
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp and	David	Kempe

2

BACKTRACK	SEARCH	ALGORITHMS

3

Generating	All	Combinations
• Recursion	offers	a	simple	way	to	generate	all	combinations	of	N

items	from	a	set	of	options,	S
– Example:		Generate	all	2-digit	decimal	numbers	(N=2,	S={0,1,…,9})

void TwoDigCombos(char data[3],
int curr)

{
if(curr == 2)
cout << data;

else {
for(int i=0; i < 10; i++){
// set to i
data[curr] = '0'+i;
// recurse
TwoDigCombos(data, curr+1);

}
}

TDC(data,0)

TDC(data,1) TDC(data,1)…

TDC(2) TDC(2) TDC(2) TDC(2) TDC(2)

…

0 0 '\0' 9 9 '\0'

1 - '\0' 9 - '\0'0 - '\0'

TDC(data,1)

0 9 '\0' 9 0 '\0'

…

…

…

4

Get	the	Code

• In-class	exercises
– nqueens-allcombos
– nqueens

• On	your	VM
– $	mkdir nqueens
– $	cd	nqueens
– $	wget
http://ee.usc.edu/~redekopp/cs104/nqueens.tar

– $	tar	xvf nqueens.tar

5

Recursive	Backtracking	Search
• Recursion	allows	us	to	"easily"	enumerate	all	solutions	to	some	problem
• Backtracking	algorithms…

– Are	often	used	to	solve	constraint	satisfaction	problem	or	optimization	problems
• Several	items	that	can	be	set	to	1	of	N	values	under	some	constraints

– Stop	searching	down	a	path	at	the	first	indication	that	constraints	won't	lead	to	a	solution
• Some	common	and	important	problems	can	be	solved	with	backtracking
• Knapsack	problem

– You	have	a	set	of	objects	with	a	given	weight	and	value.		Suppose	you	have	a	knapsack	that	can	
hold	N	pounds,	which	subset	of	objects	can	you	pack	that	maximizes	the	value.

– Example:
• Knapsack	can	hold	35	pounds
• Object	A:	7	pounds,	$12	ea. Object	B:	10	pounds,	$18	ea.
• Object	C:	4	pounds,	$7	ea. Object	D:	2.4	pounds,	$4	ea.

• Other	examples:
– Map	Coloring
– Traveling	Salesman	Problem
– Sudoku
– N-Queens

6

N-Queens	Problem
• Problem:		How	to	place	N	queens	on	

an	NxN chess	board	such	that	no	
queens	may	attack	each	other

• Fact:	Queens	can	attack	at	any	
distance	vertically,	horizontally,	or	
diagonally

• Observation:		Different	queen	in	
each	row	and	each	column

• Backtrack	search	approach:
– Place	1st queen	in	a	viable	option	then,	

then	try	to	place	2nd queen,	etc.
– If	we	reach	a	point	where	no	queen	can	

be	placed	in	row	i or	we've	exhausted	all	
options	in	row	i,	then	we	return	and	
change	row	i-1	

7

8x8	Example	of	N-Queens
• Now	place	2nd queen

8

8x8	Example	of	N-Queens
• Now	place	others	as	viable
• After	this	configuration	
here,	there	are	no	locations	
in	row	6	that	are	not	under	
attack	from	the	previous	5

• BACKTRACK!!!

9

8x8	Example	of	N-Queens
• Now	place	others	as	viable
• After	this	configuration	
here,	there	are	no	locations	
in	row	6	that	is	not	under	
attack	from	the	previous	5

• So	go	back	to	row	5	and	
switch	assignment	to	next	
viable	option	and	progress	
back	to	row	6

10

8x8	Example	of	N-Queens
• Now	place	others	as	viable
• After	this	configuration	here,	
there	are	no	locations	in	row	6	
that	is	not	under	attack	from	
the	previous	5

• Now	go	back	to	row	5	and	
switch	assignment	to	next	
viable	option	and	progress	back	
to	row	6

• But	still	no	location	available	so	
return	back	to	row	5

11

8x8	Example	of	N-Queens
• Now	place	others	as	viable
• After	this	configuration	here,	there	are	

no	locations	in	row	6	that	is	not	under	
attack	from	the	previous	5

• Now	go	back	to	row	5	and	switch	
assignment	to	next	viable	option	and	
progress	back	to	row	6

• But	still	no	location	available	so	return	
back	to	row	5

• But	now	no	more	options	for	row	5	so	
return	back	to	row	4

• BACKTRACK!!!!

