CSCI 104

Rafael Ferreira da Silva

rafsilva@isi.edu

Slides adapted from: Mark Redekopp and David Kempe

P USCViterbi
Origin of Graph Theory

* |In 1736, Euler solved the problem known as the Seven Bridges of
Kénigsberg. The city of Kénigsberg, Prussia on the Pregel River, included
two large islands connected to each other and the mainland by seven
bridges.

* The problem is to decide whether it is possible to follow a path that
crosses each bridge exactly once (and optionally: returns to the starting
point)

NGASUBENGCA

SRRAR o S BN £
ia,‘ ‘&.h‘ %;’ '{“‘Qg
”ﬁ’aﬁﬂﬁm 3 .,-_) *‘g;’

S OEE ‘.m* P s o ‘*‘3.,
ST ATES” ""w‘ ““’"’“”’ e
—;m:ﬂ qa“ qu. -}.‘ A - A
ety 7P 0y
/ =
7 T oo

http://en.wikipedia.org/wiki/Seven Bridges of K%C3%B6nigsberg

Euler’s Analysis

* Whenever you enter a non-terminal landmass by a
bridge you must leave by another

— Because its non-terminal you can't stay once you arrive
* Thus every non-terminal landmass must be touching
an even number of bridges
— So that you can enter on one bridge and leave on another
 However, all four of the land masses in the original
problem are touched by an odd number of bridges

(one is touched by 5 bridges, and each of the other
three are touched by 3).

R, IS(Viterbi -

School of Engineering

Explanation Using Graph Theory

* In"graph-speak", Euler showed that the possibility of a walk
through a graph, traversing each edge exactly once, depends
on the degrees of the nodes.

— Euler walk = start/end at different vertices
— Euler cycle = start/end at same vertex
— The degree of a node is the number of edges touching it.

e Euler's argument shows that a necessary condition for the
walk of the desired form is that the graph be connected and
have exactly zero or two nodes of odd degree.

— If there are 2 nodes of odd degree, we can form an Euler walk so that
we will start at one of the odd-degree vertices and end at the other

e Since the graph corresponding to historical Kénigsberg has
four nodes of odd degree, it cannot have an Eulerian path.

School of Engineering

GRAPH REPRESENTATIONS

USCViterbi @

School of Engine

Graph Notation

* Graphsis a collection of vertices (or nodes)
and edges that connect vertices

— Let V be the set of vertices

— Let E be the set of edges
— Let |V]| or nrefer to the number of vertices
— Let |E| or m refer to the number of edges

V E

>SQ ~0D0O O O T QO
I N NN TN N N

~.C)'

(@)

N

|V|=n=8 (f,g |IE|[=m=11

Graphs in the Real World

Social networks

Computer networks / Internet
Path planning

Interaction diagrams
Bioinformatics

School of Engineering

USC Viterbi €

School of Eng

Basic Graph Representation

e Can simply store edges in list/array
— Unsorted
— Sorted

oO0Q -~ DO Q0O T o | <

IV|=n=8 (f.g IE|=m=11

R, IS(Viterbi -

Graph ADT

* What operations would you want to perform on a graph?
e addVertex() : Vertex

 addEdge(vl, v2)

e getAdjacencies(vl) : List<Vertices>

— Returns any vertex with an edge from v1 to itself

#include<iostream>
using namespace std;

° remOveEdge(Vl, V2) template <typename V, typename E>

class Graph{

* removeVertex(v)

e edgekExists(vl, v2) : bool

Perfect for templating
the data associated
with a vertex and
edgeas Vand E

USC Viterbi

School of Engineering

More Common Graph Representations

Graphs are really just a list of lists

— List of vertices each having their own list of
adjacent vertices
Alternatively, sometimes graphs are also
represented with an adjacency matrix

— Entry at (i,j) = 1 if there is an edge between
vertex i and j, O otherwise

ce a b c d e f g h
a LG
a 0 O0 1 0 1 0 o0 o0
B b Lc.h 0
O b g = b 0o O 1 ©0 O0 0 o0 1
b C a,) ,elg J
o) ‘ Z : |1 |2 |a |2 |2 |@ |1 |@
2 4 le >
. oo = ¢ 0 O 1 ©0 0 1 0 o0
» ? d,e’q S e 1 0 1 o0 o0 1 0 o©
— c,fh‘ ? f o o o0 1 1 0 1 o0
ﬂ = e 0 O 1 o0 o0 1 o0 1
b,g h o 1 o0 ©0 0 0 1 0

Adjacency Matrix Representation

USC Viterbi (D

School of Engineering

Graph Representations

Let |V| = n =# of vertices and
|E| = m =# of edges

Adjacency List Representation

— Of) memory storage

— Existence of an edge requires searching adjacency list

Adjacency Matrix Representation

- Of) storage
— Existence of an edge requires O() lookup
a b c d e f g h
a C,e
a 0 0 1 0 1 0 0 0
o b [ch %
O 7 b 0o o0 1 0 0 0 0 1
£| ¢ |a.b.d.eqg -
() C 1 1 0 1 1 0 1 0
> d |Cf)
Y— cC d 0 0 1 0 0 1 0 0
Ol e |a.Cf 3
0 e 1 0 1 0 0 1 0 0
2 f |deg S
e f 0 0 0 1 1 0 1 0
g C,f,h <
h g 0 0 1 0 0 1 0 1
b’g h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

USC Viterbi

School of Engineering

Graph Representations

Let |V| = n =# of vertices and |E| = m = # of edges

Adjacency List Representation
— O(|V| + |E|) memory storage
— Existence of an edge requires searching adjacency list
— Define degree to be the number of edges incident on a vertex (deg(a)
=2, deg(c) =5, etc.
Adjacency Matrix Representation
— O(]V]?) storage

— Existence of an edge requires O(1) lookup (e.g. matrix[i][j]==1)

a b c d e f g h

a LGe€ a 0 0 1 0 1 0 0 0

§ b Lc.h @ b 0o 0o 1 0 0 0 o0 1
= a,b,d.eqg 2 c 1 1 o0 1 1 0 1 0
> d o 2 d 0o o0 1 0 0 1 0 0

C

Ol e [ac S e 1 0 1 0 0 1 0 o0
2 f |deg S f o o o 1 1 0 1 o0
g |cfh < g 0 0 1 0 o0 1 o0 1

h |bg h o 1 0 0 0 0 1 0

Adjacency Matrix Representation

USC Viterbi

School of Engineering

Graph Representations

Can 'a' get to 'b' in two hops?

