CSCI 104

Rafael Ferreira da Silva

rafsilva@isi.edu

Slides adapted from: Mark Redekopp and David Kempe

What OOP users claim

oAnimal

brain = true;

legs = 0;
oHuman :-', %
legs = 2; <

oPet
legs = 4;
fleas = 0;

USC Viterbi 2

School of Engineering

What actually happens

Throw (| public sta?ic)
AbstractObjectPatternContainer
Exceptioncatcher \ ‘:
{
! \

oAnimal
brain = trye;
Legdable

AbstractInterfaceFactory

T Q 0 public n ount () ;
J? b FZ&able
— ublic fint getFleaCount() ;
Pe -
legs = 4; row(..
fleas =_Q

\ \ e
-)) SN/
%{ el "}\\" public static
U ‘“ (RN, AbstractobjectPatternContain
,{I‘[S’ =g\3ctory

' 2

'
Ex{ernal Logging Framework

http://i.imgur.com/QOvFcHd.png

Files for Today

S mkdir inh

S cd inh

S wget http://ee.usc.edu/~redekopp/cs104/inh.tar
S tar xvf inh.tar

S make

School of Engineering

CONSTRUCTOR INITIALIZATION
LISTS (REVIEW)

Consider this Struct/Class

* Examine this struct/class definition...

#include <string>
#include <vector>
using namespace std;

struct Student
{

string name;
int id;
vector<double> scores;
// say I want 10 test scores per student

¥

int main ()
{

Student sl1;
}

string name

int id

SCores

— ()5 Viterbi
Composite Objects

* Fun Fact: Memory for an object comes alive before the code
for the constructor starts at the first curly brace '{'

#include <string>
#include <vector>
using namespace std;

struct Student
{
string name;
int id;
vector<double> scores;

string name
// say I want 10 test scores per student

int id

Student () /* mem allocated here */
{ This would be SCICREE

// Can I do this to init. members? "constructing”

r'lsz (12?? frojant) s =T name twice. It's

e ’ too late to do it in

scores (10) ;
} the {...}

I 5

int main ()

{
Student sl1;

}

— ()5 Viterbi
Composite Objects

 You cannot call constructors on data members once the
constructor has started (i.e. passed the open curly {')

— So what can we do??? Use assignment operators (less efficient) or use
constructor initialization lists!

#include <string>
#include <vector>
using namespace std;

struct Student
{ string name
string name;
int id;
vector<double> scores;

int id

scores
// say I want 10 test scores per student

Student () /* mem allocated here */

{
// Can I do this to init. members-?

name = "Tommy Trojan";
id = 12313;
scores = 10;

}
}i
int main ()
{
Student sl1;

}

S — : USCViterbi .
Constructor Initialization Lists~

Student::Student () Student::Student () :
{ name (), id(), scores()
name = "Tommy Trojan"; // calls to default constructors

id = 12313 {
scores.resize (10); name = "Tommy Trojan";
} id = 12313

scores.resize (10);

}

If you write this... The compiler will still generate this.

 Though you do not see it, realize that the default
constructors are implicitly called for each data
member before entering the {...}

* You can then assign values but this is a 2-step
process

e e : .USCViterbi @
Constructor Initialization Lists =

Student:: Student() /* mem allocated here */ Student::Student () :

{

}

name ("Tommy") , id(12313), scores(10)

name ("Tommy Trojan") ; { 1}
id = 12313;
scores (10) ;

You can't call member You would have to call the member
constructors in the {...} constructors in the initialization list context

Rather than writing many assighment statements
we can use a special initialization list technique
for C++ constructors

— Constructor(param_list) : memberl(param/val), ..., memberN(param/val)

{..}

 We are really calling the respective constructors

for each data member

USC Viterbi

Constructor Initialization Lists™

Student: :Student ()
{

name = "Tommy Trojan";
id = 12313
scores.resize (10);

}

=)

Student::Student () :
name (), id(), scores()
// calls to default constructors
{
name = "Tommy Trojan";
id = 12313
scores.resize (10);

}

You can still assign data
members in the {...}

But any member not in the initialization list will
have its default constructor invoked before the

{.}

* You can still assign values (which triggers
operator=) in the constructor but realize that the
default constructors will have been called already

* So generally if you know what value you want to
assign a data member it's good practice to do it
in the initialization list to avoid the extra time of
the default constructor executing