12

8x8	Example	of	N-Queens
• Now	place	others	as	viable
• After	this	configuration	here,	there	

are	no	locations	in	row	6	that	is	not	
under	attack	from	the	previous	5

• Now	go	back	to	row	5	and	switch	
assignment	to	next	viable	option	and	
progress	back	to	row	6

• But	still	no	location	available	so	
return	back	to	row	5

• But	now	no	more	options	for	row	5	
so	return	back	to	row	4

• Move	to	another	place	in	row	4	and	
restart	row	5	exploration

13

8x8	Example	of	N-Queens
• Now	place	others	as	viable
• After	this	configuration	here,	there	

are	no	locations	in	row	6	that	is	not	
under	attack	from	the	previous	5

• Now	go	back	to	row	5	and	switch	
assignment	to	next	viable	option	and	
progress	back	to	row	6

• But	still	no	location	available	so	
return	back	to	row	5

• But	now	no	more	options	for	row	5	
so	return	back	to	row	4

• Move	to	another	place	in	row	4	and	
restart	row	5	exploration

14

8x8	Example	of	N-Queens
• Now	a	viable	option	exists	
for	row	6

• Keep	going	until	you	
successfully	place	row	8	in	
which	case	you	can	return	
your	solution

• What	if	no	solution	exists?

15

8x8	Example	of	N-Queens
• Now	a	viable	option	exists	
for	row	6

• Keep	going	until	you	
successfully	place	row	8	in	
which	case	you	can	return	
your	solution

• What	if	no	solution	exists?
– Row	1	queen	would	have	
exhausted	all	her	options	
and	still	not	find	a	solution

16

Backtracking	Search
• Recursion	can	be	used	to	

generate	all	options	
– 'brute	force'	/	test	all	options	

approach
– Test	for	constraint	satisfaction	

only	at	the	bottom	of	the	'tree'

• But	backtrack	search	
attempts	to	'prune'	the	search	
space

– Rule	out	options	at	the	partial	
assignment	level

Brute force enumeration might
test only once a possible

complete assignment is made
(i.e. all 4 queens on the board)

17

N-Queens	Solution	Development
• Let's	develop	the	code
• 1	queen	per	row

– Use	an	array	where	index	represents	the	
queen	(and	the	row)	and	value	is	the	column

• Start	at	row	0	and	initiate	the	search	[i.e.	
search(0)]

• Base	case:		
– Rows	range	from	0	to	n-1	so	STOP	when	row	

==	n
– Means	we	found	a	solution

• Recursive	case
– Recursively	try	all	column	options	for	that	

queen
– But	haven't	implemented	check	of	viable	

configuration…

int *q; // pointer to array storing
// each queens location

int n; // number of board / size

void search(int row)
{

if(row == n)
printSolution(); // solved!

else {
for(q[row]=0; q[row]<n; q[row]++){
search(row+1);

}
}

q[i] = column of queen i 2 0 3 1

0 1 2 3Index = Queen i in row i

i

0

1

2

3

18

N-Queens	Solution	Development
• To	check	whether	it	is	safe	to	place	a	queen	

in	a	particular	column,	let's	keep	a	"threat"	
2-D	array	indicating	the	threat	level	at	each	
square	on	the	board

– Threat	level	of	0	means	SAFE
– When	we	place	a	queen	we'll	update	squares	that	are	

now	under	threat
– Let's	name	the	array	't'

• Dynamically	allocating	2D	arrays	in	C/C++	doesn't	
really	work

– Instead	conceive	of	2D	array	as	an	"array	of	arrays"	which	
boils	down	to	a	pointer	to	a	pointer

int *q; // pointer to array storing
// each queens location

int n; // number of board / size
int **t; // thread 2D array

int main()
{

q = new int[n];
t = new int*[n];
for(int i=0; i < n; i++){

t[i] = new int[n];
for(int j = 0; j < n; j++){

t[i][j] = 0;
}

}
search(0); // start search
// deallocate arrays
return 0;

}

q[i] = column of queen i 0

0 1 2 3Index = Queen i in row i

i

0

1

2

3

1a0

0 0 0

2c0
1b4
3e0

0

0 0 0 0

0 1 2 3

0
1
2
3

410

0 0 0 0

0 0 0 0

Each entry
is int *

Thus t is
int **

t

t[2] = 0x1b4

t[2][1] = 0

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

Allocated
on line 08

Each allocated
on an iteration
of line 10

0 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

19

N-Queens	Solution	Development
• After	we	place	a	queen	in	a	location,	let's	

check	that	it	has	no	threats
• If	it's	safe	then	we	update	the	threats	(+1)	

due	to	this	new	queen	placement
• Now	recurse to	next	row
• If	we	return,	it	means	the	problem	was	

either	solved	or	more	often,	that	no	
solution	existed	given	our	placement	so	we	
remove	the	threats	(-1)

• Then	we	iterate	to	try	the	next	location	for	
this	queen

int *q; // pointer to array storing
// each queens location

int n; // number of board / size
int **t; // n x n threat array
void search(int row)
{

if(row == n)
printSolution(); // solved!

else {
for(q[row]=0; q[row]<n; q[row]++){
// check that col: q[row] is safe
if(t[row][q[row]] == 0){

// if safe place and continue
addToThreats(row, q[row], 1);
search(row+1);
// if return, remove placement
addToThreats(row, q[row], -1);