Adjacency List

— For each neighbor of a...

— Search that neighbor's list for b
Adjacency Matrix

— Take the dot product of row a & column b

ce a b c d e f g h
a LG
a 0 O0 1 0 1 0 o0 o0
B b Lc.h 0
O b g = b 0o O 1 ©0 O0 0 o0 1
b C a,) ,elg J
o) ‘ Z : |1 |2 |a |2 |2 |@ |1 |@
2 4 le >
. oo = ¢ 0 O 1 ©0 0 1 0 o0
» ? d,e’q S e 1 0 1 o0 o0 1 0 o©
— c,fh‘ ? f o o o0 1 1 0 1 o0
E = e 0 O 1 o0 o0 1 o0 1
b,g h o 1 o0 ©0 0 0 1 0

Adjacency Matrix Representation

USC Viterbi

School of Engineering

Graph Representations

Can 'a' getto 'b' in two hops?

Adjacency List

— For each neighbor of a...

— Search that neighbor's list for b
Adjacency Matrix

— Take the dot product of row a & column b

ce a b c d e f g h
a LG
a 0 0 1 0 1 0 o0 o0
B b Lc.h 0
O b g = b 0 O 1 ©0 O0 0 o0 1
b C a,) ,elg J
o) ‘ Z ¢ 1 Eo 1 1 @ 1 o
2 4 le >
. oo = ¢ 0 O 1 O0 0 1 0 o0
» ? d,e’q S e 1 0 1 0 o0 1 0 o©
— c,fh‘ ? f o o o0 1 1 0 1 o0
E = e 0 O 1 o0 o0 1 o0 1
b,g h o 1 ©0 ©0 O0 0 1 0

Adjacency Matrix Representation

USC Viterbi

School of Engineering

Directed vs. Undirected Graphs

In the previous graphs, edges were undirected (meaning
edges are 'bidirectional’ or 'reflexive')

— An edge (u,v) implies (v,u)
In directed graphs, links are unidirectional

— An edge (u,v) does not imply (v,u)

— For Edge (u,v): the source is u, target is v
For adjacency list form, you may need 2 lists per
vertex for both predecessors and successors

ce a b c d e f g h
a ;
a 0 0 1 0 1 0 0 0
2l b |h 0
[s! b.d L b 0 0 0 0 0 0 0 1
t C ,1e,q o
) c 0 1 0 1 1 0 1 0
> d U L @
5 f 2 O d 0 0 0 0 0 1 0 0
e S =
7 ¢ S c,o) e 0 0 0 o0 0 1 0 0
— ; 3 f 0o o 0O O O 0 ©0 0
ﬂ g 0 0 0 0 0 1 0 0
g h 0 0 0 0 0 0 1 0

Adjacency Matrix Representation

USC Viterbi

School of Engineering

Directed vs. Undirected Graphs

In directed graph with edge (u,v) we define

— Successor(u) = v
— Predecessor(v) = u

Using an adjacency list representation may
warrant two lists predecessors and successors

ce a b c d e f g h

a |G,

2 b [. a 0 O0 1 0 1 0 o0 o0

O bded |la b o O0 O O0O o0 ©0 o0 1

b C PAZEASE N

) c o 1 o0 1 1 o0 1 o0

> d U C o)

— ©d o 0 0O 0 ©O0 1 0 o0

o @ |[f a,C 5

+ ; d e g Qe 0o 0o 0o 0 0 1 0 0

— ; c,h,‘ f o o 0O O O O O0 O
ﬂ ’ e 0 O 0 0 0 1 0 o0

g b h o ©O0oO O ©O0O O0 0 1 0

Succs Preds Adjacency Matrix Representation

School of Engineering

Timeout: Real-world example

PAGERANK ALGORITHM

PageRank

Consider the graph at the right

— These could be webpages with links shown in the
corresponding direction

— These could be neighboring cities

PageRank generally tries to answer the question:

— If we let a bunch of people randomly "walk" the
graph, what is the probability that they end up at a
certain location (page, city, etc.) in the "steady-state"

We could solve this problem through Monte-Carlo
simulation (similar to CS 103 Coin-flipping game
assignment)

— Simulate a large number of random walkers and

record where each one ends to build up an answer of
the probabilities for each vertex

But there are more efficient ways of doing it

R, IS(Viterbi

School of Engineering

PageRank Q @

* Let us write out the adjacency matrix for this graph G

* Now let us make a weighted version by normalizing @‘@

based on the out-degree of each node

— Ex. If you're at node B we have a 50-50 chance of going Source

a b c d e
toAorkE B B B I
* From this you could write a system of linear equations b 0 0 1 0 0
(i.e. what are the chances you end up at vertex | at the E’ c 1 0 0 1 1
next time step, given you are at some vertex J now d 0o 0 0 0 1
_ pA = OS*DB e 0 1 0 0 0
— pB=pC Adjacency Matrix
— pC=pA+pD+0.5*pE Source=j
— pD=0.5*pE a b c d e
— pE=05%*pB a 0 05 0 0 0
— We also know: pA+pB+pC+pD+pE=1 B 0 | 0 1 0 0
JG'_J, c 1 0 0 1 0.5
(@]
ks d 0 0 0 0 0.5
e 0 05 O 0 0

