CSCI 104

Rafael Ferreira da Silva

rafsilva@isi.edu

Slides adapted from: Mark Redekopp and David Kempe

School of Engineering

BACKTRACK SEARCH ALGORITHMS

USC Viterbi

School of Engineering

Generating All Combinations

* Recursion offers a simple way to generate all combinations of N
items from a set of options, S
— Example: Generate all 2-digit decimal numbers (N=2, $={0,1,...,9})

0| - |"\0O

-

TDC(data,1)

TDC(data,0)

1

\0' 9

_ I\OI

/

TDC(data,1)

/\

TDC(data,1)

N

void TwoDigCombos (char data[3],
int curr)
{
if (curr ==)
cout << data;
else {
for(int i=0; i < 10; i++) {
// set to 1
data[curr] = '0'+1i;
// recurse

NO'[| 9| 9 |"\O

ol 0o ["\O O] 9 |\O 910
| 4 S 4
TDC(2) || TDC(2)| | TDC(2) TDC(2)

TwoDigCombos (data, curr+l);

X

TDC(2)

Get the Code

* |[n-class exercises
— nqueens-allcombos
— nqueens

* Onyour VM

— S mkdir nqueens
— S cd nqueens

— S wget
http://ee.usc.edu/~redekopp/cs104/nqueens.tar

— S tar xvf nqueens.tar

R, IS(Viterbi -

School of Engineering

Recursive Backtracking Search

* Recursion allows us to "easily" enumerate all solutions to some problem
e Backtracking algorithms...

— Are often used to solve constraint satisfaction problem or optimization problems
* Several items that can be set to 1 of N values under some constraints

— Stop searching down a path at the first indication that constraints won't lead to a solution
* Some common and important problems can be solved with backtracking

* Knapsack problem

— You have a set of objects with a given weight and value. Suppose you have a knapsack that can
hold N pounds, which subset of objects can you pack that maximizes the value.

— Example:
* Knapsack can hold 35 pounds
* Object A: 7 pounds, $12 ea. Object B: 10 pounds, $18 ea.
* Object C: 4 pounds, S7 ea. Object D: 2.4 pounds, $4 ea.

* Other examples:
— Map Coloring
— Traveling Salesman Problem
— Sudoku
— N-Queens

N-Queens Problem

* Problem: How to place N queens on
an NxN chess board such that no
gueens may attack each other

* Fact: Queens can attack at any
distance vertically, horizontally, or
diagonally

* Observation: Different queen in
each row and each column

* Backtrack search approach:

— Place 1%t queen in a viable option then,
then try to place 2" queen, etc.

— If we reach a point where no queen can
be placed in row i or we've exhausted all
options in row i, then we return and
change row i-1

8x8 Example of N-Queens
* Now place 2"? queen

School of Engineering

School of Engineering

8x8 Example of N-Queens
 Now place others as viable

e After this configuration
here, there are no locations
in row 6 that are not under
attack from the previous 5 Q)

* BACKTRACK!!!

8x8 Example of N-Queens
 Now place others as viable

e After this configuration
here, there are no locations
in row 6 that is not under
attack from the previous 5

* So go back to row 5 and
switch assignment to next
viable option and progress
back to row 6

8x8 Example of N-Queens

* Now place others as viable

e After this configuration here,
there are no locations in row 6
that is not under attack from
the previous 5

* Now go back to row 5 and ®
switch assignment to next
viable option and progress back
torow 6

e But still no location available so
return back to row 5

8x8 Example of N-Queens

* Now place others as viable

* After this configuration here, there are
no locations in row 6 that is not under
attack from the previous 5

* Now go back to row 5 and switch
assignment to next viable option and
progress back to row 6

e But still no location available so return
back to row 5

 But now no more options for row 5 so
return back to row 4

* BACKTRACK!!!!

8x8 Example of N-Queens

Now place others as viable

After this configuration here, there
are no locations in row 6 that is not
under attack from the previous 5

Now go back to row 5 and switch
assignment to next viable option and
progress back to row 6

But still no location available so
return back to row 5

But now no more options for row 5
so return back to row 4

Move to another place in row 4 and
restart row 5 exploration

8x8 Example of N-Queens

Now place others as viable

After this configuration here, there
are no locations in row 6 that is not
under attack from the previous 5

Now go back to row 5 and switch
assignment to next viable option and
progress back to row 6

But still no location available so
return back to row 5

But now no more options for row 5
so return back to row 4

Move to another place in row 4 and
restart row 5 exploration

School of Engineering

8x8 Example of N-Queens
 Now a viable option exists

for row 6

e Keep going until you
successfully place row 8 in
which case you can return
your solution

e What if no solution exists?