} } }

q[i] = column of queen i 0

0 1 2 3Index = Queen i in row i

i

0

1

2

3

0 0 0 0
0 0 0 0

0 1 2 3

0 0 0 0
0 0 0 0

t
0
1
2
3

0 1 1 1
1 1 0 0

0 1 2 3

1 0 1 0
1 0 0 1

t
0
1
2
3

0 0 0 0
0 0 0 0

0 1 2 3

0 0 0 0
0 0 0 0

t
0
1
2
3

Safe to place
queen in upper left

Now add threats Upon return,
remove threat and

iterate to next option

20

addToThreats Code
• Observations

– Already	a	queen	in	every	higher	row	so	
addToThreats only	needs	to	deal	with	positions	
lower	on	the	board

• Iterate	row+1	to	n-1

– Enumerate	all	locations	further	down	in	the	
same	column,	left	diagonal	and	right	diagonal

– Can	use	same	code	to	add	or	remove	a	threat	
by	passing	in	change

• Can't	just	use	2D	array	of	booleans as	a	
square	might	be	under	threat	from	two	places	
and	if	we	remove	1	piece	we	want	to	make	
sure	we	still	maintain	the	threat

void addToThreats(int row, int col, int change)
{

for(int j = row+1; j < n; j++){
// go down column
t[j][col] += change;
// go down right diagonal
if(col+(j-row) < n)

t[j][col+(j-row)] += change;
// go down left diagonal
if(col-(j-row) >= 0)

t[j][col-(j-row)] += change;
}

}

q[i] = column of queen i 0

0 1 2 3Index = Queen i in row i

i

0

1

2

3

0 1 1 1
1 1 0 0

0 1 2 3

1 0 1 0
1 0 0 1

t
0
1
2
3

0 1 1 1
1 1 0 0

0 1 2 3

1 1 2 1
2 0 1 1

t
0
1
2
3

21

N-Queens	Solution
void addToThreats(int row, int col, int change)
{

for(int j = row+1; j < n; j++){
// go down column
t[j][col] += change;
// go down right diagonal
if(col+(j-row) < n)

t[j][col+(j-row)] += change;
// go down left diagonal
if(col-(j-row) >= 0)

t[j][col-(j-row)] += change;
}

}

bool search(int row)
{

if(row == n){
printSolution(); // solved!
return true;

}
else {
for(q[row]=0; q[row]<n; q[row]++){
// check that col: q[row] is safe
if(t[row][q[row]] == 0){

// if safe place and continue
addToThreats(row, q[row], 1);
bool status = search(row+1);
if(status) return true;
// if return, remove placement
addToThreats(row, q[row], -1);

}
}
return false;

} }

int *q; // queen location array
int n; // number of board / size
int **t; // n x n threat array

int main()
{

q = new int[n];
t = new int*[n];
for(int i=0; i < n; i++){

t[i] = new int[n];
for(int j = 0; j < n; j++){

t[i][j] = 0;
}

}
// do search
if(! search(0))

cout << "No sol!" << endl;
// deallocate arrays
return 0;

}

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

22

General	Backtrack	Search	Approach
• Select	an	item	and	set	it	to	one	of	its	

options	such	that	it	meets	current	
constraints

• Recursively	try	to	set	next	item
• If	you	reach	a	point	where	all	items	are	

assigned	and	meet	constraints,	
done…return	through	recursion	stack	
with	solution

• If	no	viable	value	for	an	item	exists,	
backtrack	to	previous	item	and	repeat	
from	the	top

• If	viable	options	for	the	1st item	are	
exhausted,	no	solution	exists

• Phrase:
– Assign,	recurse,	unassign

bool sudoku(int **grid, int r, int c)
{

if(allSquaresComplete(grid))
return true;

}
// iterate through all options
for(int i=1; i <= 9; i++){

grid[r][c] = i;
if(isValid(grid)){

bool status = sudoku(...);
if(status) return true;

}
}
return false;

}

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

General Outline of Backtracking
Sudoku Solver

Assume r,c is current square to
set and grid is the 2D array of

values

23

BINARY	SEARCH	TREES
Properties,	Insertion	and	Removal

24

Binary	Search	Tree
• Binary	search	tree	=	binary	tree	where	all	nodes	meet	the	

property	that:
– All	values	of	nodes	in	left	subtree	are	less-than	or	equal	than	the	

parent’s	value
– All	values	of	nodes	in	right	subtree	are	greater-than	or	equal	than	the	

parent’s	value

25

4718

7 20 32 56

If we wanted to print the values
in sorted order would you use an
pre-order, in-order, or post-order

traversal?