Weighted Adjacency Matrix
[Divide (a;;)/degree(j)]

R, IS(Viterbi

School of Engineering

PageRank
e System of Linear Equations a ﬁ

— pA=0.5*pB 6
N @‘@

— pC=pA+pD+0.5%pE

— pD=0.5*pE Source=j
a b c d e
— pE=0.5*%pB
We also know: pA+pB+pC+pD+pE=1 e
- ea . =
PRTPETPLTPETP b 0 0 1 0 0
* If you know something about linear algebra, youknows . ;1 o o 1 o5
. . . . GJ
we can write these equations in matrix form as a € d o0 0 o0 0 05
. —
linear system e 0 05 0 0 O
— Ax=y Weighted Adjacency Matrix
[Divide by (a;;)/degree(j)]
0 05 0 0 O oA 0 05 0 0 O pA pA = 0.5PB
0 0 1 0 O pB 0 O 1 0 0 pB pB = pC
1 0 0 1 05 * | pC 1 0 0O 1 05 * | pC = pC = pA+pD+0.5*pE
oo oo oos| |w| |(CHCENORGNGEN |~ | |EESSERE
0 05 0 0 O pE 0 05 0 0 O pE pE = 0.5%pB

- 00000000 USCViterbi @
PageRank

 But remember we want the steady state solution

— The solution where the probabilities don't change from one
step to the next

e Sowe wantasolutionto: Ap=p a @

e We can: G
— Use a linear system solver (Gaussian elimination) ‘

— Or we can just seed the problem with some probabilities and

then just iterate until the solution settles down Source=j
a b c d e
a 0O 05 0 0 ©
0O 05 0 0 © PA pA b 0 0 1 0 0
0 0 1 0 © pB pB JGT_J, c 1 0 0 1 0.5
1 0 0 1 05| " |pC| = |pc S d o 0 0 o0 05
0 O 0 0 05 pD pD a e 0 05 0 0 0
0O 05 0 0 O pE pE Weighted Adjacency Matrix

[Divide by (a;;)/degree(j)]

- 00000000 USCViterbi@
Iterative PageRank

 But remember we want the steady state solution

The solution where the probabilities don't change from one step to the

next

* So we want a solution to: Ap=p

 We can:

o O » O O

o O » O O

Use a linear system solver (Gaussian elimination)

School of Engineering

G—X

Or we can just seed the problem with some probabilities and then just
iterate until the solution settles down

0.5

o o o +» O

o O o +» O

o O » O O

o O », O O

0.5
0.5

0.5
0.5

Step 0 Sol.

*
NN

Step 1 Sol.

N 2 I N R

S

S

tep 1 Sol.
A

=

A

tep 2 Sol.
A
)
.25
.05
A

o O » O O

Step 29 Sol.
0.5 0O 0 O ?
0 1 0 O ?
0 0 1 05 * ?
0 0O O 05 ?
0.5 0O 0 O ?
Actual PageRank Solution 1538
from solving linear system: .3077
.3077
.0769
.1538

Step 30 Sol.
.1507
.3078
3126
.0783
.1507

e — ()5 C Viterbi
Additional Notes

* What if we change the graph and now D has no incoming
links...what is its PageRank?
-0
* Most PR algorithms add a probability that someone just
enters that URL (i.e. enters the graph at that node)

— Usually define something called the damping factor, a
(often chosen around 0.85)

— Probability of randomly starting or jumping somewhere =
1-a
* So at each time step the next PR value for node i is given
as:

L Pr())
= Pr(t) = ==+ a * Yjerredd) guepeqn

— N is the total number of vertices

— Usually run 30 or so update steps
— Start each Pr(i) = 1/N

R, IS(Viterbi

In a Web Search Setting

 Given some search keywords we could find the pages that have that matching keywords

We often expand that set of pages by including all successors and predecessors of those
pages
— Include all pages that are within a radius of 1 of the pages that actually have the keyword
 Now consider that set of pages and the subgraph that it induces

* Run PageRank on that subgraph

Page Hits Expanded Induced Subgraph
(Contain_keyword) (Preds & Succs) to run PageRank

fed 521 1 2]

Full WebGraph

TREES

] USCViterbi
Tree Definitions — Part 1

Definition: A connected, acyclic (no cycles) graph with:
— Aroot node, r, that has 0 or more subtrees
— Exactly one path between any two nodes

In general:

— Nodes have exactly one parent (except for the root which
has none) and 0 or more children

d-ary tree
— Tree where each node has at most d children
— Binary tree = d-ary Tree with n=2

A 3-ary

(trinary)
tree

parent

root

Left child Right child

siblings

Ancestor

Leaf Descendant

School of Engineering

Terms:

» Parent(i): Node directly
above node |

« Child(i): Node directly below
node i

« Siblings: Children of the
same parent

* Root: Only node with no
parent

» Leaf: Node with O children

* Height: Length of largest
path from root to any leaf

» Subtree(n): Tree rooted at
node n

* Ancestor(n): Any node on
the path from n to the root

* Descendant(n): Any node in
the subtree rooted at n

R, IS(Viterbi €

Tree Definitions — Part 2

* Tree height: maximum # of nodes on a path from root to
any leaf / }
* Full d-ary tree, T, where