8x8 Example of N-Queens
 Now a viable option exists

for row 6

e Keep going until you
successfully place row 8 in
which case you can return
your solution

e What if no solution exists?

— Row 1 queen would have
exhausted all her options
and still not find a solution

USC Viterbi

School of Engineering

Backtracking Search

 Recursion can be used to
generate all options

— 'brute force' / test all options
approach

— Test for constraint satisfaction
only at the bottom of the 'tree’
e But backtrack search
attempts to 'prune’ the search
space

— Rule out options at the partial
assignment level

Brute force enumeration might

test only once a possible
complete assignment is made
(i.e. all 4 queens on the board)

USC Viterbi 2

School of Engineering

N-Queens Solution Development

Let's develop the code 0
1 queen per row 1
— Use an array where index represents the 5
gueen (and the row) and value is the column
. el . 3
Start at row O and initiate the search [i.e.

SearCh(O)] Index = Queeniinrowi o 1 2 3
Base case: q[i] = column of queeni | 2 | o | 3 | 1
— Rows range from 0 to n-1 so STOP when row [= g
== // each queens location

int n; // number of board / size

— Means we found a solution

void search (int row)

Recursive case {

if (row == n)
— Recursively try all column options for that lpriTtSOlution“" /i Bolweds
else
queen for(glrow]=0; glrowl<n; qglrow]++) {

search (row+1) ;

— But haven't implemented check of viable)
configuration... }

USC Viterbi

School of Engineering

N-Queens Solution Development

* To check whether it is safe to place a queen
in a particular column, let's keep a "threat"
2-D array indicating the threat level at each
square on the board

— Threat level of 0 means SAFE

— When we place a queen we'll update squares that are
now under threat

— Let's name the array 't'

* Dynamically allocating 2D arrays in C/C++ doesn't
really work

— Instead conceive of 2D array as an "array of arrays" which
boils down to a pointer to a pointer

Allocated 0 1 2 3 Each a!ItIoca:_ted
online 0g Eachentry on an iteration

is int* olololo of line 10

¢ 410/0 1a0
1 2c0

2 1b4
3 3e0

Thus tis

t[2] = 0x1b4
o™ 0|0 a]o0

t[2][1]1 = 0

AR

0
1
2
3

o111
1/1[0]0
1/0(1]0
1/]0(0 |1

Index = Queeniinrowi o 1 2 3

q[i] = column of queeni | g

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

int

int
int

}

O

search(0); // start search
// deallocate arrays
return O;

*q; // pointer to array storing
// each queens location

n; // number of board / size

**t; // thread 2D array

main ()

= new int[n];

= new int*[n];

r(int i=0; 1 < n; i++){

t[i] = new int[n];

for(int 3 = 0; J < n; Jj++){
t[il1 (31 = 0;

}

USC Viterbi

School of Engineering

N-Queens Solution Development

After we place a queen in a location, let's 0

check that it has no threats)

If it's safe then we update the threats (+1) ,

due to this new queen placement

Now recurse to next row ’

If we return, it means the problem was Index = Queeniinrowi o 1 2 3
either solved or more often, that no q[i] = column of queeni | g

solution existed given our placement so we . . .
int *q; // pointer to array storing
remove the threats (-1) // each queens location

int n; // number of board / size
Then we iterate to try the next location for Lok xxe; //on xn threat arcay

. void search (int row)
this queen {

if (row == n)
printSolution(); // solved!
else {
t o 1 2 3 t o 1 2 3 t o 1 2 3 for (q[row]=0; g[row]<n; g[row]++) {
olololo]lo olol111]!1 ololololo // check that col: g[row] is safe
if (t[row] [gq[row]] == 0){
; g g g g ; :: :) ? g ; g g g g // if safe place and continue
addToThreats (row, g[row], 1);
3 0 0 0 0 3 1 0 0 1 3 0 0 0 0 search (row+l) ;
Safe to place Now add threats Upon return, // if return, remove placement
queen in upper left remove threat and addToThreats (row, q[row], -1);
iterate to next option || } } }