_ USCVlterbl @
Constructor Initialization Lists™ ™

Person::Person() { }
ferson::fersingsFrlng myname) string name “nennoryis
?Zme; :;fly Sy — allocated
L ’ nt o before the '{' ...
Person: :Person(string myname, int myid) —|
{ name = myname;—-———____________‘-__~‘_
el = myidy I ...then values
} name = myname . .
= copied in when
i id = myid assignment
String Operator=() Called = 9
performed
Initialization using
assignment
Person::Person() { } Memory is

Person: :Person (string myname) : name = myname allocated and
name_ (myname), id_(-1) id = myid filled in "one-
{ 1} . step”

Person: :Person(string myname, int myid)
name (myname), id (myid)

L \

String Copy Constructor
Called

Initialization List
approach

School of Engineering

INHERITANCE

Object Oriented Design

* Encapsulation

— Combine data and operations on that data into a
single unit (e.g. a class w/ public and private
aspects)

* Inheritance
— Creating new objects (classes) from existing ones
* Polymorphism

— Using the same expression to denote different
operations

Inheritance

* A way of defining interfaces, re-using classes and
extending original functionality

* Allows a new class to inherit all the data members and
member functions from a previously defined class

* Works from more general
objects to more specific objects

— Defines an “is-a” relationship

— Square is-a rectangle is-a shape

— Square inherits from Rectangle which
inherits from Shape

Coase)

child
— Similar to classification of organisms:

* Animal -> Vertebrate -> Mammals -> Primates

grandchild

] USCV1terb1®
Base and Derived Classes

e Derived classes inherit |5 =

Person(string n, int ident);
all data members and string get name();
int get id();

o private:
functions of base class acring name s it id
. . class Student : public Person {
e Student class inherits: | pooric::
Student (string n, 1nt ident, 1nt mjr);
int get major();

— get_name() and get_id() S —
void set gpa(double new gpa);
— name_and id_member private:
- - int major ; double gpa ;
variables }i
int main ()
Class Person Class Student {
Student sl ("Tommy", 1, 9);
string name_ string name_ // Student has Person functionality
. . . . // as if it was written as part of
int id int id // Student
int major cout << sl.get name() << endl;

double gpa }

Inheritance Example

Component

— Draw()
— onClick()

Window

— Minimize()

— Maximize()
ListBox

— Get_Selection()

ScrollBox

— onScroll()

DropDownBox

— onDropDown()

Inheritance Diagrams

Component (arrows shown base
to derived class
relationships)
Window ListBox
ScrollBox DropDown
Box
Y Open: m : : 'v_
red - cak D
blue cmd
= explorer
green \fabrikaen
yel low httpJ/ fwww. microsoft.com
orange ot
o g
white - I— eyt deshare

i, IS(™Viterbi o

School of Engineering

Constructors and Inheritance

class Person {

* How do we initialize base |:..
class data members? Person(string n, int ident);

. private:
* Can't assign base class string name_;
int id ;
members if they are }i
. class Student : public Person {
private public:

Student (string n, int ident, int mjr);

private:
int major ;
double gpa ;
i

Student::Student (string n, int ident, int mjr)

{
name = n; // can't access name in Student
id = ident;
major = mjr;

}

i, IS(™Viterbi

School of Engineering

Constructors and Inheritance

* Constructors are only called when [.- oo 0.
a variable ‘enters scope’ (i.e. is SERILENEHE | o
Person(string n, int ident);
created) and cannot be called
d- tl private:
irec y string name ;
— How to deal with base }_l“t R
constructors? class Student : public Person {
public:
* Also want/need base class or Stmcent (stelng m, fwc fdemc, dat moe) s
other members to be initialized orivate:
before we perform this object's it eSS ;
double gpa ;
constructor code } s
® Use initializer format instead ?tudent: :Student (string n, int ident, int mjr)
— See examp|e below // How to initialize Base class members?
Person(n, ident); // No! can’t call Construc.
// as a function
}
Student::Student (string n, int ident, int mjr) : Person(n, ident)
{
cout << "Constructing student: " << name << endl;
major = mjr; gpa = 0.0;
}

i, IS(™Viterbi

School of Engineering

Constructors & Destructors

e Constructors

— A Derived class will automatically call its Base class

constructor BEFORE it's own constructor executes,
either:

* Explicitly calling a specified base class constructor in the
initialization list

grandchild
* Implicitly calling the default base class constructor if no

base class constructor is called in the initialization list

Constructor call ordering
* Destructors

— The derived class will call the Base class destructor
automatically AFTER it's own destructor executes

e General idea

— Constructors get called from base->derived (smaller to @
larger)

— Destructors get called from derived->base (larger to
smaller) grandchild

Destructor call ordering

i, IS(™Viterbi

School of Engineering

Constructor & Destructor Ordering

class A { int main ()
int a; {
public: cout << "Allocating a B object" << endl;
A() { a=0; cout << "A:" << a << endl; } B bl;
~A() { cout << "~A" << endl; } cout << "Allocating 1lst C object" << endl;
A(int mya) { a = mya; C* cl = new C;
cout << "A:" << a << endl; } cout << "Allocating 2nd C object" << endl;
}; C c2(4,5);
cout << "Deleting cl object" << endl;
class B : public A { delete cl;
int b; cout << "Quitting" << endl;
public: return 0;
B() { b =0; cout << "B:" << b << endl; } } TeStProgran1
~B() { cout << "~B "; }
B(int myb) { b = myb; Allocating a B object
cout << "B:" << b << endl; } A:0
b g B:0
Allocating 1lst C object
class C : public B { A:0
1n? o7 Sl grandchild
public: C:0
C() { c¢c =0; cout << "C:" << ¢ << endl; } Allocating 2nd C object Constructor call ordering
~C() { cout <K "~C "; } A:0
C(int myb, int myc) : B(myb) { B:4
cC = myc; C:5
cout << "C:" << ¢ << endl; } Deleting cl object @
b7 ~C ~B ~A
Sample Classes %zlfglfi grandchild
~B ~A OUtPUt Destructor call ordering

i, IS(™Viterbi)

School of Engineering

Protected Members

Private members of a base
class can not be accessed
directly by a derived class
member function

— Code for print_grade_report()
would not compile since ‘name_’ is
private to class Person

Base class can declare
variables with protected
storage class

— Private to anyone not inheriting
from the base

— Derived classes can access directly

class Person {
public:

private:
string name ; int id ;

I 5

class Student
public:

void print grade report();
private:

int major ; double gpa ;

: public Person {

I §

void Student::print grade report ()

{
cout << “Student “

}

<< name << ...

X

class Person {
public:

protected:
string name ; int id ;

I 5

i, IS(™Viterbi 2

School of Engineering

Public/Private/Protected Access

* Derived class sees base class members C;i;jii‘?“o“ {
using the base class' specification Person(string n, int ident);
string get name();
— If Base class said it was public or protected, int get id();
the derived class can access it directly private: // INACCESSIBLE TO DERIVED
o . . string name ; int id ;
— If Base class said it was private, the derived I
class cannot access it directly Base Class
* public/private identifier before base
. .) class Student : public Person {
class indicates HOW the public base public:
class members are viewed by clients Student(string my Ant fdent, At i)
- - int get major();
(those outside) of the derived class double get gpa();

void set gpa(double new gpa);
— public => public base class members are private:

i i int] ; doubl g
public to clients (others can access) }.l“ major_j double gpa_

— private => public & protected base class | | c1ass Faculty : private Person ({

. . public:
members are private to clients (not Faculty(string n, int ident, bool tnr);
accessible to the outside world) bool get tenure();
private:

bool tenure ;

I 5

Derived Classes

R, IS(Viterbi «

Inheritance Access Summary~

e Base class

— Declare as protected if you want to
allow a member to be directly
accessed/modified by derived classes

e Derive as publicif...

— You want users of your derived class to be
able to call base class functions/methods

e Derive as private if...

— You only want your internal workings to call
base class functions/methods

Inherited Protected
Base

Public Protected Private

Protected Protected Protected Private
m Private Private Private

External client access to Base class members
is always the more restrictive of either the base

declaration or inheritance level

class Person {

public:
Person(string n, int ident);
string get name();
int get id();

private: // INACCESSIBLE TO DERIVED
string name ; int id ;

Vs Base Class

class Student : public Person ({
public:
Student (string n, int ident, int mjr);
int get major();
double get gpal();
void set gpa(double new gpa);
private:
int major ; double gpa ;
}i
class Faculty
public:
Faculty(string n, int ident, bool tnr);
bool get tenure();
private:
bool tenure ;