— Every vertex has 0 or d children and all leaf nodes are at Full
the same level
— If height h>1 and both subtrees are full binary trees of Q/Q
height, hnil
— If height h==1, then it is full by definition Complete, but not full
 Complete d-ary tree
— Each level is filled left-to-right and a new level is not
started until the previous one is complete
 Balanced d-ary tree
— Tree where subtrees from any node differ in height by at Full

TARLA £

DAPS, 6t Ed. Figure 15-8 Complete

Tree Height

A full binary tree of n nodes has height, [log,(n + 1)]

— This implies the minimum height of any tree with n nodes is
[log,(n+ 1)]

 The maximum height of a tree with n nodes is, n

40

15 nodes => height log,(16) = 4

5 nodes => height =5

R, IS(Viterbi

Tree Traversals

A traversal iterates over all nodes of the tree

— Usually using a depth-first, recursive approach

 Three general traversal orderings
— Pre-order [Process root then visit subtrees]
— In-order [Visit left subtree, process root, visit right subtree]
— Post-order [Visit left subtree, visit right subtree, process root]

Preorder (TreeNode* t)
{ 4if t == NULL return

process (t) // print val.

Preorder (t->left)
Preorder (t->right)

Inorder (TreeNode* t)

{ 4if t == NULL return
Inorder (t->left)
process (t) // print val.
Inorder (t->right)

}

60 20 10 30 25 50 80

Postorder (TreeNode* t)
{ 1if t == NULL return
Postorder (t->left)

Postorder (t->right)

process (t) // print val.

10 25 50 30 20 80 60

10 20 25 30 50 60 80

School of Engineering

Array-based and Link-based

TREE IMPLEMENTATIONS

R, IS(Viterbi)

School of Engineering

Array-Based Complete Binary Tree

* Binary tree that is complete (i.e. only the lowest-level contains empty
locations and items added left to right) can be stored nicely in an array
(let’s say it starts at index 1 and index O is empty)

* Canyou find the mathematical relation for finding the index of node i's
parent, left, and right child?

— Parent(i) =
— Left_child(i) =
— Right_child(i) =

0o 1 2 3 4 5 6 7 8 9 10 11 12 13
em|(7 (18 9 (1935141028 |39|36|43|16|17

parent(5) =
Left_child(5) =
Right_child(5) =

R, IS(Viterbi 2

School of Engineering

Array-Based Complete Binary Tree

* Binary tree that is complete (i.e. only the lowest-level contains empty
locations and items added left to right) can be stored nicely in an array
(let’s say it starts at index 1 and index 0 is empty)

* Canyou find the mathematical relation for finding node i's parent, left,
and right child?

— Parent(i) =i/2
— Left_child(i) = 2*i
— Right_child(i) =2*i+1

o 1 2 3 4 5 6 7 8 9 10 11 12 13

em| 7 |18 9 |[19|35|14|10|28|39|36|43(16 |17

N T~

parent(5) = 5/2 =2
Left_child(5) = 2*5=10
Right_child(5) = 2*5+1 = 11

Non-complete binary trees require much
more bookeeping to store in arrays...usually
link-based approaches are preferred

- 00000000 USCVit)erbi @
0-Based Indexing

* Binary tree that is complete (i.e. only the lowest-level contains empty
locations and items added left to right) can be stored nicely in an array
(let’s say it starts at index 1 and index O is empty)

* Canyou find the mathematical relation for finding the index of node i's
parent, left, and right child?

— Parent(i) =
— Left_child(i) =
— Right_child(i) =

0o 1 2 3 4 5 6 7 8 9 10 11 12
7118|9119|35|14|10| 283936 (43|16 |17

parent(5) =
Left_child(5) =
Right_child(5) =

e Arrays can be used to store
d-ary complete trees

— Adjust the formulas derived
for binary trees in previous
slides in terms of d

A 3-ary (trinary) tree

0 1 2 3 4 5 6

7

18

9

19

35

21

26

Link-Based Approaches

e Much like a linked list
but now with two
pointers per Item

* Use NULL pointers to
indicate no child

 Dynamically allocate
and free items when
you add/remove them

#include<iostream>
using namespace std;

template <typename T>
struct BTItem {
T val;
BTItem<T>* left,right;
BTItem<T>* parent;
}:
// Bin. Search Tree
template <typename T>
class BinTree
{
public:
BinTree () ;
~BinTree () ;
void add(const T& Vv);

private:
BTItem<T>* root ;

class
LinkedBST:

0x0 | root

BTltem<T> blueprint:

——————————

* Add(5)
* Add(6)
* Add(7)

@

0x1¢c0 Paren

Link-Based A
<D

root

Left val

right

3/

class
LinkedBST:

pproaches

root

root

R, IS(Viterbi)

Llnk-Based Approaches

¢ Add(S) class root_
LinkedBST:
 Add(6)
 Add(7)
9 0x1c0| root_ g 0x1c0 | root_ @ 0x1c0| root_
parent
0x1c0 parent 0x1c0 parent 0x1c0 NULL |
NULL NULL Left val right
Left val right Left val right NULL 5 0x2a0
NULL 5 NULL NULL 5 OXZEIO\
parent parent
0x2a0 | g1c0 0x2a0 | x1c0
Left val right Left val right
NULL 6 NULL NULL 6 0x0e0
parent
0x0e0 0x2a0
Left val right
NULL 7 NULL

School of Engineering

BREADTH-FIRST SEARCH

USC Viterbi

School of Engineering

Breadth-First Search

* G@Given a graph with vertices, V, and
edges, E, and a starting vertex that
we'll call u

 BFSstartsatu (@’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

* Goal: Find shortest paths (a.k.a.
minimum number of hops or depth) Depth 0: a
from the start vertex to every other
vertex

USC Viterbi

School of Engineering

Breadth-First Search

Given a graph with vertices, V, and
edges, E, and a starting vertex, u

BFS starts at u (‘a’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other
vertex