25

BST	Insertion
• Important:	To	be	efficient	(useful)	we	need	to	keep	the	binary	search	tree	

balanced
• Practice:		Build	a	BST	from	the	data	values	below

– To	insert	an	item	walk	the	tree	(go	left	if	value	is	less	than	node,	right	if	greater	than	
node)	until	you	find	an	empty	location,	at	which	point	you	insert	the	new	value

• https://www.cs.usfca.edu/~galles/visualization/BST.html

25

4718

7 20 32 56

7

18

20

25

32

47

56

Insertion Order: 25, 18, 47, 7, 20, 32, 56 Insertion Order: 7, 18, 20, 25, 32, 47, 56

A major topic we will talk about is algorithms
to keep a BST balanced as we do

insertions/removals

26

Successors	&	Predecessors
• Let's	take	a	quick	tangent	that	will	help	us	understand	how	to	

do	BST	Removal
• Given	a	node	in	a	BST

– Its	predecessor	is	defined	as	the	next	smallest	value	in	the	tree
– Its	successor	is	defined	as	the	next	biggest	value	in	the	tree

• Where	would	you	expect	to	find	a	node's	successor?
• Where	would	find	a	node's	predecessor?

m

27

Predecessors
• If	left	child	exists,	predecessor	is	the	
right	most	node	of	the	left	subtree

• Else	walk	up	the	ancestor	chain	until	
you	traverse	the	first	right	child	
pointer	(find	the	first	node	who	is	a	
right	child	of	his	parent…that	parent	is	
the	predecessor)
– If	you	get	to	the	root	w/o	finding	a	node	
who	is	a	right	child,	there	is	no	
predecessor

50

30

25

20

10

60

Pred(50) = 30

50

30

25

20

10

60

Pred(25)=20

28

Successors
• If	right	child	exists,	successor	is	the	
left	most	node	of	the	right	subtree

• Else	walk	up	the	ancestor	chain	until	
you	traverse	the	first	left	child	pointer	
(find	the	first	node	who	is	a	left	child	
of	his	parent…that	parent	is	the	
successor)
– If	you	get	to	the	root	w/o	finding	a	node	
who	is	a	left	child,	there	is	no	successor

50

30

25

20

10

60

Succ(20) = 25

50

30

25

20

10

60

Succ(30)=50

29

BST	Removal
• To	remove	a	value	from	a	BST…

– First	find	the	value	to	remove	by	walking	the	tree
– If	the	value	is	in	a	leaf	node,	simply	remove	that	leaf	node
– If	the	value	is	in	a	non-leaf	node,	swap	the	value	with	its	in-order	

successor	or	predecessor	and	then	remove	the	value
• A	non-leaf	node's	successor	or	predecessor	is	guaranteed	to	be	a	leaf	node	
(which	we	can	remove)	or	have	1	child	which	can	be	promoted

• We	can	maintain	the	BST	properties	by	putting	a	value's	successor	or	
predecessor	in	its	place

50

30

25

20

10

60

50

30

25

20

10

60

Remove 25

Leaf node so
just delete it

Remove 20

20 is a non-leaf so can't delete it
where it is…swap w/ successor

or predecessor

50

30

25

10

20

60

50

30

20

25

10

60…or…

Either…

Swap w/
pred

Swap w/
succ

50

30

25

20

10

60

Remove 30

1-Child so just
promote child

30

BST	Efficiency
• Insertion

– Balanced:	O(log	n)
– Unbalanced:	O(n)

• Removal
– Balanced	:	O(log	n)
– Unbalanced:	O(n)

• Find/Search
– Balanced	:	O(log	n)
– Unbalanced:	O(n)

#include<iostream>
using namespace std;

// Bin. Search Tree
template <typename T>
class BST
{
public:
BTree();
~BTree();
virtual bool empty() = 0;
virtual void insert(const T& v) = 0;
virtual void remove(const T& v) = 0;
virtual T* find(const T& v) = 0;

};

31

Trees	&	Maps/Sets
• C++	STL	"maps"	and	"sets"	use	binary	search	trees	
internally	to	store	their	keys	(and	values)		that	can	
grow	or	contract	as	needed	

• This	allows	O(log	n)	time	to	find/check	membership
– BUT	ONLY	if	we	keep	the	tree	balanced!

"Jordan" Student
object

key value

"Frank" Student
object

"Percy" Student
object

"Anne" Student
object

"Greg" Student
object

"Tommy" Student
object

Map::find("Greg") Map::find("Mark")

Returns iterator to
corresponding

pair<string, Student>

Returns iterator to end()
[i.e. NULL]

32

TREE	ROTATIONS
The	key	to	balancing…

33

BST	Subtree Ranges
• Consider	a	binary	search	tree,	what	range	of	values	could	be	in	

the	subtree rooted	at	each	node
– At	the	root,	any	value	could	be	in	the	"subtree"
– At	the	first	left	child?
– At	the	first	right	child?