R (J5C Viterbi =
addToThreats Code
* Observations 0

— Already a queen in every higher row so
addToThreats only needs to deal with positions

lower on the board
* |terate row+1 to n-1 2
— Enumerate all locations further down in the 3
same column, left diagonal and right diagonal

— Can use same code to add or remove a threat ..)
L Index = Queeniinrowi ¢ 1 2 3
by passing in change

 Can'tjust use 2D array of booleans as a
squa.re mlght be undc—;r threat from two pIaces void addToThreats (int row, int col, int change)
and if we remove 1 piece we want to make {

for(int j = row+l; j < n; J++){

sure we still maintain the threat
// go down column
t[jllcol]l += change;
// go down right diagonal
if(col+(j-row) < n)
t[j] [col+(j-row)] += change;
// go down left diagonal

q[i] = column of queeni | g

t o 1 2 3 t o 1 2 3 if (col-(j-row) >= 0)
ool 1 1 0|0 |1 |1]1 t[j][col-(j-row)] += change;
1111000 1711100)o0 }

21010 271121 }

3/1]0([0]1 312|011

R, IS(Viterbi)

School of Engineering

N-Queens Solution

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

int *gq; // queen location array
int n; // number of board / size
int **t; // n x n threat array

int main ()

q new int[n];
t new int*[n];
for(int 1i=0; 1 < n; 1++){
t[i] = new int[n];
for(int §j = 0; j < n; j++){
t{i]l 31 = 0;

}
}
// do search
if(! search(0))
cout << "No sol!" << endl;
// deallocate arrays
return O;

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

void addToThreats (int row, int col, int change)
{
for(int j = row+l; j < n; J++){
// go down column
t[jllcol]l += change;
// go down right diagonal
if(col+(j-row) < n)
t[j][col+(j-row)] += change;
// go down left diagonal
if(col-(j-row) >= 0)
t[j]l[col-(j-row)] += change;

bool search (int row)
{
if (row == n) {
printSolution(); // solved!
return true;
}
else {
for (g[row]=0; g[row]<n; g[row]++) {
// check that col: g[row] is safe
if(t[row] [g[row]] == 0) {
// if safe place and continue
addToThreats (row, g[row], 1);
bool status = search(row+l) ;
if (status) return true;
// if return, remove placement
addToThreats (row, gq[row], -1);

}

return false;

b}

R, IS(Viterbi 2

School of Engineering

General Backtrack Search Approach

 Select an item and set it to one of its General g:‘;';“kiosfj\?gftra"king
options such that it meets current . —)
. 00 bool sudoku(int **grid, int r, int c)
constraints 01 | {
02 if(allSquaresComplete (grid))
e Recursively try to set next item o } ey
* If you reach a point where all items are oo | [L jterate through all options
assigned and meet constraints, 07 getellz el = 27
. 08 if(isvalid(grid)) {
done...return through recursion stack 09 bool status = sudoku(...);
. . 10 if (status) return true;
with solution 11)
12 }
* |f no viable value for an item exists, > } return false;
backtrack to previous item and repeat 15
16
from the top 17
18
* |f viable options for the 1stitem are 19

exhausted, no solution exists .
Assume r,c is current square to

* Phrase: set and grid is the 2D array of

)) values
— Assign, recurse, unassign

Properties, Insertion and Removal

BINARY SEARCH TREES

- 00000000 USCVit)er‘pi '
Binary Search Tree

* Binary search tree = binary tree where all nodes meet the
property that:

— All values of nodes in left subtree are less-than or equal than the
parent’s value

— All values of nodes in right subtree are greater-than or equal than the
parent’s value

(29
(19 (4D

ﬁ@@

If we wanted to print the values
in sorted order would you use an
pre-order, in-order, or post-order

traversal?

