CSCI 104

Rafael Ferreira da Silva

rafsilva@isi.edu

Slides adapted from: Mark Redekopp and David Kempe

- 01 USCVit,erbi @
Binary Tree Review

* Full binary tree: Binary tree, T, where
— If height h>0 and both subtrees are full binary trees

of hEIght, h-1 Full
— If height h==0, then it is full by definition
— (Tree where all leaves are at level h and all other
nodes have 2 children)
* Complete binary tree Complete, but not full
— Tree where levels 0 to h-1 are full and level h is filled
from left to right
* Balanced binary tree
— Tree where subtrees from any node differ in height by
at most 1 -~
u

FARLE

DAPS, 6t Ed. Figure 15-8
Complete

School of Engineering

PRIORITY QUEUES

- USCVit,erbi @
Traditional Queue

* Traditional Queues

— Accesses/orders items based on POSITION (push_back)

__________________________ 47
(front/back) r i
(pop_front) ! :
— Did not care about item's VALUE __{15H33H6E2H81 1€

* Priority Queue <—|_

_ Orders items based on VALUE L4
e Either minimum or maximum

— Items arrive in some arbitrary order

— When removing an item, we always want the (push)
minimum or maximum depending on the i I : -
implementation (Pop) ! j :

* Heaps that always yield the min value are called <_l_ = oz gt
min-heaps L

* Heaps that always yield the max value are called
max-heaps Priority Queue

— Leads to a "sorted" list

— Examples:
* Think hospital ER, air-traffic control, etc.

- 00000000 USCVit,erbi @
Priority Queue

* What member functions does a Priority Queue have?

— push(item) — Add an item to the appropriate location of
the PQ

(push)
— top() — Return the min./max. value (top), [— 47
— pop() - Remove the front (min. or max) item from the PQ (pop) (J i
— size() - Number of items in the PQ —15H33 62—~ 81
— empty() - Check if the PQ is empty <—|—
— [Optional]: changePriority(item, new_priority)] T
Useful in many algorithms (especially Al and search algorithms) Priority Queue

 Implementations

— Priority can be based upon intrinsic data-type being
stored (i.e. operator<() of type T)

— Priority can be passed in separately from data type,
T,
* Allows the same object to have different priorities

based on the programmer's desire (i.e. same object
can be assigned different priorities)

Priority Queue Efficiency

* |fimplemented as a sorted array list
— Insert() =
—Top() =
— Pop() =

* |fimplemented as an unsorted array list

— Insert() =
—Top() =
— Pop() =

School of Engineering

School of Engineering

Priority Queue Efficiency

* |fimplemented as a sorted array list
— [Use back of array as location of top element]
— Insert() = O(n)
—Top() =O(1)
— Pop() = O(1)
* |Ifimplemented as an unsorted array list
— Insert() = O(1)
— Top() =0O(n)
— Pop() = O(n)

R, IS(Viterbi

STL Priority Queue

° Implements a max-PQ by default // priority queue::push/pop
) #include <iostream>
¢ Operatlons: #include <gqueue>

— push(new_item) _
- using namespace std;

— pop(): removes but does not

return top item ?nt main ()

— top() return top item (item at priority queue<int> mypg;
back/end of the container) mypq.push (30) ;
. mypq.push (100) ;

— size() mypq.push (25) ;

mypq.push (40) ;

- empty() cout << "Popping out elements...";
* http://www.cplusplus.com/refere while (!mypg.empty()) f{
.. cout<< " " << mypqg.top():;
nce/stl/priority queue/push/ mypq. pop () ;
* Can use Comparator functors to iout« il
create a min-PQ return 0;

}

Code here will print
100 40 30 25

. ()5 Viterbi >
C++ less and greater

e If your class already has

operators < or > and you cemplate “typenane 1
don't Want to erte your { bool operator () (const T& vl, const T& v2) {
own functor you can use | et s

the C++ built-in functors: i

less and greater

template <typename T>
struct greater

{

L4 LeSS bool operator () (const T& vl, const T& v2) {
return vl > v2;
— Compares two objects of }
. ¥
type T using the operator<
defined for T
* QGreater

— Compares two objects of
type T using the operator<
defined for T

R, IS(Viterbi

School of Engineering

STL Priority Queue Template

 Template that allows type of element, container class, and comparison
operation for ordering to be provided