(-inf, inf)

z

y

c

d

x

a

b

y
(-inf, z)

(-inf, y) (y,z)

(z, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

d

z

c
(y,z) (z,inf)

a

x

b
(-inf, x) (x,y)

34

Right	Rotation
• Define	a	right	rotation	as	taking	a	left	child,	making	it	
the	parent	and	making	the	original	parent	the	new	right	
child

• Where	do	subtrees a,	b,	c	and	d	belong?	
– Use	their	ranges	to	reason	about	it…	

y

c d

z

Right
rotate of

z

(-inf, inf)

z

y

c

d
(-inf, z)

(-inf, y) (y,z)

(z, inf)

a

x

b
(-inf, x) (x,y)

x

a b

(-inf, x) (x,y) (y,z) (z, inf)

35

Left	Rotation
• Define	a	left	rotation	as	taking	a	right	child,	making	it	
the	parent	and	making	the	original	parent	the	new	left	
child

• Where	do	subtrees a,	b,	c	and	d	belong?	
– Use	their	ranges	to	reason	about	it…	

Left
rotate of

x

y

c d

zx

a b

(-inf, x) (x,y) (y,z) (z, inf)

x

a

b

y

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

d

z

c
(y,z) (z,inf)

36

Rotations
• Define	a	right	rotation	as	taking	a	left	child,	making	it	
the	parent	and	making	the	original	parent	the	new	right	
child

• Where	do	subtrees a,	b,	and	c	belong?	
– Use	their	ranges	to	reason	about	it…	

(-inf, inf)

y

x

a b

c

x

a

b c

y

Left rotate
of x

Right rotate
of y(-inf, y)

(-inf, x) (x,y)

(y, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

37

Rotation's	Effect	on	Height
• When	we	rotate,	it	serves	to	re-balance	the	tree

y

z

Right rotate
of z

z

y

cx

x

h h

h

h
h+3

h+1

h+2

h h h h

Let's	always	specify	the	parent	node	involved	in	a	rotation	(i.e.	the	
node	that	is	going	to	move	DOWN).		

38

AVL	TREES
Self-balancing	tree	proposed	by	Adelson-Velsky and	Landis

39

AVL	Trees
• A	binary	search	tree	where	the	height	difference	between	left	and	right	subtrees	

of	a	node	is	at	most	1
– Binary	Search	Tree	(BST):	Left	subtree	keys	are	less	than	the	root	and	right	subtree	keys	

are	greater
• Two	implementations:

– Height:		Just	store	the	height	of	the	tree	rooted	at	that	node
– Balance:		Define	b(n)	as	the	balance	of	a	node	=	(Right	– Left)	Subtree	Height

• Legal	values	are	-1,	0,	1
• Balances	require	at	most	2-bits	if	we	are	trying	to	save	memory.	
• Let's	use	balance	for	this	lecture.

20

3010

-1

0 -1

121 25050

30 80 150

20

3010

4

3 2

122 25152

31 81 151

AVL Tree storing Heights AVL Tree storing balances

Balance
factors

40

Adding	a	New	Node

• Once	a	new	node	is	added,	can	its	parent	be	out	of	
balance?
– No,	assuming	the	tree	is	"in-balance"	when	we	start.		
– Thus,	our	parent	has	to	have

• A	balance	of	0
• A	balance	of	1	if	we	are	a	new	left	child	or	-1	if	a	new	right	child

– Otherwise	it	would	not	be	our	parent	or	the	parent	would	
have	been	out	of	balance	already

12

10

0

0

121

200100

41

Losing	Balance

• If	our	parent	is	not	out	of	balance,	is	it	possible	our	
grandparent	is	out	of	balance?

• Sure,	so	we	need	a	way	to	re-balance	it

12

10

0

0

150

120

15-1 101
-2 2

-1
1

42

To	Zig	or	Zag
• The	rotation(s)	required	to	

balance	a	tree	is/are	
dependent	on	the	
grandparent,	parent,	child	
relationships

• We	can	refer	to	these	as	
the	zig-zig case	and	zig-zag	
case

• Zig-zig requires	1	rotation
• Zig-zag requires	2	

rotations	(first	converts	to	
zig-zig)

20

12

10

-2

-1

0

10

12

20

2

1

0

120

200100

20

10

12

-2

-1

0

10

20

12

2

1

0

120

200100

Left-left or Right-right
(a.k.a. Zig-zig)

[One left/right rotation of g]

Left-right or Right-left
(a.k.a. Zig-zag)

[Rotate p then g]

g g

g

p p

g

p p

43

Disclaimer

• There	are	many	ways	to	structure	an	
implementation	of	an	AVL	tree…the	following	
slides	represent	just	1
– Focus	on	the	bigger	picture	ideas	as	that	will	allow	
you	to	more	easily	understand	other	
implementations

44

Insert(n)

• If	empty	tree	=>	set	as	root,	b(n)	=	0,	done!
• Insert	n	(by	walking	the	tree	to	a	leaf,	p,	and	
inserting	the	new	node	as	its	child),	set	
balance	to	0,	and	look	at	its	parent,	p
– If	b(p)	=	-1,	then	b(p)	=	0.	Done!
– If	b(p)	=	+1,	then	b(p)	=	0.	Done!
– If	b(p)	=	0,	then	update	b(p)	and	call	insert-fix(p,	n)