R, IS(Viterbi -«

School of Engineering

BST Insertion

Important: To be efficient (useful) we need to keep the binary search tree
balanced

Practice: Build a BST from the data values below

— To insert an item walk the tree (go left if value is less than node, right if greater than
node) until you find an empty location, at which point you insert the new value

https://www.cs.usfca.edu/~galles/visualization/BST.html

Insertion Order: 25, 18, 47, 7, 20, 32, 56 Insertion Order: 7, 18, 20, 25, 32, 47, 56

(29
(19 (47

@ @ @ &

A major topic we will talk about is algorithms
to keep a BST balanced as we do
insertions/removals

Successors & Predecessors

* Let's take a quick tangent that will help us understand how to
do BST Removal

 Given anodeinaBST
— Its predecessor is defined as the next smallest value in the tree
— Its successor is defined as the next biggest value in the tree

 Where would you expect to find a node's successor?
* Where would find a node's predecessor?

A

Predecessors

 If left child exists, predecessor is the
right most node of the left subtree

* Else walk up the ancestor chain until
you traverse the first right child

pointer (find t

ne first node who is a

right child of his parent...that parent is
the predecessor)

— If you get to the root w/o finding a node
who is a right child, there is no

predecessor

Successors

* If right child exists, successor is the
left most node of the right subtree

* Else walk up the ancestor chain until
you traverse the first left child pointer
(find the first node who is a left child
of his parent...that parent is the
successor)

— If you get to the root w/o finding a node
who is a left child, there is no successor

R, IS(Viterbi

BST Removal

* To remove a value from a BST...

— First find the value to remove by walking the tree

School of Engineering

— If the value is in a leaf node, simply remove that leaf node

— If the value is in a non-leaf node, swap the value with its in-order
successor or predecessor and then remove the value

* A non-leaf node's successor or predecessor is guaranteed to be a leaf node
(which we can remove) or have 1 child which can be promoted

* We can maintain the BST properties by putting a value's successor or
predecessor in its place

Remove 25 Remove 30 Remove 20

25 %

Leaf node so 1-Child so just 20 is a non-leaf so can't delete it Swap w/

just delete it promote child where it is...swap w/ successor
or predecessor

BST Efficiency

* Insertion
— Balanced: O(log n)
— Unbalanced: O(n)
* Removal
— Balanced : O(log n)
— Unbalanced: O(n)

* Find/Search

— Balanced : O(log n)
— Unbalanced: O(n)

#include<iostream>
using namespace std;

// Bin. Search Tree

template <typename T>

class BST

{

public:

BTree () ;

~BTree () ;

virtual bool empty() = 0;
virtual void insert (const T& v
virtual void remove (const T& v
virtual T* find(const T& v) =

)
)
0;

Trees & Maps/Sets

e C++ STL "maps" and "sets" use binary search trees
internally to store their keys (and values) that can
grow or contract as needed

* This allows O(log n) time to find/check membership

— BUT ONLY if we keep the tree balanced!

Map::find("Greg") key value Map::find("Mark")
Returns iterator to "Jordan" | Student Returns iterator to end()
corresponding object [i.e. NULL]

pair<string, Student>

"Frank" | Student "Percy" | Student
object object
"Anne" | Student "Greg" | Student "Tommy"| Student
object object object

The key to balancing...

TREE ROTATIONS

BST Subtree Ranges

Consider a binary search tree, what range of values could be in
the subtree rooted at each node

— At the root, any value could be in the "subtree"

— At the first left child?

— At the first right child?

(-inf, inf) (-inf, inf)

Right Rotation

* Define aright rotation as taking a left child, making it
the parent and making the original parent the new right

child

* Where do subtrees a, b, c and d belong?
— Use their ranges to reason about it...

(-inf, inf)

a b c d
('inf! X) (X,y) (yaz) (Za Inf)

Left Rotation

* Define a left rotation as taking a right child, making it
the parent and making the original parent the new left

child

* Where do subtrees a, b, c and d belong?
— Use their ranges to reason about it...

£\

Left

rotate of (-inf, x) (x, inf)
X

(-inf, inf)

a b c d
(-inf, x) (x,y) (y,2) (2, inf)

Rotations
* Define aright rotation as taking a left child, making it
the parent and making the original parent the new right

child

* Where do subtrees a, b, and c belong?