: private Person ({

I 5

int main () {
Student sl ("Tommy", 73412, 1);
Faculty f1("Mark", 53201, 2);
cout << sl.get name() << endl; // works
cout << fl.get name() << endl; // fails

e — 5 iterbi
When to Inherit Privately

class List({
public:

* Suppose | want to create a FIFO (First- List () ;
in, First-Out) data structure where you | 10/° ‘hecstiont foc, const mnbe valy
can on|y int& get (int loc);
) void pop (int loc;)
— Push in the back private:
IntItem* head;
— Pop from the front v
* FIFO is-a special List
. . . . Base Class
Dol wantto inherit publicly from List
. class FIFO : public List // or private List
* NO!!l Because now the outside user { public:
can call the base List functions and BIEBOL) § |
push back(const int& val)
break my FIFO order { insert(size(), val); }
. . . int& front (),
* Inherit privately to hide the base class { return get(0);)
. . void pop front();
public function and make users go { pop (0);]
through the derived class' interface b
— Private inheritance defines an "as-a" Derived Class
relationship
FIFO f1;

fl.push back(7); fl.push back(8);
fl.insert (0,9)

i, IS(™Viterbi -«

School of Engineering

Overloading Base Functions

A derived class may want to
redefined the behavior of a
member function of the
base class

A base member function can
be overloaded in the derived
class

When derived objects call
that function the derived
version will be executed

When a base object call that
function the base version
will be executed

class Car({
public:

double compute mpg() ;
private:

string make; string model;

I 5

double Car::compute mpg ()

{
if (speed > 55) return 30.0;
else return 20.0;

}

class Hybrid :
public:
void drive w battery();
double compute mpg() ;
private:
string batteryType;
i

double Hybrid::compute mpg ()
{

public Car {

string make

string model

m

string make

string model

string battery

if (speed <= 15) return 45; // hybrid mode
else if (speed > 55) return 30.0;

else return 20.0;

}

i, IS(™Viterbi

School of Engineering

Scoping Base Functions

We can still call the base function
version by using the scope operator

(::)

— Dbase class name::function name ()

class Car/{
public:
double compute mpg() ;
private:
string make; string model;

I 5

class Hybrid
public:
double compute mpg() ;
private:
string batteryType;

: public Car

I 5

double Car::compute mpg ()

{
if (speed > 55) return 30.0;
else return 20.0;

}

double Hybrid:
{

:compute mpg ()

if (speed <= 15) return 45; // hybrid mode
else return Car::compute mpg();

i, IS(™Viterbi €

Inheritance vs. Composition

» Software engineers debate about
using inheritance (is-a) vs.
composition (has-a)

e Rather than a Hybrid “is-a” Car we
might say Hybrid “has-a” car init,
plus other stuff

— See other examples in the Lists, Queues
and Stacks slides

* While it might not make complete
sense verbally, we could re-factor
our code the following ways...

* Interesting article I'd recommend
you read at least once:

— http://berniesumption.com/software/inh

School of Engineering

eritance-is-evil-and-must-be-destroyed/

class Car({

public:
double compute mpg() ; Class Car
public:

string make
string make; string model;

}: string model

double Car::compute mpg ()

{
if (speed > 55) return 30.0;
else return 20.0;

}

m

class Hybrid {

public: string c¢_.make
double compute mpg() ;

private: a string c_.model
Car c¢_; // has-a relationship :
string batteryType; SIEELRGET [EEeEy

I 5

double Hybrid:
{
if (speed <=
else return

}

:compute mpg ()

15) return 45; // hybrid mode
c_.compute mpg () ;

— USCVitiElzi{
Another Composition 7

class List({

* We can create a FIFO that "has-a" a List publii;
List();
as the underlying structure void insert (int loc,
int size();
inté& get (int loc);
void pop (int loc;)
private:
— Composition => "has-a" relationship IntItem* _head;
b

const int& wval);

* Summary:

— Public Inheritance => "is-a" relationship

— Private Inheritance => "as-a" relationship
"implemented-as"

Base Class

class FIFO
{ private:
List mylist;
public:
FIFO();
push back(const inté& val)
{ mylist.insert(size(), val); }
int& front();
{ return mylist.get (0); }
void pop front();
{ mylist.pop(0); }
int size() // need to create wrapper
{ return mylist.size(); }

FIFO via Composition