12

10

0

0

121

200100

12-1

200100

45

Insert-fix(p,	n)
• Precondition:		p	and	n	are	balanced:	{+1,0,-1}
• Postcondition:	g,	p,	and	n	are	balanced:	{+1,0,-1}
• If	p	is	null	or	parent(p)	is	null,	return
• Let	g	=	parent(p)
• Assume	p	is	left	child	of	g		[For	right	child	swap	left/right,	+/-]

– g.balance +=	-1
– if	g.balance ==	0,	return
– if	g.balance ==	-1,	insertFix(g,	p)
– If	g.balance ==	-2

• If	zig-zig	then	rotateRight(g);	p.balance =	g.balance =	0
• If	zig-zag	then	rotateLeft(p);	rotateRight(g);	

– if	n.balance ==	-1 then	p.balance =	0;	g.balance(+1);	n.balance =	0;
– if	n.balance ==	0	then	p.balance =	0;	g.balance(0);	n.balance =	0;
– if	n.balance ==	+1 then	p.balance =	-1;	g.balance(0);	n.balance =	0;

Note:	If	you	
perform	a	

rotation,	you	will	
NOT	need	to	

recurse.	You	are	
done!

46

Insertion	
• Insert	10,	20,	30,	15,	25,	12,	5,	3,	8

Empty Insert 10 Insert 20

10 10

20

Insert 30

10

20

30

20

3010

Zig-zig =>
b(g) = b(p) = 0

Insert 15

10 violates balance

Insert 25

0 1

0

2

1

0

0

0 0

20

3010

-1

1 0

150

20

3010

0

1 -1

150 250

20

3010

0

2 -1

15-1 250

120

Insert 12

g

p

n

g

p

n

Zig-zag & b(n) = 0 =>
b(g) = b(p) = b(n) = 0

20

3012

0

0 -1

150 250100

47

Insertion	
• Insert	10,	20,	30,	15,	25,	12,	5,	3,	8

Insert 5
Zig-zig =>
b(g) = b(p) = 0

Insert 8 Zig-zag & b(n) = -1 =>
b(g) = 1 & b(p) = b(n) = 0

20

3012

-1

-1 -1

150 25010-1

50

Insert 3 20

3012

-1

-1 -1

150 25010-2

5-1

30

20

3012

-1

-1 -1

150 25050

30 100

20

3012

-1

-2 -1

150 2505+1

30 10-1

80

g

p

n

20

3010

-1

0 -1

121 25050

30 80 150

48

Insertion	Exercise	1	
• Insert	key=28

20

3010

-1

0 -1

121 25050

30 80 150

49

Insertion	Exercise	2	
• Insert	key=17

20

3010

-1

0 -1

121 25050

30 80 150

50

Insertion	Exercise	3	
• Insert	key=2

20

3010

-1

0 -1

121 25050

30 80 150

51

Remove	Operation

• Remove	operations	may	also	require	
rebalancing	via	rotations

• The	key	idea	is	to	update	the	balance	of	the	
nodes	on	the	ancestor	pathway

• If	an	ancestor	gets	out	of	balance	then	
perform	rotations	to	rebalance
– Unlike	insert,	performing	rotations	does	not	mean	
you	are	done,	but	need	to	continue

• There	are	slightly	more	cases	to	worry	about	
but	not	too	many	more

52

Remove
• Let	n	=	node	to	remove	(perform	BST	find)	and	p	=	parent(n)
• If	n	has	2	children,	swap	positions	with	in-order	successor	and	

perform	the	next	step
– Now	n	has	0	or	1	child	guaranteed

• If	n	is	not	in	the	root	position	determine	its	relationship	with	
its	parent
– If	n	is	a	left	child,	let	diff	=	+1
– if	n	is	a	right	child,	let	diff	=	-1

• Delete	n	and	update	tree,	including	the	root	if	necessary
• removeFix(p,	diff);

53

RemoveFix(n,	diff)
• If	n	is	null,	return
• Let	ndiff =	+1	if	n	is	a	left	child	and	-1	otherwise
• Let	p	=	parent(n).		Use	this	value	of	p when	you	recurse.
• If	balance	of	n	would	be	-2	(i.e.	balance(n)	+	diff	==	-2)		

– [Perform	the	check	for	the	mirror	case	where	balance(n)	+	diff	==	+2,	flipping	left/right	and	-1/+1]

– Let	c	=	left(n),	the	taller	of	the	children
– If	balance(c)	==	-1	or	0			(zig-zig	case)

• rotateRight(n)
• if	balance(c)	==	-1	then	balance(n)	=	balance(c)	=	0,	removeFix(p,	ndiff)
• if	balance(c)	==	0	then	balance(n)	=	-1,	balance(c)	=	+1,	done!	

