Student : public Person {
public:
Student(string n, int ident, int mjr);
...

private:
int major_;
double gpa_;

};

Student::Student(string n, int ident, int mjr)
{

// How to initialize Base class members?
Person(n, ident); // No! can’t call Construc.

// as a function
}

Student::Student(string n, int ident, int mjr) : Person(n, ident)
{

cout << "Constructing student: " << name_ << endl;
major_ = mjr; gpa_ = 0.0;

}

19

Constructors	&	Destructors
• Constructors

– A	Derived	class	will	automatically	call	its	Base	class	
constructor	BEFORE it's	own	constructor	executes,	
either:
• Explicitly	calling	a	specified	base	class	constructor	in	the	

initialization	list
• Implicitly	calling	the	default	base	class	constructor	if	no	

base	class	constructor	is	called	in	the	initialization	list

• Destructors
– The	derived	class	will	call	the	Base	class	destructor	

automatically	AFTER it's	own	destructor	executes
• General	idea

– Constructors	get	called	from	base->derived	(smaller	to	
larger)

– Destructors	get	called	from	derived->base	(larger	to	
smaller)

base
child

grandchild

base
child

grandchild

Constructor call ordering

Destructor call ordering

20

Constructor	&	Destructor	Ordering
class A {

int a;
public:

A() { a=0; cout << "A:" << a << endl; }
~A() { cout << "~A" << endl; }
A(int mya) { a = mya;

cout << "A:" << a << endl; }
};

class B : public A {
int b;

public:
B() { b = 0; cout << "B:" << b << endl; }
~B() { cout << "~B "; }
B(int myb) { b = myb;

cout << "B:" << b << endl; }
};

class C : public B {
int c;

public:
C() { c = 0; cout << "C:" << c << endl; }
~C() { cout << "~C "; }
C(int myb, int myc) : B(myb) {

c = myc;
cout << "C:" << c << endl; }

};

int main()
{

cout << "Allocating a B object" << endl;
B b1;
cout << "Allocating 1st C object" << endl;
C* c1 = new C;
cout << "Allocating 2nd C object" << endl;
C c2(4,5);
cout << "Deleting c1 object" << endl;
delete c1;
cout << "Quitting" << endl;
return 0;

}

Allocating a B object
A:0
B:0
Allocating 1st C object
A:0
B:0
C:0
Allocating 2nd C object
A:0
B:4
C:5
Deleting c1 object
~C ~B ~A
Quitting
~C ~B ~A
~B ~A Output

Test Program

Sample Classes

21

Protected	Members
• Private	members	of	a	base	

class	can	not	be	accessed	
directly	by	a	derived	class	
member	function
– Code	for	print_grade_report()	

would	not	compile	since	‘name_’	is	
private	to	class	Person

• Base	class	can	declare	
variables	with	protected
storage	class
– Private	to	anyone	not	inheriting	

from	the	base
– Derived	classes	can	access	directly

void Student::print_grade_report()
{

cout << “Student “ << name_ << ...
}

class Person {
public:
...

private:
string name_; int id_;

};

class Student : public Person {
public:

void print_grade_report();
private:

int major_; double gpa_;
};

X

class Person {
public:
...

protected:
string name_; int id_;

};

22

Public/Private/Protected	Access
• Derived	class	sees	base	class	members	

using	the	base	class'	specification	
– If	Base	class	said	it	was	public or	protected,	

the	derived	class	can access	it	directly
– If	Base	class	said	it	was	private,	the	derived	

class	cannot access	it	directly

• public/private	identifier	before	base	
class	indicates	HOW	the	public	base	
class	members	are	viewed	by	clients	
(those	outside)	of	the	derived	class
– public	=>	public	base	class	members	are	

public	to	clients	(others	can	access)
– private	=>	public	&	protected	base	class	

members	are	private	to	clients	(not	
accessible	to	the	outside	world)

class Student : public Person {
public:
Student(string n, int ident, int mjr);
int get_major();
double get_gpa();
void set_gpa(double new_gpa);

private:
int major_; double gpa_;

};
class Faculty : private Person {
public:
Faculty(string n, int ident, bool tnr);
bool get_tenure();

private:
bool tenure_;

};

Base Class

class Person {
public:
Person(string n, int ident);
string get_name();
int get_id();

private: // INACCESSIBLE TO DERIVED
string name_; int id_;

};

Derived Classes

23

Inheritance	Access	Summary
• Base	class

– Declare	as	protected	if	you	want	to	
allow	a	member	to	be	directly	
accessed/modified	by	derived	classes

• Derive	as	public	if…
– You	want	users	of	your	derived	class	to	be	

able	to	call	base	class	functions/methods

• Derive	as	private	if…
– You	only	want	your	internal	workings	to	call	

base	class	functions/methods

Inherited
Base

Public Protected Private

Public Public Protected Private

Protected Protected Protected Private

Private Private Private Private

External client access to Base class members
is always the more restrictive of either the base

declaration or inheritance level

int main(){
Student s1("Tommy", 73412, 1);
Faculty f1("Mark", 53201, 2);
cout << s1.get_name() << endl; // works
cout << f1.get_name() << endl; // fails