— Use their ranges to reason about it...
(-inf, inf) (-inf, inf)

N\

Right rotate
(y, inf) of y (-inf, x)
c a

[\ (x, y) (y, inf)

(%,y)
b Left rotate b c
of x

(x, inf)

('inf! y)

(-inf, x)

a

R, IS(Viterbi)

School of Engineering

Rotation's Effect on Height

* When we rotate, it serves to re-balance the tree

N

Right rotate
— h+1 of z

— h+2

h+3

Let's always specify the parent node involved in a rotation (i.e. the
node that is going to move DOWN).

Self-balancing tree proposed by Adelson-Velsky and Landis

AVL TREES

R, IS(Viterbi

AVL Trees

* A binary search tree where the height difference between left and right subtrees
of a node is at most 1

— Binary Search Tree (BST): Left subtree keys are less than the root and right subtree keys
are greater

 Two implementations:
— Height: Just store the height of the tree rooted at that node

— Balance: Define b(n) as the balance of a node = (Right — Left) Subtree Height
* Legal valuesare-1,0,1
* Balances require at most 2-bits if we are trying to save memory.
* Let's use balance for this lecture.

@ Balance
w factors

AVL Tree storing Heights AVL Tree storing balances

Adding a New Node

* Once a new node is added, can its parent be out of
balance?
— No, assuming the tree is "in-balance"” when we start.

— Thus, our parent has to have
* A balance of 0
* A balance of 1 if we are a new left child or -1 if a new right child

— Otherwise it would not be our parent or the parent would
have been out of balance already

(012 (112)
010 010 @

Losing Balance

* If our parent is not out of balance, is it possible our
grandparent is out of balance?

e Sure, so we need a way to re-balance it

USC Viterbi

School of Engineering

To Zig or Zag

The rotation(s) required to
balance a tree is/are
dependent on the
grandparent, parent, child
relationships

We can refer to these as Left-left or Right-right

L - (a.k.a. Zig-zig)
the zig-zig case and zig-zag [One left/right rotation of g]
case

Left-right or Right-left
(a.k.a. Zig-zag)
[Rotate p then g]

Zig-zig requires 1 rotation
Zig-zag requires 2
rotations (first converts to
zZig-zig)

(20

- USCViterbi '
Disclaimer

* There are many ways to structure an
implementation of an AVL tree...the following
slides represent just 1
— Focus on the bigger picture ideas as that will allow

you to more easily understand other
implementations

Insert(n)

* If empty tree => set as root, b(n) =0, done!

* Insert n (by walking the tree to a leaf, p, and
inserting the new node as its child), set

balance to O, and look at its parent, p 1)
— If b(p) = -1, then b(p) = 0. Done! @ 0
— If b(p) = +1, then b(p) = 0. Done! @

— If b(p) = 0, then update b(p) and call insert-fix(p, n) e

(20
(12

010

- USCViterbi '
Insert-fix(p, n)

* Precondition: p and n are balanced: {+1,0,-1}

e Postcondition: g, p, and n are balanced: {+1,0,-1}

e If pisnull or parent(p) is null, return

* Let g =parent(p)

* Assume p is left child of g [For right child swap left/right, +/-]

— g.balance +=-1
— if g.balance == 0, return
— if g.balance == -1, insertFix(g, p)

— If g.balance ==-2 Note: If you
» If zig-zig then rotateRight(g); p.balance =g.balance =0 perform a
* If zig-zag then rotatelLeft(p); rotateRight(g); rotation, you will
NOT need to

— if n.balance == -1 then p.balance = 0; g.balance(+1); n.balance = 0;
— if n.balance == 0 then p.balance = 0; g.balance(0); n.balance = 0; recurse. You are
— if n.balance == +1 then p.balance = -1; g.balance(0); n.balance = 0; done!

USC Viterbi €

School of Eng

Insertion
* |[nsert 10, 20, 30, 15, 25, 12,5, 3,8

Empty Insert 10 Insert 20 Insert 30 Zig-zig =>

10 violates balance b(g) = b(p) =0
€20

Insert 15 Insert 25 Insert 12 Zig-zag & b(n) =0 =>

TYED
b(g) = b(p) = b(n) =0
20, C20)