– else	if	balance(c)	==	1		(zig-zag	case)
• rotateLeft(c)	then	rotateRight(n)
• Let	g	=	right(c)
• If	balance(g)	==	+1	then	balance(n)	=	0,	balance(c)	=	-1,	balance(g)	=	0
• If	balance(g)	==	0	then	balance(n)	=	balance(c)	=	0,	balance(g)	=	0
• If	balance(g)	==	-1	then	balance(n)	=	+1,	balance(c)	=	0,	balance(g)	=	0
• removeFix(parent(p),	ndiff);

• else	if	balance(n)	==	0	then	balance(n)	+=	diff,	done!
• else	balance(n)	=	0,	removeFix(p,	ndiff)

54

Remove	Examples

20

3010

-1

0 -1

121 25050

30 80 150

Remove 15

n

20

3010

-1

-1 -1

120 25050

30 80 150

n

Remove 3

20

3010

-1

-1 -1

120 25051

30 80

n

55

Remove	Examples
Remove 25

20

3010

-1

-1 -1

120 2505

80

1

n

20

3010

-2

-1 0

1205

80

1

n

c

g

Zig-zig & b(c) = -1 =>
b(n) = b(c) = 0

10

20

0

0

120

5

80

1

c

30

n

0

56

Remove	Examples
Remove 20

20

2210

-1

1 -1

12-1 2505

110

1

n

Zig-zag & b(g) = -1 =>
b(n) = +1, b(c) = 0, b(g) = 0

22

2010

-1

1 -1

12-1 2505

110

1

n

succ(n) 22

2510

-2

1 0

12-15

110

1

n

c

g

12

2210

0

0 1

1105

nc

g

250 0

57

Remove	Example	1
Remove 8

20

3010

-1

1 -1

15-1 2518

121

-1

5

14

28

350

170

0

0 0

58

Remove	Example	1
Remove 8

20

3010

-1

1 -1

15-1 2518

121

-1

Zig-zag & b(1) = 0 =>
b(n) = -1, b(c) = 0

5

14

28

350

170

0

0 0

20

3010

-1

2 -1

15-1 2515

121

0

14

28

350

17

0

0 0

n c

g

20

30

10

-1

-1

-1

150 251

5

121

0 14 28

350

170 0 0

n gc

p

20

30

10

0

-1

-1

150 251

5

121

14 28

350

170 0 0

n

0

59

Remove	Example	2
Remove 10

20

3010

-1

1 -1

15-1 2518

12-1

-1

5

11

28

350

170

0

0 0

60

Remove	Example	2
Remove 10

20

3010

-1

1 -1

15-1 2518

12-1

-1

5

11

28

350

170

0

0 0

20

3011

-1

1 -1

15-1 2518

120

-1

5

10

28

350

170

0

0 0
n

20

3011

-1

1 -1

150 2518

120

-1

5 28

350

170 0 0

n

20

3011

-1

0 -1

150 2518

120

-1

5 28

350

170 0 0

20

3011

0

1 -1

150 2518

120

-1

5 28

350

170 0 0

n

n

61

Remove	Example	3
Remove 30

20

3010

-1

1 -1

15-1 2518

121

-1

5

14

28

350

170

0

0 0

62

Remove	Example	3
Remove 30

20

3010

-1

1 -1

15-1 2518

121

-1

5

14

28

350

170

0

0 0

20

3510

-1

1 -1

15-1 2518

121

-1

5

14

28

300

170

0

0 0

20

3510

-1

1 -2

15-1 2518

121

-1

5

14

28170

0

0 0

n

g

c

else if b(c) == 1 (zig-zag case)
• rotateLeft(c) then rotateRight(n)
• Let g = right(c), b(g) = 0
• If b(g) == +1 then b(n) = 0, b(c) = -1, b(g) = 0
• If b(g) == 0 then b(n) = b(c) = 0, b(g) = 0
• If b(g) == -1 then b(n) = +1, b(c) = 0, b(g) = 0
• removeFix(parent(p), ndiff);

20

2810

-2

1 0

15-1 2508

121

-1

5

14

30

170

0

0

0

n

g

c

63

Remove	Example	3	(cont)
Remove 30 (cont.)

15

28

10

0

0

0

25

8 121-1

5 14 30

17

0 0 0

n

201

else if b(c) == 1 (zig-zag case)
• rotateLeft(c) then rotateRight(n)
• Let g = right(c), b(g) = 0
• If b(g) == +1 then b(n) = 0, b(c) = -1, b(g) = 0
• If b(g) == 0 then b(n) = b(c) = 0, b(g) = 0
• If b(g) == -1 then b(n) = +1, b(c) = 0, b(g) = 0
• removeFix(parent(p), ndiff);

0

0

64

Online	Tool
• https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

65

FOR	PRINT
Distribute	these	4	to	students

66

Insert(n)

• If	empty	tree	=>	set	as	root,	b(n)	=	0,	done!
• Insert	n	(by	walking	the	tree	to	a	leaf,	p,	and	
inserting	the	new	node	as	its	child),	set	
balance	to	0,	and	look	at	its	parent,	p
– If	b(p)	=	-1,	then	b(p)	=	0.	Done!
– If	b(p)	=	+1,	then	b(p)	=	0.	Done!
– If	b(p)	=	0,	then	update	b(p)	and	call	insert-fix(p,	n)