}

class Student : public Person {
public:
Student(string n, int ident, int mjr);
int get_major();
double get_gpa();
void set_gpa(double new_gpa);

private:
int major_; double gpa_;

};
class Faculty : private Person {
public:
Faculty(string n, int ident, bool tnr);
bool get_tenure();

private:
bool tenure_;

};

class Person {
public:
Person(string n, int ident);
string get_name();
int get_id();

private: // INACCESSIBLE TO DERIVED
string name_; int id_;

}; Base Class

24

When	to	Inherit	Privately
• Suppose	I	want	to	create	a	FIFO	(First-

in,	First-Out)	data	structure	where	you	
can	only	
– Push	in	the	back	
– Pop	from	the	front

• FIFO	is-a	special	List
• Do	I	want	to	inherit	publicly	from	List
• NO!!!		Because	now	the	outside	user	

can	call	the	base	List	functions	and	
break	my	FIFO	order

• Inherit	privately	to	hide	the	base	class	
public	function	and	make	users	go	
through	the	derived	class'	interface
– Private	inheritance	defines	an	"as-a"	

relationship

class FIFO : public List // or private List
{ public:

FIFO();
push_back(const int& val)

{ insert(size(), val); }
int& front();

{ return get(0); }
void pop_front();

{ pop(0); }
};

Base Class

class List{
public:
List();
void insert(int loc, const int& val);
int size();
int& get(int loc);
void pop(int loc;)

private:
IntItem* _head;

};

Derived Class

FIFO f1;
f1.push_back(7); f1.push_back(8);
f1.insert(0,9)

25

class Car{
public:
double compute_mpg();

private:
string make; string model;

};

double Car::compute_mpg()
{

if(speed > 55) return 30.0;
else return 20.0;

}

class Hybrid : public Car {
public:
void drive_w_battery();
double compute_mpg();

private:
string batteryType;

};

double Hybrid::compute_mpg()
{

if(speed <= 15) return 45; // hybrid mode
else if(speed > 55) return 30.0;
else return 20.0;

}

Overloading	Base	Functions
• A	derived	class	may	want	to	

redefined	the	behavior	of	a	
member	function	of	the	
base	class

• A	base	member	function	can	
be	overloaded	in	the	derived	
class

• When	derived	objects	call	
that	function	the	derived	
version	will	be	executed

• When	a	base	object	call	that	
function	the	base	version	
will	be	executed

Class Car
string make

string model

string make

string model

string battery

Class Hybrid

26

Scoping	Base	Functions
• We	can	still	call	the	base	function	

version	by	using	the	scope	operator	
(::)
– base_class_name::function_name()

class Car{
public:
double compute_mpg();

private:
string make; string model;

};

class Hybrid : public Car {
public:
double compute_mpg();

private:
string batteryType;

};

double Car::compute_mpg()
{

if(speed > 55) return 30.0;
else return 20.0;

}

double Hybrid::compute_mpg()
{

if(speed <= 15) return 45; // hybrid mode
else return Car::compute_mpg();

}

27

Inheritance	vs.	Composition
• Software	engineers	debate	about	

using	inheritance	(is-a) vs.	
composition	(has-a)

• Rather	than	a	Hybrid	“is-a”	Car	we	
might	say	Hybrid	“has-a”	car	in	it,	
plus	other	stuff
– See	other	examples	in	the	Lists,	Queues	

and	Stacks	slides

• While	it	might	not	make	complete	
sense	verbally,	we	could	re-factor	
our	code	the	following	ways…

• Interesting	article	I’d	recommend	
you	read	at	least	once:
– http://berniesumption.com/software/inh

eritance-is-evil-and-must-be-destroyed/

class Car{
public:
double compute_mpg();

public:
string make; string model;

};

double Car::compute_mpg()
{

if(speed > 55) return 30.0;
else return 20.0;

}

class Hybrid {
public:
double compute_mpg();

private:
Car c_; // has-a relationship
string batteryType;

};

double Hybrid::compute_mpg()
{

if(speed <= 15) return 45; // hybrid mode
else return c_.compute_mpg();

}

Class Car
string make

string model

string c_.make

string c_.model

string battery

Class Hybrid

28

Another	Composition
• We	can	create	a	FIFO	that	"has-a"	a	List	

as	the	underlying	structure
• Summary:

– Public	Inheritance	=>	"is-a"	relationship
– Composition	=>	"has-a"	relationship
– Private	Inheritance	=>	"as-a"	relationship

"implemented-as"

class FIFO
{ private:

List mylist;
public:
FIFO();
push_back(const int& val)
{ mylist.insert(size(), val); }

int& front();
{ return mylist.get(0); }

void pop_front();
{ mylist.pop(0); }

int size() // need to create wrapper
{ return mylist.size(); }

};

Base Class

class List{
public:
List();
void insert(int loc, const int& val);
int size();
int& get(int loc);
void pop(int loc;)

private:
IntItem* _head;

};

FIFO via Composition