Depth 0: a
Depth 1: c,e

USC Viterbi

School of Engineering

Breadth-First Search

Given a graph with vertices, V, and
edges, E, and a starting vertex, u

BFS starts at u (‘a’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other

Depth 0: a
Depth 1: c,e
vertex Depth 2: b,d,f,g

USC Viterbi

School of Engineering

Breadth-First Search

Given a graph with vertices, V, and
edges, E, and a starting vertex, u

BFS starts at u (‘a’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)

from the start vertex to every other Depth 0: a
Depth 1: c,e
vertex Depth 2: b,d,f,g

Depth 3: h

USC Viterbi

School of Engineering

Developing the Algorithm

Key idea: Must explore all nearer
neighbors before exploring further-
away neighbors

From ‘@’ we find ‘e’ and ‘¢’

— Computer can only do one thing at a time

so we have to pick either e or c to explore
from

— Let’s say we pick e...we will find f

— Now what vertex should we explore (i.e.
visit neighbors) next?

— CII (if we don’t we won’t find shortest
paths...e.g. d)

— Must explore all vertices at depth i before
any vertices at depth i+1

Depth 0: a
Depth 1: c,e
Depth 2: b,d,f,g
Depth 3: h

Developing the Algorithm

Exploring all vertices in the order they are found
implies we will explore all vertices at shallower
depth before greater depth

— Keep a first-in / first-out queue (FIFO) of neighbors found

Put newly found vertices in the back and pull out a vertex from
the front to explore next

We don’t want to put a vertex in the queue more than once...

— ‘mark’ a vertex the first time we encounter it

— only allow unmarked vertices to be put in the queue

May also keep a ‘predecessor’ structure that indicates how each
vertex got discovered (i.e. which vertex caused this one to be
found)

— Allows us to find a shortest-path back to the start vertex

Breadth-First Search

Algorithm:

USC Viterbi €

School of Engine

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = Inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] < 0 // w not found
9 Q.enqueue(w)

10 pred[w] = v, d[w] =d[v] + 1

Breadth-First Search

Algorithm:

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = Inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] < 0 // w not found
9 Q.enqueue(w)

10 pred[w] = v, d[w] =d[v] + 1

USC Viterbi €

School of Engine

Breadth-First Search

Algorithm:

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = Inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] < 0 // w not found
9 Q.enqueue(w)

10 pred[w] = v, d[w] =d[v] + 1

USC Viterbi €

School of Engine

USC Viterbi €

School of Engine

Breadth-First Search

Algorithm:

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = Inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] < 0 // w not found
9 Q.enqueue(w)

10 pred[w] = v, d[w] =d[v] + 1 Vil e

Breadth-First Search

Algorithm:

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = Inf.

3 Q =new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =Q.front(); Q.dequeuel()

7 foreach neighbor, w, of v:

8 if pred[w] < 0 // w not found
9 Q.enqueue(w)

10 pred[w] = v, d[w] =d[v] + 1

USC Viterbi

School of Engineering

Breadth-First Search

Algorithm:

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = Inf.

3 Q =new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =Q.front(); Q.dequeuel()

7 foreach neighbor, w, of v:

8 if pred[w] < 0 // w not found
9 Q.enqueue(w)

10 pred[w] = v, d[w] =d[v] + 1

USC Viterbi

School of Engineering

Breadth-First Search

Algorithm:

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = Inf.

3 Q =new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =Q.front(); Q.dequeuel()

7 foreach neighbor, w, of v:

8 if pred[w] < 0 // w not found
9 Q.enqueue(w)

10 pred[w] = v, d[w] =d[v] + 1

USC Viterbi (0

School of Engineering

Breadth-First Search

Algorithm:

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = Inf.

3 Q =new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =Q.front(); Q.dequeuel()

7 foreach neighbor, w, of v:

8 if pred[w] < 0 // w not found
9 Q.enqueue(w)

10 pred[w] = v, d[w] =d[v] + 1

USC Viterbi (2

School of Engineering

Breadth-First Search

Algorithm:

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = Inf.

3 Q =new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =Q.front(); Q.dequeuel()

7 foreach neighbor, w, of v:

8 if pred[w] < 0 // w not found
9 Q.enqueue(w)

10 pred[w] = v, d[w] =d[v] + 1

USC Viterbi

School of Engineering

USC Viterbi

School of Engineering

Breadth-First Search

« Shortest paths can be found by
walking predecessor value
from any node backward

 Example:

— Shortest path fromato h
— Startath

— Pred[h] = b (so walk back to b)
— Pred[b] = c (so walk back to c)

— Pred[c] = a (so walk back to a)

— Pred[a] = nil ... no predecessor,
Done!!

Breadth-First Search Trees

* BFS (and later DFS) will induce a tree subgraph (i.e.
acyclic, one parent each) from the original graph

— Really BFS finds a subset of edges that form the shortest
paths from the source to all other vertices and this subset
forms a tree

Original graph, G BFS Induced Tree

Correctness

Define
— dist(s,v) = correct shortest distance
— d[v] = BFS computed distance
— p[v] = predecessor of v

Loop invariant

— What can we say about the nodes
in the queue, their d[v] values,
relationship between d[v] and
dist[v], etc.?

nil,inf

USC Viterbi

School of Engineering

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q =new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] < 0 // w not found
9 Q.enqueue(w)

10 predfw] =v, d[w] =d[v] + 1

USC Viterbi ()

School of Engineering

Correctness

Define

nil,inf

— dist(s,v) = correct shortest distance
— d[v] = BFS computed distance nil,0
— p[v] = predecessor of v