(10)030) G0y G30
@15 @1s) (25

School of Engineering

Insertion
* |[nsert 10, 20, 30, 15, 25, 12,5, 3,8

Zig-zig =>
b(g) = b(p) =0

Zig-zag & b(n) = -1 =>
b(g) =1 & b(p) =b(n) =0

School of Engineering

Insertion Exercise 1
* [nsert key=28

(20
Gro) 30

(05) (12) @25
EPDITPILY

School of Engineering

Insertion Exercise 2
* |Insert key=17

(20
Gro) 30

(05) (12) @25
EPDITPILY

School of Engineering

Insertion Exercise 3
* |nsert key=2

(20
Gro) 30

(05) (12) @25
EPDITPILY

Remove Operation

* Remove operations may also require
rebalancing via rotations

* The key idea is to update the balance of the
nodes on the ancestor pathway

* |f an ancestor gets out of balance then
perform rotations to rebalance

— Unlike insert, performing rotations does not mean
you are done, but need to continue

* There are slightly more cases to worry about
but not too many more

Remove

* Let n=node to remove (perform BST find) and p = parent(n)

* If n has 2 children, swap positions with in-order successor and
perform the next step
— Now n has 0 or 1 child guaranteed
* Ifnisnotin the root position determine its relationship with
its parent
— If nis a left child, let diff = +1
— if nis a right child, let diff =-1
* Delete n and update tree, including the root if necessary

* removeFix(p, diff);

- USCthrbi @
RemoveFix(n, diff)

 Ifnisnull, return
 Let ndiff =+1if nis a left child and -1 otherwise
 Let p =parent(n). Use this value of p when you recurse.

* If balance of n would be -2 (i.e. balance(n) + diff == -2)
— [Perform the check for the mirror case where balance(n) + diff == +2, flipping left/right and -1/+1]
— Let c = left(n), the taller of the children
— If balance(c) ==-10or 0 (zig-zig case)
* rotateRight(n)
* if balance(c) == -1 then balance(n) = balance(c) = 0, removeFix(p, ndiff)
* if balance(c) == 0 then balance(n) = -1, balance(c) = +1, done!
— else if balance(c) == 1 (zig-zag case)
rotateLeft(c) then rotateRight(n)
Let g = right(c)
If balance(g) == +1 then balance(n) = 0, balance(c) = -1, balance(g) =0
If balance(g) == 0 then balance(n) = balance(c) = 0, balance(g) =0
If balance(g) == -1 then balance(n) = +1, balance(c) = 0, balance(g) =0
removeFix(parent(p), ndiff);

* elseif balance(n) == 0 then balance(n) += diff, done!

* else balance(n) = 0, removeFix(p, ndiff)

Remove 15

Remove Examples

D D
DEROM IR
) @) () 6 @
ol ey
Remove 3 @
DR
(5 @) @

ooooooooooooooooooo

Remove 25

ooooooooooooooooooo

Remove Examples

Zig-zig & b(c) = -1 =>

USC Viterbi €

School of Eng

Remove Examples

Remove 20

Zig-zag & b(g) = -1 =>
b(n) =+1, b(c) =0, b(g) =0

Remove Example 1

Remove 8

) 5@ @
G e o) (an>
e

ooooooooooooooooooo

School of Engineering

Remove Example 1

Zig-zag & b(1) =0 =>
b(n)=-1,b(c)=0

Remove Example 2

Remove 10

oD
DD
(3) G15)(25) (135>
DG @
G

ooooooooooooooooooo

USC Viterbi

ooooooooooooooooooo

Remove Example 3

Remove 30

o{ @

USC Viterbi

School of Engineering

Remove Example 3

else if b(c) == 1 (zig-zag case)
 rotateLeft(c) then rotateRight(n)
* Letg=right(c),b(g)=0
Remove 30 * Ifb(g) == +1then b(n) = 0, b(c) = -1, b(g) = 0
* Ifb(g)==0thenb(n)=b(c)=0,b(g)=0
* Ifb(g) ==-1then b(n) =+1,b(c)=0,b(g)=0
* removeFix(parent(p), ndiff);

USCViterbi -+
Remove Example 3 (cont)

else if b(c) = (zig-zag case)
rotateLeft(c) then rotateR|ght(n)
» Let g =right(c), b(g) =
Remove 30 (cont.) * Ifb(g) == +1 then b(n) =0,b(c)=-1,b(g) =0
* Ifb(g) == 0 then b(n) = b(c) =0, b(g) =
« Ifb(g) ==-1thenb(n) =+1,b(c) =0, b(g)=0

n @ * removeFix(parent(p), ndiff);

Online Tool

* https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Distribute these 4 to students

FOR PRINT

Insert(n)

* If empty tree => set as root, b(n) =0, done!