* First template parameter should be type of element stored

* Second template parameter should be the container class you want to use
to store the items (usually vector<type of elem>)

* Third template parameters should be comparison functor object/class that
will define the order from first to last in the container

/) pelerisy aenes push/peD greater<int> will yield a min-PQ

N nelnde <lostresms 7 less<int> will yield a max-PQ
#include <gueue>
using namespace std; 0
. . PUSh(30) 30
int main ()
{ priority gqueue<int, vector<int>, greater<int>> mypq; 0 1
mypq.push (30) ; mypqg.push(100); mypq.push(25) ;
cout<< "Popping out elements..."; Push(100) 100(30
while (!'mypg.empty()) ({
cout<< " " << mypq.top(); 0o 1 2
m; .pPo g
, TYPA-PeR () Push(25) 1490] 30 | 25

: Code here will print

25, 30, 100

Push(n): walk while (item[i] > n), then insert
Top(): Return last item
Pop(): Remove last item

R, IS(Viterbi 0

School of Engineering

STL Priority Queue Template

// priority queue: :push/pop

. #include <iostream>
°
For user defined el oS
#include <string>
Classes; mUSt using namespace std;
implement clase TEom |
public:
operator<() for e Soee
string name;
maX'heap Or Item(int s, string n) { score = s; name = n;}
bool operator>(const Item &rhs) const {
Operator>() for if (rhs.score > this->score) {
. return true;
min-heap }
. return false;
* Code here will pop }
i
in order:
int main ()
— Jane {
priority queue<Item, vector<Item>, greater<Item> > mypg;
— Charlie Item 11 (25,”Bill”); mypq.push (i1) ;
. Item i2(5,”Jane”); mypqg.push (i2) ;
— Bill Ttem 13(10,”Charlie”); mypq.push (i3);
cout<< "Popping out elements...";
while (!mypqg.empty()) {
cout<< " " << mypqg.top () .name;

mypq.pop () ;
bl

HEAPS

Heap Data Structure

* Provides an efficient implementation for a priority queue

e Can think of heap as a complete binary tree that maintains the
heap property:

— Heap Property: Every parent is less-than (if min-heap) or greater-than (if max-
heap) both children

— But no ordering property between children

* Minimum/Maximum value is always the top element

Min-Heap

Heap Operations

 Push: Add a new item to the
heap and modify heap as
necessary

* Pop: Remove min/max item
and modify heap as
necessary

* Top: Returns min/max

e Since heaps are complete
binary trees we can use an
array/vector as the
container

template <typename T>
class MinHeap
{
public:
MinHeap (int init capacity);
~MinHeap ()
void push (const T& item);
T& top();
void pop () ;
int size () const;
bool empty() const;

private:
void heapify(int idx);
vector<T> items ;

}

R, IS(Viterbi 9

School of Engineering

Array/Vector Storage for Heap

e Recall: Full binary tree (i.e. only the lowest-level contains empty locations
and items added left to right) can be modeled as an array (let’s say it starts
at index 1) where:

— Parent(i) =i/2
— Left_child(p) = 2*p
— Right_child(p) =2*p +1

0o 1 2 3 4 5 6 7 8 9 10 11 12 13

em|(7 (18 9 (1935141028 |39|36|43|16|17

N ~—m 2

parent(5) = 5/2 = 2
Left_child(5) = 2*5 =10
Right_child(5) = 2*5+1 = 11

i, IS(CVite

School of E

Array/Vector Storage for Heap

* We can also use 0-based indexing

— Parent(i) = (i-1)/2
— Left_child(p) = 2*p+1
— Right_child(p) =2*p + 2

0o 1 2 3 4 5 6 7 8 9 10 11 12

bi
I'D1
ngineeri

ng

7

18

9

19

35

14

10

28

39

36

43

16

17

e USCV1terb1 o

Push Heap / TrickleUp

« Add item to first free location at | |7 "oieeeiipushconse me dtew

bottom Of tree items .push back(item);

trickleUp(items .size()-1);
}

* Recursively promote it up while

L. . void trickleUp (int loc)
it is less than its parent (
// could be implemented recursively
— Remember valid heap all parents int parent = loc/2;
. while (parent >= 1 &&
< children...so we need to promote items [loc] < items [parent])
. . . . £ { swap(items [parent], items [loc]);
it up until that property is satisfied o0 = e,

parent = loc/2;