Loop invariant IS —

— All vertices with p[v] !=nil (i.e. e c%
already in the queue or popped
from queue) have d[v] = dist(s,v)

— The distance of the nodes in the
gueue are sorted BFS(G,u)
« 1fQ=1{vy,V,, ..., v,} thend[v,] <= 1 for each vertex v
dlv,] <=...<=d[v,] 2 pred[v] = nil, d[v] = inf.
3 Q =new Queue
4 Q.enqueue(u), d[u]=0
5 while Q is not empty

— The nodes in the queue are from 2
adjacent layers/levels

« pe.dlv]<=dlv]+1 6 v =Q.front(); Q.dequeue()

* Suppose there is a node from a 3 7 foreach neighbor, w, of v:
level (d[v,] + 2), it must have been 8 if pred[w] < 0 // w not found
found by some, vi, where d[v] = 9 Q.enqueue(w)
dlv,]+1 10 pred[w] = v, d[w]=d[v] + 1

USC Viterbi

School of Engineering

Breadth-First Search

* Analyze the run time of nilinf
BFS for a graph with n
vertices and m edges

— Find T(n,m) QI

e How many times does S
loop on line 5 iterate?

BFS(G,u)

1 for each vertex v

e How many times loop on § 5 Efﬁgv[y]gugt’ed[vl = inf.

line 7 iterate? 4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] < 0 // w not found

9 Q.enqueue(w)

10 pred[w] =v, d[w]=d[v] + 1

USC Viterbi

School of Engineering

Breadth-First Search

Analyze the run time of BFS for a
graph with n vertices and m
edges

Find T(n)

How many times does loop on
line 5 iterate?

N times (one iteration per vertex)

How many times loop on line 7
iterate?

For each vertex, v, the loop executes
deg(v) times

= XZvev 0[1 + deg(v)]

— H(Zv 1)"' H(Zv deg(v))
=0 (n) +© (m)

Total = ©(n+m)

nil,inf

BFS(G,u)
1 for each vertex v
2 pred[v] = nil, d[v] = inf.
3 Q = new Queue
4 Q.enqueue(u), d[u]=0
5 while Q is not empty
v = Q.front(); Q.dequeue()
foreach neighbor, w, of v:
if pred[w] < 0 // w not found
Q.enqueue(w)
0 pred[w] = v, d[w]=d[v] + 1

= O 00 ~N O

School of Engineering

DEPTH FIRST SEARCH

USC Vlterbl

1 of Engineering

DFS Application: Topological Sort

e Breadth-first search doesn't
solve all our problems.

* Given a graph of dependencies ’ EE 109 ‘ [CS 104}[CS 170 }
(tasks, prerequisities, etc.)

topological sort creates a v
consistent ordering of tasks EE 209
(vertices) where no
dependencies are violated v

* Many possible valid topological EE 354 [CS 350] [CS 320

orderings exist /\
— EE 109, EE 209, EE 354,
EE 454, EE 457,C5104,PHYS [EE 457 | |EE 4541 | CS401 | CS 360
152, CS 201,...

— (CS 104, EE 109, CS 170, EE
209,...

R ()5 Viterbi
Topological Sort

* Another example

[Socks } [Underwear} [Undershirt }
v v

— Getting dressed

e More Examples:)
P Shirt
— Project management scheduling J—/
— Build order in a Makefile or other Tie
compile project -
— Cooking using a recipe CE
, _ Jacket
— Instruction execution on an out- -
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorith

of-order pipelined CPU ms/GraphAlgor/topoSort.htm

— Production of output values in a
simulation of a combinational
gate network

USC Vlterbl

1 of Engineering

Topological Sort

Does breadth-first search

work? EE 109 [08104][08170 }

— No. What if we started at CS 170...

— We'd go to CS 201L before CS 104 EE 209 CS 201

All parent nodes need to be
completed before any child

\ 4

node EE 354 [Cs 350] [cs 320
BFS only guarantees some

parent has completed before /\
child [EE 457] [EE 454@ CS 401][Cs 360

Turns out a Depth-First Search
will be part of our solution

USC Viterbi

School of Engineering

Depth First Search

Explores ALL children @ (10
before completing a EE 109 ‘
parent @ il Q
— Note: BFS completes a parent E@
before ANY children
For DFS let us assign:) i O
— Astart time when the node is first EE 354
found
— Afinish time when an i
compsietted © when anode s @ 0 @
If we look at our nodes in [EE 457] [EE 454"} [CS 401 [CS 360}
reverse order of finish time (i.e. @ Start Time
last one to finish back to first o Finish Time

one to finish) we arrive at a...

— Topological ordering!!!

Reverse Finish Time Order

CS 170, CS 104, CS 201, CS 320, CS 360, CS 477, CS 350,
EE 109, EE 209L, EE 354, EE 454L, EE 457

R, IS(Viterbi

DES Algorithm

DFS-AIl (G)
e Visit a node 1 for each vertex u
o 2 u.color = WHITE
— Mark as visited (started) 3 finish_list = empty_list
— For each visited neighbor, visit it 4 for each vertex u do
g : DES on all of their 5 if u.color == WHITE then
and pertorm 6 DFS-Visit (G, u, finish_list)
children 7 return finish_list

— Only then, mark as finished

. , T DFS-Visit (G, u)
DFS is recursive!!l u.color = GRAY

* If cycles in the graph, ensure we for each vertex v in Adj(u) do
if v.color == WHITE then

1

2

) g 3
don’t get caught visiting 4 DFS-Visit (G, v)

5

6

neighbors endlessly u.color = BLACK
finish_list.append(u)
— Color them as we go
— White = unvisited,
— Gray = visited but not finished
— Black = finished

R, IS(Viterbi

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

R, IS(Viterbi

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,a):