* Insert n (by walking the tree to a leaf, p, and
inserting the new node as its child), set

balance to O, and look at its parent, p 1)
— If b(p) = -1, then b(p) = 0. Done! @ 0
— If b(p) = +1, then b(p) = 0. Done! @

— If b(p) = 0, then update b(p) and call insert-fix(p, n) e

(20
(12

010

- USCViterbi '
Insert-fix(p, n)

* Precondition: p and n are balanced: {-1,0,-1}

* Postcondition: g, p, and n are balanced: {-1,0,-1}

e If pisnull or parent(p) is null, return

* Let g =parent(p)

* Assume p is left child of g [For right child swap left/right, +/-]

— g.balance +=-1
— if g.balance == 0, return
— if g.balance == -1, insertFix(g, p)

— If g.balance ==-2 Note: If you
» If zig-zig then rotateRight(g); p.balance =g.balance =0 perform a
* If zig-zag then rotatelLeft(p); rotateRight(g); rotation, you will
NOT need to

— if n.balance == -1 then p.balance = 0; g.balance(+1); n.balance = 0;
— if n.balance == 0 then p.balance = 0; g.balance(0); n.balance = 0; recurse. You are
— if n.balance == +1 then p.balance = -1; g.balance(0); n.balance = 0; done!

Remove

* Let n=node to remove (perform BST find) and p = parent(n)

* If n has 2 children, swap positions with in-order successor and
perform the next step
— Now n has 0 or 1 child guaranteed
* Ifnisnotin the root position determine its relationship with
its parent
— If nis a left child, let diff = +1
— if nis a right child, let diff =-1
* Delete n and update tree, including the root if necessary

* removeFix(p, diff);

- USCthrbi '
RemoveFix(n, diff)

 Ifnisnull, return
 Let ndiff =+1if nis a left child and -1 otherwise
 Let p =parent(n). Use this value of p when you recurse.

* If balance of n would be -2 (i.e. balance(n) + diff == -2)
— [Perform the check for the mirror case where balance(n) + diff == +2, flipping left/right and -1/+1]
— Let c = left(n), the taller of the children
— If balance(c) ==-10or 0 (zig-zig case)
* rotateRight(n)
* if balance(c) == -1 then balance(n) = balance(c) = 0, removeFix(p, ndiff)
* if balance(c) == 0 then balance(n) = -1, balance(c) = +1, done!
— else if balance(c) == 1 (zig-zag case)
rotateLeft(c) then rotateRight(n)
Let g = right(c)
If balance(g) == +1 then balance(n) = 0, balance(c) = -1, balance(g) =0
If balance(g) == 0 then balance(n) = balance(c) = 0, balance(g) =0
If balance(g) == -1 then balance(n) = +1, balance(c) = 0, balance(g) =0
removeFix(parent(p), ndiff);

* elseif balance(n) == 0 then balance(n) += diff, done!

* else balance(n) = 0, removeFix(p, ndiff)

School of Engineering

OLD ALTERNATE METHOD

Insert

e Root => set balance, done!

* Insert, v, and look at its parent, p
— If b(p) = -1, then b(p) = 0. Done!
— If b(p) = +1, then b(p) = 0. Done!
— If b(p) = 0, then update b(p) and call insert-fix(p)

Insert-Fix

* Forinput node, v
— If vis root, done.
— Invariant: b(v) ={-1, +1}
* Find p = parent(v) and assume v = left(p) [i.e. left child]
— If b(p) =1, then b(p) = 0. Done!
— If b(p) =0, then b(p) = -1. Insert-fix(p).
— If b(p) =-1 and b(v) = -1 (zig-zig), then b(p) = 0, b(v) = 0, rightRotate(p)
Done!
— If b(p) =-1 and b(v) = 1 (zig-zag), then
* u=right(v), b(u) =0, leftRotate(n), rightRotate(p)
* Ifb(u)=-1, thenb(v)=0, b(p)=1

* Ifb(u)=1,thenb(v)=-1,b(p)=0
* Done!