Push_Heap(8)

* Top() simply needs
to return first item

Top()

T& MinHeap<T>::top()
{
1f(empty ())
throw (std::out of range());
return items [1];

}

Top() returns 7

R, IS(Viterbi

School of E ing

Pop Heap / Heapify (TrlckIeDown)

* Pop utilizes the "heapify"
algorithm (a.k.a.
trickleDown)

* Takes last (greatest) node
puts it in the top location
and then recursively swaps
it for the smallest child until
itisinits right place

Original 1

void MinHeap<T>: :pop (

{ items [1] = items back(); items .pop back()
heapify(l); // a.k.a. trickleDown ()

}

void MinHeap<T>::heapify(int idx)
{
if(idx == leaf node) return;
int smallerChild = 2*idx; // start w/ left
if(right child exists) {
int rChild = smallerChild+1;
if(items [rChild] < items [smallerChild])
smallerChild = rChild;
ol
if (items [idx] > items
swap (items [idx],

[smallerChild]) {
items [smallerChild]);

heapify(smallerChild);

Push(11)

Practice

Push(23)

School of Engineering

Building a heap out of an array

HEAPSORT

i ()5 Viterbi
Using a Heap to Sort

4 5 6 7 8

* If we could make a valid heap out of an em|28| 9 [18(10[35|14| 7 |19
arbitrary array, could we use that heap to sort Arbitrary Array
our data?

* Sure, just call top() and pop() n times
— You'll get your data out in sorted order
* How long would that take?
— n calls to top() and pop()
— top() =0(1)
— pop = O(log n)
e Thus total time = O(n * log n)

Array Converted to Valid Heap
 But how long does it take to convert the array

to a valid heap? 0 1 2 3 4 5 6 7 8

em| 7|9 (1014|1819 |28 |35

Array after top/popping the heap n times

R, IS(Viterbi «

School of Engineering

Converting An Array to a Heap

o 1 2 3 4 5 6 7 8

* If we have two heaps can we |em|2s| 9 |18]10]35]14| 7 |19
. . Original Arra
unify them with some e

arbitrary value

* |f we put an arbitrary value
in the top spot how can we
make a heap?

Tree View of Array

* Heapify!! (we did this in
pop())

Converting An Array to a Heap

o 1 2 3 4 5 6 7 8

* To convert an array to a heap we can
use the idea of first making heaps of
both sub-trees and then combining
the sub-trees (a.k.a. semi heaps) into
one unified heap by calling heapify()
on their parent()

* First consider all leaf nodes, are they
valid heaps if you think of them as the
root of a tree?

— Yesl!!

e So just start at the first non-leaf

em

28

9

18 (10 (35 (14| 7

19

Original Array

Tree View of Array

* First consider all leaf nodes, are they
valid heaps if you think of them as the
root of a tree?

— Yesl!!
e So just start at the first non-leaf
— Heapify(Loc. 4)

Leafs are valid heaps by definition

heapify(4) heapify(3) heapify(2) heapify(1)
. Swap 28 <->7
Already in the Swap 18 & 7 Already a heap Swap 28 <-> 14

right order

School of Engineering

Converting An Array to a Heap

* Now that we have a valid heap, we can sort by top and popping...
e Canwedoitin place?

— Yes, Break the array into "heap" and "sorted" areas, iteratively adding to the "sorted" area

Swap top &
last

heapify(1)

Swap top &
last

heapify(1)

School of Engineering

Converting An Array to a Heap

* Now that we have a valid heap, we can sort by top and popping...
e Canwedoitin place?

— Yes, Break the array into "heap" and "sorted" areas, iteratively adding to the "sorted" area

Swap top &
last

heapify(1)

Swap top &
last

heapify(1)

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

em|35 |18 |28 | 19 PN TOINe R4 em|18 |19 | 28 | 35 EPAENOINe BV4

Converting An Array to a Heap

&
29

0o 1 2 3 4 5 6 7 8

‘ 352819181410 9 7

012345678
em 141097

* Notice the result is in descending order.
* How could we make it ascending order?

— Create a max heap rather than min heap.

Build-Heap Run-Time

To build a heap from an arbitrary array require n calls to
heapify.

* Heapify take O()

* Let's be more specific:

— Heapify takes O(h)

— Because most of the heapify calls are made in the bottom of the tree
(shallow h), it turns out heapify can be done in O(n)