R, IS(Viterbi

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,d):

DFS-Visit(G,a):

R, IS(Viterbi

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,f):

DFS-Visit(G,d):

DFS-Visit(G,a):

R, IS(Viterbi

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,h):
DFS-Visit(G,f):

DFS-Visit(G,d):

DFS-Visit(G,a):

R, IS(Viterbi o

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do h
3 if v.color = WHITE then
4 DFS-Visit (G, v)
5
6

Finish_list:

u.color = BLACK
finish_list.append(u)

DFS-Visit(G,h):
DFS-Visit(G,f):

DFS-Visit(G,d):

DFS-Visit(G,a):

R, IS(Viterbi 2

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do h
3 if v.color = WHITE then
4 DFS-Visit (G, v)
5
6

Finish_list:

u.color = BLACK
finish_list.append(u)

DFS-Visit(G,f):

DFS-Visit(G,d):

DFS-Visit(G,a):

R, IS(Viterbi)

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do h
3 if v.color = WHITE then
4 DFS-Visit (G, v)
5
6

Finish_list:

u.color = BLACK
finish_list.append(u)

DFS-Visit(G,g):

DFS-Visit(G,f):

DFS-Visit(G,d):

DFS-Visit(G,a):

R, IS(Viterbi

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

1 u.color = GRAY Finish_fist
2 for each vertex v in Adj(u) do h,

3 if v.color = WHITE then g

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,g):

DFS-Visit(G,f):

DFS-Visit(G,d):

DFS-Visit(G,a):

R, IS(Viterbi @D

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

u.color = GRAY Finish_fist:
for each vertex v in Adj(u) do h,
if v.color = WHITE then ¥

u.color = BLACK

1
2
3
4 DFS-Visit (G, v)
5
6 finish_list.append(u)

DFS-Visit(G,f):

DFS-Visit(G,d):

DFS-Visit(G,a):

R, IS(Viterbi

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

1 u.color = GRAY Finish st
2 for each vertex v in Adj(u) do h,

3 if v.color = WHITE then '

4 DFS-Visit (G, v) d

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,d):

DFS-Visit(G,a):

R, IS(Viterbi)

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list v

DFS-Visit (G, u)

1 u.color = GRAY Finish st
2 for each vertex v in Adj(u) do h,

3 if v.color = WHITE then '

4 DFS-Visit (G, v) d

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,a):

R, IS(Viterbi

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list v u

DFS-Visit (G, u)

1 u.color = GRAY Finish st
2 for each vertex v in Adj(u) do h,

3 if v.color = WHITE then '

4 DFS-Visit (G, v) d

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,a):

R, IS(Viterbi

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list u

DFS-Visit (G, u)

1 u.color = GRAY Finish st
2 for each vertex v in Adj(u) do h,

3 if v.color = WHITE then '

4 DFS-Visit (G, v) d

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,e):

DFS-Visit(G,c):

DFS-Visit(G,a):

R, IS(Viterbi

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list u

DFS-Visit (G, u)

1 u.color = GRAY Finish st
2 for each vertex v in Adj(u) do h,

3 if v.color = WHITE then '

4 DFS-Visit (G, v) d

5 u.color = BLACK €

6 finish_list.append(u)

DFS-Visit(G,e):

DFS-Visit(G,c):

DFS-Visit(G,a):

R, IS(Viterbi

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list u

DI (&, U Finish_list:
1 u.color = GRAY i
2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)
5
6

oPam@s

u.color = BLACK
finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,a):

R, IS(Viterbi

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DI (&, U Finish_list:
1 u.color = GRAY i
2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)
5
6

u.color = BLACK
finish_list.append(u)

pOoPam~Qz

DFS-Visit(G,a):

R, IS(Viterbi

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do ""m:‘?z‘; t:;:;:gh
5 if u.color == WHITE then vertices before
6 DFS-Visit (G, u, finish_list) finding b to launch a
7 return finish_list new search from

DI (&, U Finish_list:
1 u.color = GRAY i
2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)
5
6

u.color = BLACK
finish_list.append(u)

pOoPam~Qz

DFS-Visit(G,b):

R, IS(Viterbi

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

1 u.color = GRAY Finishist
2 for each vertex v in Adj(u) do h,
3 if v.color = WHITE then '
4 DFS-Visit (G, v) d
5 u.color = BLACK €,
6 finish_list.append(u) :
b

DFS-Visit(G,b):

R, IS(Viterbi

Depth First-Search

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list
4 for each vertex u do
5
6
7

if u.color == WHITE then
DFS-Visit (G, u, finish_list)
return finish_list

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)
5
6

Finish_list:

u.color = BLACK
finish_list.append(u)

Tc,O 0@z

With Cycles in the graph

ANOTHER EXAMPLE

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

USC Viterbi

School of Engineering

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)
5
6

u.color = BLACK DFS-Visit(G,f):

finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)
5
6

DFS-Visit(G,d):

u.color = BLACK DFS-Visit(G,f):

finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do d
3 if v.color = WHITE then
4 DFS-Visit (G, v)
5
6

DFS-Visit(G,d):

u.color = BLACK DFS-Visit(G,f):

finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do d
3 if v.color = WHITE then
4 DFS-Visit (G, v)
5
6

u.color = BLACK DFS-Visit(G,f):

finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

u.color = GRAY pFsQ:
for each vertex v in Adj(u) do d
if v.color = WHITE then DFS-Visit(G,e):

u.color = BLACK DFS-Visit(G,f):

finish_list.append(u) DFS-Visit(G,g):

1
2
3
4 DFS-Visit (G, v)
5
6

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

u.color = GRAY pFsQ:
for each vertex v in Adj(u) do g
if v.color = WHITE then DFS-Visit(G,e):

u.color = BLACK DFS-Visit(G,f):

finish_list.append(u) DFS-Visit(G,g):