12

10

0

0

121

200100

12-1

200100

67

Insert-fix(p,	n)
• Precondition:		p	and	n	are	balanced:	{-1,0,-1}
• Postcondition:	g,	p,	and	n	are	balanced:	{-1,0,-1}
• If	p	is	null	or	parent(p)	is	null,	return
• Let	g	=	parent(p)
• Assume	p	is	left	child	of	g		[For	right	child	swap	left/right,	+/-]

– g.balance +=	-1
– if	g.balance ==	0,	return
– if	g.balance ==	-1,	insertFix(g,	p)
– If	g.balance ==	-2

• If	zig-zig	then	rotateRight(g);	p.balance =	g.balance =	0
• If	zig-zag	then	rotateLeft(p);	rotateRight(g);	

– if	n.balance ==	-1 then	p.balance =	0;	g.balance(+1);	n.balance =	0;
– if	n.balance ==	0	then	p.balance =	0;	g.balance(0);	n.balance =	0;
– if	n.balance ==	+1 then	p.balance =	-1;	g.balance(0);	n.balance =	0;

Note:	If	you	
perform	a	

rotation,	you	will	
NOT	need	to	

recurse.	You	are	
done!

68

Remove
• Let	n	=	node	to	remove	(perform	BST	find)	and	p	=	parent(n)
• If	n	has	2	children,	swap	positions	with	in-order	successor	and	

perform	the	next	step
– Now	n	has	0	or	1	child	guaranteed

• If	n	is	not	in	the	root	position	determine	its	relationship	with	
its	parent
– If	n	is	a	left	child,	let	diff	=	+1
– if	n	is	a	right	child,	let	diff	=	-1

• Delete	n	and	update	tree,	including	the	root	if	necessary
• removeFix(p,	diff);

69

RemoveFix(n,	diff)
• If	n	is	null,	return
• Let	ndiff =	+1	if	n	is	a	left	child	and	-1	otherwise
• Let	p	=	parent(n).		Use	this	value	of	p when	you	recurse.
• If	balance	of	n	would	be	-2	(i.e.	balance(n)	+	diff	==	-2)		

– [Perform	the	check	for	the	mirror	case	where	balance(n)	+	diff	==	+2,	flipping	left/right	and	-1/+1]

– Let	c	=	left(n),	the	taller	of	the	children
– If	balance(c)	==	-1	or	0			(zig-zig	case)

• rotateRight(n)
• if	balance(c)	==	-1	then	balance(n)	=	balance(c)	=	0,	removeFix(p,	ndiff)
• if	balance(c)	==	0	then	balance(n)	=	-1,	balance(c)	=	+1,	done!	

– else	if	balance(c)	==	1		(zig-zag	case)
• rotateLeft(c)	then	rotateRight(n)
• Let	g	=	right(c)
• If	balance(g)	==	+1	then	balance(n)	=	0,	balance(c)	=	-1,	balance(g)	=	0
• If	balance(g)	==	0	then	balance(n)	=	balance(c)	=	0,	balance(g)	=	0
• If	balance(g)	==	-1	then	balance(n)	=	+1,	balance(c)	=	0,	balance(g)	=	0
• removeFix(parent(p),	ndiff);

• else	if	balance(n)	==	0	then	balance(n)	+=	diff,	done!
• else	balance(n)	=	0,	removeFix(p,	ndiff)

70

OLD	ALTERNATE	METHOD

71

Insert

• Root	=>	set	balance,	done!
• Insert,	v,	and	look	at	its	parent,	p

– If	b(p)	=	-1,	then	b(p)	=	0.	Done!
– If	b(p)	=	+1,	then	b(p)	=	0.	Done!
– If	b(p)	=	0,	then	update	b(p)	and	call	insert-fix(p)

72

Insert-Fix
• For	input	node,	v

– If	v	is	root,	done.
– Invariant:		b(v)	=	{-1,	+1}

• Find	p	=	parent(v)	and	assume	v	=	left(p)	[i.e.	left	child]
– If	b(p)	=	1,	then	b(p)	=	0.	Done!
– If	b(p)	=	0,	then	b(p)	=	-1.	Insert-fix(p).
– If	b(p)	=	-1	and	b(v)	=	-1	(zig-zig),	then	b(p)	=	0,	b(v)	=	0,	rightRotate(p)	

Done!
– If	b(p)	=	-1	and	b(v)	=	1	(zig-zag),	then	

• u	=	right(v),	b(u)	=	0,	leftRotate(n),	rightRotate(p)
• If	b(u)	=	-1,	then	b(v)	=	0,	b(p)	=	1
• If	b(u)	=	1,	then	b(v)	=	-1,	b(p)	=	0
• Done!