1
2
3
4 DFS-Visit (G, v)
5
6

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY prsa:

2 for each vertex v in Adj(u) do g

3 if v.color = WHITE then f

4 DFS-Visit (G, v) ——
5 u.color = BLACK DFS'V_'S_"(G’f)-
6 finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY orsQ
2 for each vertex v in Adj(u) do g
3 if v.color = WHITE then f
4 DFS-Visit (G, v) 9
5 u.color = BLACK :;
6 finish_list.append(u) c

DFS-Visit(G,a):

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFSQ:

USC Viterbi

School of Engineering

DO T STQ =~ 0

School of Engineering

ITERATIVE VERSION

Depth First-Search

DFS (G,s)

O 60 N OO 1 A W N -

10

12
13
14

for each vertex u
u.color = WHITE
st = new Stack
st.push_back(s)
while st not empty
u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
if v.color == WHITE
st.push_back(v)
else if u.color = WHITE
u.color = BLACK
st.pop_back()

st:

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)

O 60 N OO 1 A W N -

10

12
13
14

for each vertex u
u.color = WHITE
st = new Stack
st.push_back(s)
while st not empty
u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
if v.color == WHITE
st.push_back(v)
else if u.color = WHITE
u.color = BLACK
st.pop_back()

st:

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)

O 60 N OO 1 A W N -

10

12
13
14

for each vertex u
u.color = WHITE
st = new Stack
st.push_back(s)
while st not empty
u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
if v.color == WHITE
st.push_back(v)
else if u.color = WHITE
u.color = BLACK
st.pop_back()

st:

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)

O 60 N OO 1 A W N -

10

12
13
14

for each vertex u
u.color = WHITE
st = new Stack
st.push_back(s)
while st not empty
u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
if v.color == WHITE
st.push_back(v)
else if u.color = WHITE
u.color = BLACK
st.pop_back()

st:

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)

O 60 N OO 1 A W N -

10

12
13
14

for each vertex u
u.color = WHITE
st = new Stack
st.push_back(s)
while st not empty
u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
if v.color == WHITE
st.push_back(v)
else if u.color = WHITE
u.color = BLACK
st.pop_back()

st:

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)

O 60 N OO 1 A W N -

10

12
13
14

for each vertex u
u.color = WHITE
st = new Stack
st.push_back(s)
while st not empty
u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
if v.color == WHITE
st.push_back(v)
else if u.color = WHITE
u.color = BLACK
st.pop_back()

st:

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)

O 60 N OO 1 A W N -

10

12
13
14

for each vertex u
u.color = WHITE
st = new Stack
st.push_back(s)
while st not empty
u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
if v.color == WHITE
st.push_back(v)
else if u.color = WHITE
u.color = BLACK
st.pop_back()

st:

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)

O 60 N OO 1 A W N -

10

12
13
14

for each vertex u
u.color = WHITE
st = new Stack
st.push_back(s)
while st not empty
u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
if v.color == WHITE
st.push_back(v)
else if u.color = WHITE
u.color = BLACK
st.pop_back()

st:

USC Viterbi (™

School of Engineering

Depth First-Search

DFS (G,s)

O 60 N OO 1 A W N -

10

12
13
14

for each vertex u
u.color = WHITE
st = new Stack
st.push_back(s)
while st not empty
u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
if v.color == WHITE
st.push_back(v)
else if u.color = WHITE
u.color = BLACK
st.pop_back()

st:

USC Viterbi (2

School of Engineering

Depth First-Search

DFS (G,s)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

for each vertex u
u.color = WHITE
st = new Stack
st.push_back(s)
while st not empty
u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
if v.color == WHITE
st.push_back(v)
else if u.color = WHITE
u.color = BLACK
st.pop_back()

st:

USC Viterbi (9

School of Engineering

Depth First-Search

DFS (G,s)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

for each vertex u
u.color = WHITE
st = new Stack
st.push_back(s)
while st not empty
u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
if v.color == WHITE
st.push_back(v)
else if u.color = WHITE
u.color = BLACK
st.pop_back()

st:

USC Viterbi

School of Engineering

USC Viterbi (2

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE
11 st.push_back(v)
12 elseif u.color != WHITE st: alcle|c|f|d|g|c]|h Q
13 u.color = BLACK
14 st.pop_back()

1
2
3
4
5 while st not empty
6
7
8
9

Depth First-Search

DFS (G,s)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

for each vertex u
u.color = WHITE
st = new Stack
st.push_back(s)
while st not empty
u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
if v.color == WHITE
st.push_back(v)
else if u.color = WHITE
u.color = BLACK
st.pop_back()

USC Viterbi

School of Engineering

P SCViterbi
BFS vs. DFS Algorithm

* BFS and DFS are more similar than you think

— Do we use a FIFO/Queue (BFS) or LIFO/Stack (DFS) to store
vertices as we find them

BFS-Visit (G, start_node) DFS-Visit (G, start_node)

1 for each vertex u 1 for each vertex u

2 u.color=WHITE 2 u.color=WHITE

3 u.pred =nil 3 u.pred =nil

4 bfsq = new Queue 4 st =new Stack

5 Dbfsq.push_back(start_node) 5 st.push_back(start_node)
6 while bfsq not empty 6 while st not empty

7 u = bfsq.pop_front() 7 u = st.pop_back()

8 if u.color == WHITE 8 if u.color == WHITE

9 u.color = GRAY 9 u.color = GRAY

10 foreach vertex v in Adj(u) do 10 foreach vertex v in Adj(u) do
11 bfsq.push_back(v) 11 st.push_back(v)

